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A B S T R A C T

It is shown that the penetration of an oscillating electric field in a semi-infinite classical plasma
obeys the standard exponential attenuation law e−x/λe (besides oscillations), where x is the
distance from the wall and λe is the extinction length (penetration depth, attenuation length).
This solves the problem of various approximations and semi-empirical models of the surface
sheath. The penetration depth λe is computed here explicitly; it is shown that it is of the order

≃ ∣ ∣ −λ ε ε v ω[ /(1 )] /e
1/3

th , where ε is the dielectric function, ω is the frequency of the field and
=v T m/th is the thermal velocity (T being the temperature and m the particle (electron) mass).

The result is obtained by including explicitly the contribution of the surface term in the (line-
arized) Boltzmann (Vlasov) equation for the semi-infinite plasma. A key point in solving the
problem is the observation that there exists a uniform (oscillating in time) component of the
response electric field, besides the spatially decaying and oscillating component.

1. Introduction

The penetration depth of a uniform oscillating electric field in a semi-infinite classical plasma is a basic problem in the physics of
plasmas. The importance of this problem resides, on one hand, in the difficulties of estimating exactly the magnitude of the pene-
tration depth and, on the other hand, in using the radiofrequency fields for heating plasmas and other applications [1,2]. The problem
was initiated by Landau in his classical paper Ref. [3], where an approximate solution was given. The difficulties are related to the
manipulation of the Landau damping and, especially, by the limitation of the semi-infinite plasma to a half-space. These difficulties
led to various semi-empirical models of the surface sheath, supported by physical arguments and combined with numerical simu-
lations. This situation is overcome in the present paper by introducing explicitly the surface boundary condition (surface term) in the
(linearized) Boltzmann (Vlasov) equation and by using a consistent treatment of the Landau damping. It is realized that the external
electric field generates in plasma two types of (response) internal fields. One field is spatially uniform (oscillating in time). It
originates in the uniform (oscillating) displacement of the mobile charges, which generates an electric current under the action of the
uniform external field. Since the plasma is unmagnetized, this current is compensated by the time variation of this uniform oscillating
internal field. The other component, spatially varying, is generated by the spatial variations induced by the presence of the surface; it
is associated with a charge density. In these conditions we solve (exactly) the (linearized) Boltzmann (Vlasov) equation and get the
response of the plasma, which is a non-uniform, oscillating (both in space and time) electric field, attenuated over a characteristic
length. This is the extinction length (penetration depth), which is calculated explicitly herein. The attenuation law is the standard
attenuation exponential. Moreover, the treatment presented here allows us to estimate the variation of the temperature, localized,
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mainly, at the surface. In addition, the surface parameter (boundary condition) may be viewed either as an empirical parameter or a
model parameter, which opens the possibility of discussing various models for the surface (e.g., contacts of various nature, like
metallic, dielectric contacts, etc., or coated surfaces, or other types of experimentally conditioned surfaces).

The plasma relevant for the problem discussed herein is the classical collisionless plasma. [4–8] For the benefit of the general
reader we recall that a plasma is a set of positive and negative charges (ions and electrons), equal in number, in a background of
neutrals (atoms). The typical example is an ionized gas. If the charges are very dilute, their mean separation distance is very large and
their Coulomb interaction is much smaller than the electron temperature (which may be, for instance, 104 K). This weakly-coupled
plasma is a classical plasma. At the same time, the screening Debye length in such a plasma is much longer than the mean separation
distance between charges, and the charge collisions are infrequent. Moreover, for a high dilution the charge-neutrals collisions are
infrequent (and mainly elastic). This is a collisionless plasma. Usually, the frequency of an external field is much higher than the
collision frequency.

It is well known that there exists a mechanism of energy transfer between collective modes and individual particles in collisionless
classical plasmas, governed by the Landau damping [3]. The origin of this mechanism is the causal character of the response of the
plasmas to external excitations. The Landau damping received much interest, due to its application to heating plasmas by radio-
frequency electric fields [9–13]. Also, the Landau damping enjoyed controversies along the years, as a consequence of the counter-
intuitive character of an energy loss in collisioness plasmas [14–26]. Apart from theoretical and experimental investigations, nu-
merical-analysis [9–12] and mathematical studies are devoted to the phenomenon, [27–30] which show both the complexity of the
concept and difficulties related to its understanding at the fundamental level.

In semi-infinite plasmas the Landau damping appears as attenuated spatial oscillations (vibrations). The phenomenon, with its
characteristic penetration depth, has a particular relevance for surface effects. Specifically, the Landau damping in semi-infinite
plasmas implies an attenuated electric field, with spatial and temporal oscillations, besides a uniform component, as a response to a
uniform oscillating external electric field, perpendicularly applied to the plasma surface. The calculation of the exact form of this
response raises a few problems, due, on one hand, to the difficulties related to the Landau damping, and, on the other hand, as a
consequence of the presence of the surface. The surface introduces an assymmetry in the problem, related to the limitation of the
plasma to a half-space. The latter point is particularly interesting, because the response is discontinuous at the surface, and the usual
Fourier or Laplace techniques may not include properly this discontinuity. In addition, the surface boundary conditions may bring
further complications. These problems have been analyzed recently in Ref. [31]. In various approximations (see, for instance, Refs.
[31–34]), including the original calculation in Ref. [3], the asymptotically attenuated field is presented as being proportional to

−x e ωx v2/3 ( / )3
4 th

2/3
, where x is the distance from the wall, ω is the frequency of the field and =v T m/th is the thermal velocity, T being

the temperature and m being the particle mass (electrons); sometimes, an exponential attenuation ∼ −e ω x v/0 th is included, where ω0 is
the plasma frequency ( =ω π m(4 nq / )0

2 1/2, where n is the concentration of mobile charges, q and m are the particle charge and mass,
respectively). A non-linear x-dependence (∼x2/3) is related to model assumptions made upon the surface and an asymptotic treat-
ment of the Landau damping for the Boltzmann kinetic equation (see, for instance, Ref. [31]). We show here that, when the surface
condition (surface term) is included explicitly, the attenuated field obeys the standard exponential attenuation law e−x/λe (apart from
factors oscillating in space), where λe is an extinction length (penetration depth, attenuation length) which is computed here ex-
plicitly; up to immaterial numerical factors, it is of the order ≃ ∣ ∣ −λ ε ε v ω[ /(1 )] /e

1/3
th , where ε is the dielectric function (the dielectric

function ε is the ratio of the external electric field to the total electric field).
We note that experimental studies indicate a damping very close to a purely exponential law [22,23]. The penetration depth

estimated from the decrease of the extinction laws by a factor 1/e is of the same order of magnitude (v ω/th ) both for the 2/3-law and
for the purely exponential law. In this context the relevance of our calculations presented here resides mainly in their theoretical
(methodological) character. In addition, most of the numerical simulations deal with the plasma discharge regime, which is different
from the stationary regime treated here; however, we include here an estimation of the transient regime with a small attenuation
parameter.

2. Semi-infinite plasma

We consider a classical plasma at thermal equilibrium, consisting of mobile charges q with mass m and concentration n (elec-
trons), moving in a rigid neutralizing background. We confine this plasma to a semi-infinite space (half-space) x > 0, bounded by a
plane surface x=0. The plasma is subject to a uniform oscillating external electric field E0e−iωt, where E0 is directed along the x-
direction (capacitively coupled plasma). The plasma is governed by the Maxwell distribution. The mean thermal velocity is suffi-
ciently small to consider plasma unmagnetized. Since the field is directed along the x-direction we may integrate over the transverse
velocities and use = −F n βm π e( /2 ) β1/2 mv1

2
2
for the Maxwell distribution, where v is the velocity along the x-direction and β=1/T is

the reciprocal temperature. In the collisionless regime (where the collision frequency is much smaller than the frequency of the
external perturbations [35]) the change −f x v e( , ) iωt in the Maxwell distribution is governed by the (linearized) Boltzmann (Vlasov)
equation [3]

− +
∂
∂

+ + + ∂
∂

=iωf v
f
x

q
m

E E E F
v

( ) 0,0 1 (1)

where E is a uniform internal electric field and E1 is another internal electric field, which may vary in space; these fields are generated
by internal charges and currents. Since the plasma is in the weak-coupling regime (q2n1/3/T≪ 1) and the external perturbation varies
slowly in space and time, we may limit ourselves to the Boltzmann (Vlasov) equation where the external-force term is governed by
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the unperturbed Maxwell distribution. The uniform reaction field E occurs in an infinite space too, i.e. a space bounded by surfaces at
infinity (it is a bulk reaction field), while the non-uniform field E1 is due to the presence of the surface (it is a surface field). Also, we
note that we seek a solution for the stationary regime generated by a monochromatic uniform external field, which is the most
interesting experimental situation (in contrast with a transient regime). We seek the solution of Eq. (1) as = +f x v f v f x v( , ) ( ) ( , )0 1 ,
where

− + + ∂
∂

=iωf
q
m

E E F
v

( ) 00 0 (2)

and

− +
∂
∂

+ ∂
∂

=iωf v
f
x

q
m

E F
v

0.1
1

1 (3)

The uniform part f0 of the solution does not generate charge density in plasma; it generates a current density. This can be seen
immediately from Eq. (2), which implies ∫ dv · f0= 0. Therefore f0 should satisfy the equation

∫=iωE πq4 dv·vf ;0 (4)

it is easy to see that this equation arises from the general equation ∂E/∂t+4πj=0, where j is the current density [3]; this equation
ensures the vanishing of the (internal) magnetic field, as expected. We emphasize that the uniform external field produces a uniform
current, which, by this equation, leads to a uniform electric field E. In addition, the presence of the surface introduce spatial var-
iations, and generates a non-uniform electric field E1. The non-uniform part f1 of the solution generates a charge density in plasma
(and a current density; the continuity equation can be verified immediately by taking the integral with respect to v in Eq. (3));
consequently, f1 satisfies the equation

∫∂
∂

=E
x

πq4 dvf .1
1 (5)

The solution of Eqs. (2) and (4) is

= −
−

∂
∂

f
ωE

m ω ω
F
v

iq
( )0

0
2

0
2 (6)

and

=
−

= + =
−

E
ω

ω ω
E E E E ω

ω ω
E, ,t

0
2

2
0
2 0 0

2

2
0
2 0

(7)

where =ω π m(4 nq / )0
2 1/2 is the plasma frequency; we recognize here the response of a boundless plasma to an electric field (restricted

to x > 0), where = −ε ω ω1 /0
2 2 is the dielectric function and Et is the total field in plasma (P= χEt is the polarization and

χ=(ε− 1)/4π=− nq2/mω2, = −χ ω πω/40
2 2 is the electric susceptibility).

In realistic conditions (ω≪ω0) the total uniform field Et given by Eq. (7) is very small. It remains the non-uniform field E1, which
controls the penetration length. This field is generated by the asymmetry introduced in the problem by the presence of the surface.
Indeed, the charges present in the region x > 0 (plasma) may screen, to some extent, an external perturbation, while such a
screening is absent in the region x < 0 where charges (plasma) are absent.

In order to deal conveniently with the boundary condition at the surface we multiply Eq. (3) by the step function θ(x) (θ(x)= 1
for x > 0, θ(x)= 0 for x < 0) and restrict ourselves to the solution for x > 0; Eq. (3) becomes

− +
∂
∂

+ ∂
∂

=iωf v
f
x

q
m

E F
v

δ xvf ( ),s1
1

1 (8)

where = = =f f v f x v( ) ( 0, )s s 1 ; we can check directly this surface term by integrating Eq. (8) along a small distance perpendicular to

the surface x=0. The passing from Eq. (3) to Eq. (8) is done by = −∂
∂

∂
∂v θ x v δ x( ) vf ( )f

x
f θ
x s

( )1 1 . In the solution of Eq. (8) we restrict
ourselves to x > 0. Similarly, Eq. (5) becomes

∫∂
∂

− =E
x

E δ x πq( ) 4 dvf ,s
1

1 1 (9)

where E1s= E1(x=0). The inclusion of the surface δ-terms in Eqs. (8) and (9) is the main point of this paper. (If the transverse
motion would be allowed on the plane surface, these terms would lead to surface plasmons).

In Eqs. (8) and (9) we use the Fourier transforms with respect to the coordinate x (and restrict ourselves to x > 0); we get

=
− +

⎡
⎣

− ∂
∂

⎤
⎦

f k v i
ω iγ

v
q
m

F
v

E k( , )
vk

vf ( ) ( )s1 1
(10)

and
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∫

∫
=

−

+
− +

∂ ∂
− +

+

+

E k
πq

k
( )

4 dv iE

dv
,

v
ω i s

πq
m

F v
ω i

1

vf ( )
vk 0 1

4 /
vk 0

s

2

(11)

where γ→ 0+; in Eq. (11), derived from Eq. (9), we used Eq. (10). It is worth noting that in the Fourier transforms we replace ω by
ω+ iγ, γ→ 0+, in order to ensure the causal behaviour (i.e. zero response for time t < 0, which requires a pole in the lower ω-half-
plane). This procedure gives a pole in the upper k-half-plane (this is the connection between the Landau damping and the spatial
decay). At the same time, in the integrals with respect to v we may take the limit γ→ 0+, which avoids the singularity ω= vk; the
insertion of the parameter γ produces the Landau damping. We denote the denominator in Eq. (11) by A; it can be estimated as

∫ ∫= + ∂ ∂
− +

= + ∂ ∂
−

− ∂
∂

∣

≃ − − ∂
∂

∣

+ =

=

A k
πq
m

F v
ω i

k
πq
m

P F v
ω

i
π q F

v

k ω ω i
π q F

v

4
dv /

vk 0
4

dv /
vk

4
mk

(1 / )
4
mk

;

v ω k

v ω k

2 2 2 2

/

0
2 2

2 2

/ (12)

we can see that the zeros of A give the damped collective eigenmodes ω= ± ω0− iΓ (plasma frequency), where Γ is given by the
imaginary part in Eq. (12)

( ≃ − ∂ ∂ ∣ =π q ω F vΓ 2 /mk )( / ) v ω k
2 2

0
2

/0 ); this is the Landau damping.

3. Penetrating electric field

In order to estimate the field E1(x) we need the zeros of A with respect to k in Eq. (11). It is convenient to introduce the variable
=ξ βm ω k/2 / . We can see easily that the zeros of A (the roots of the equation A=0) are given by ∣ ∣ = −−ξ ξ e iαξ2 2

, where
= ∣ ∣ −α ε π ε/2 (1 ); we consider the case ω < ω0 (ε < 0; the rather unrealistic case ω > ω0 can be treated similarly, by using the

equation ∣ ∣ =−ξ ξ e iαξ2 2
). For small values of α (e.g., ω≪ω0) we get two roots of the equation A=0, given by

≃ ± +k βm ω i(1 )
α1,2
1

2 1/3 ; only k1 (placed in the upper half-plane) contributes to the k-integration for x > 0. In estimating the
integral in the numerator of Eq. (11) we may leave aside the contribution of the principal value, in comparison with the contribution
of the δ-function. For k near k1 the field E1(k) has the form

≃
− + −

=
∣ ∣

+ − +
∣ ∣

E k B
k k k k

B
πqα v
ω ε

i f α v i i
ε

E

( )
( )*

,

8 2
5

(1 ) ( (1 )) 2
5

.

i

s s

1
1 5 1

2/3
th
2

1/3
th 1

(13)

Making use of Eq. (13), the inverse Fourier transformation can be performed straightforwardly, leading to

= −E x E e( ) s
i ωx α v

1 1
( 1) /2 1/3

th (14)

where

= −
+ ∣ ∣

− −E
πqα v

ε ω
i f α v i

8 2
(2 5 )

(1 ) ( (1 ))s s1

2/3
th
2

1/3
th

(15)

(or E1s= iB). The final result is given by = −E t x E x e( , ) Re [ ( ) ]iωt
1 1 . We can see that an additional, non-uniform, electric field E1(x)

appears as a result of the presence of the surface. According to Eq. (14), this field oscillates in space and is attenuated with an
attenuation length (penetration depth, extinction length) = ∣ ∣ −λ π ε ε v ω2 (1/ ) [ /(1 )] /e

2/3 1/6 1/3
th (making use of the definition of α given

above). It is worth noting that the penetration depth and the wavelength of the spatial oscillations have the same order of magnitude.
The result obtained here has a simple physical interpretation. In a semi-infinite plasma at equilibrium, slightly perturbed by a

uniform oscillating external electric field, the perturbation generates plasma oscillations, damped by the thermal motion. The
damping of the plasma oscillations (Landau damping) affects the response of the plasma (and the equilibrium distribution) over a
distance from the surface of the order ≃ ≃λ k α v ω1/ ( / )e 1

1/3
th , where the plasma contribution is included in = ∣ ∣ −α ε π ε/2 (1 ). The

root k1 of the equation A=0 (where A is the denominator in Eq. (11)) is directly related to the Landau damping. A different approach
of attenuation is discussed in Ref. [31]. According to that approach, we may assume that the perturbation ∼e−iωt is carried by
charges with velocity v, i.e. it is ∼ −e iωx v/ at distance x from the surface. This local perturbation is convoluted with the Maxwell
distribution ∼ −e v v/22

th
2 , leading to an attenuated perturbation of the form ∼ −e ωx v( / )3

4 th
2/3
. This mechanism of attenuation is termed the

phase-mixing scale mechanism. In this approach, the plasma damping is not present, the main role being played by the external
perturbation, modified by the thermal motion. The presence of (undamped) plasma oscillations is analyzed in Ref. [31], with the
same result for the 2/3-attenuation law.

4. Discussion and conclusions

Making use of E1(k) given by Eqs. (11) and (13) we can calculate the change f x v( , )1 in the distribution function (Eq. (10)). The
poles contributions occurring in this calculation should be estimated separately for >v 0 and <v 0. In addition, we need to limit
ourselves to slow spatial oscillations (associated with the pole at k1); we get
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≃ − ∂
∂

f x v
mω

v F
v

E x( , )
iq

sgn( ) ( )1 1 (16)

(compare with Eqs. (6) and (7)). Within this approximation = − ∂ ∂f v mω v F v E( ) (iq/ )sgn( )( / )s s1 and the polarization charge and
current densities are zero (as expected in the limit of slow oscillations).

The amplitude of the field E1(x) depends on the parameter E1s, which accounts for the boundary condition at x=0. It is related to
∫=f v k v( ) dkf ( , )s π

1
2 1 by Eq. (15), where f k v( , )1 is given by Eq. (10); it is easy to see that the integration of the first term in Eq. (10)

gives fs, while, making use of Eq. (13), the integration of the term which includes E1(k) with respect to k is zero.
Within the kinetic approach we may estimate the local change in temperature by =δT Tf F2 /̄ , where the overbar implies an

integration over velocities (thermal average). We can see that only f1 contributes to this integration. Making use of Eq. (16) we get
δT=0. However, if we keep the contribution of the fast spatial oscillations (ω≫ vk), we get a surface change of temperature

∫≃ + ⋯δT
nω

v δ x2iT dv·vf ( )· ( ) .s (17)

(i.e. −δRe ( Te )iωt ). The δ-type contribution in Eq. (17) corresponds to the surface sheath in plasma heating models [13,33].
Similar calculations of the penetration depth can be made for a plasma confined between two plane-parallel walls (or other

geometries); the result depends on the boundary conditions incorporated in parameters like fs[32]. The boundary parameter fs may be
viewed either as an empirical, or model parameter; we may take f0+ fs=0 ( = =f x v( 0, ) 0) as a natural assumption, an equation
which provides the parameter fs. For fs=− f0 the field E1 at the surface (maximum value) is of the order E1≃ E/∣ ε ∣, where E is the
internal uniform field given by Eq. (7). The surface change in temperature (Eq. (17)) can be written in this case as

⎜ ⎟= ⎛
⎝

⎞
⎠

δT
π

E
q a

T aδ x1
2 /

· ( )0
2 (18)

(for ω≪ω0), where a is the mean separation distance between the particles (a= n−1/3); q/a2≫ E0 is an electric field of the order of
the microscopic (inter-particle) field.

It is worth discussing a numerical example. Recently, PIC (particle-in-cell) simulations have been performed for discharges in
capacitively coupled collisionless plasmas [36]. Besides sheath phenomena, like field reversal and ion reflection, these simulations
discuss also plasma waves and Landau damping. For an electron concentrations n=1010 cm−3 the plasma frequency is
ω0≃ 5×109 s−1, such that the dielectric function ε acquires large negative values for frequencies of the order ω≃ 107s−1 (≪ω0). In
these conditions the extinction length given above is ≃λ v ω/e th ; for temperatures T≃ 104 K the thermal velocity is ≃ ×v 6 10th

7 cm/s,
such that the extinction length is of the order 6 cm. This result is of the same order of magnitude as the one obtained from numerical
simulations.

Finally, we include here two related comments. First, we note that the kinetic equation has a slightly more general form

∂
∂

+
∂
∂

+ + + + ∂
∂

=−f
t

v
f
x

γf
q
m

E e E E F
v

( ) 0,
͠ ͠

͠ iωt
0 1 (19)

where γ > 0 is the collision-frequency parameter and the time-dependence of the external field is written explicitly. The solution can
be written as = +f f f͠

t , where ft satisfies the free equation

∂
∂

+
∂
∂

+ =
f
t

v
f
x

γf 0t t
t (20)

and f is a particular solution of the inhomogeneous equation. In the inhomogeneous equation we may include γ as a small positive
imaginary part of the frequency ω (i.e. we view ω as ω+ iγ), since γ≪ω in the collisionless regime. The inhomogeneous equation
becomes Eq. (1) and its treatment goes as above. However, the fields are determined by

∫ ∫= ∂
∂

=iωE πq vf E
x

πq f4 dv· , 4 dv͠ ͠
0

1
1 (21)

(Eqs. (4) and (5)). This enlarged framework allows the inclusion of the initial condition. Indeed, the solution of Eq. (20) is a
superposition of damped plane waves − + −C k v e( , ) γtivkt ikx , where the amplitudes C k v( , ) are determined from the initial condition. We
choose here the natural condition = =f t x v( 0, , ) 0͠ . It is easy to find

= −
−

∂
∂

=
−

f
ωE h t

m ω ω h t
F
v

E
ω h t

ω ω h t
E

iq ( )
[ ( )]

,
( )

( )0͠
0

2
0
2

0
2

2
0
2 0

(22)

and

∫

∫

=
− +

⎡
⎣

− ∂
∂

⎤
⎦

−

=
− −

+ −

− −

− +
− −

∂ ∂
− +

− −

+

+

f k v i
ω iγ

v
q
m

F
v

E k e

E k
πq e

k e

( , )
vk

vf ( ) ( ) (1 ),

( )
4 dv (1 ) iE

dv (1 )
,

͠ s
i ω t γt

v
ω i

i ω t γt
s

πq
m

F v
ω i

i ω t γt

1 1
( vk)

1

vf ( )
vk 0

( vk)
1

4 /
vk 0

( vk)

s

2

(23)

where h(t)= 1− e−γt. The contribution of the time factor to these integrals ca be estimated straightforwardly. Both the damping
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parameter and the penetrating electric field are modified according to Γ⟶ Γh(t) and E1⟶ E1h(t). Similarly, the distribution f͠1
acquires a factor ≃1− eiωt−γt. We can see that all these factors (h(t), 1− eiωt−γt) tend to unity in the limit of the long time. They
govern the transient regime, until the perturbation becomes a stationary one. A rough estimate of the (electron) collision frequency is
given by ≃γ q Tnv ( / )th

2 2, which, by using the numerical data given above, leads to γ≃ 103 s−1 (it is increased for collisions with
neutral atoms); according to this estimation, the duration of the transient regime is of the order 10−3 s.

The second comment concerns the penetration depth of an electric field in electron plasma of solids (metals). In this case the
collision frequency is much higher (of the order 1012− 1014 s−1), such that the equilibrium is reached rapidly and the Boltzmann
equation (1) can be applied for slowly oscillating fields. The only difference in comparison with the classical plasma is the much
shorter duration of the transient regime and the occurrence of the Fermi velocity instead of the thermal velocity. The parameter γ in
the Boltzmann equation is related, in fact, to the effect of the causality principle in estimating the singularities contribution. The
calculations proceed as above, with the Fermi-Dirac distribution instead of the Maxwell distribution. We get a penetration depth of
the order ω v/ F , where vF is the Fermi velocity. We note that typical Fermi velocities are of the order ≃v 10F

8 cm/s, which is com-
parable with the order of magnitude thermal velocities of a classical plasma. The treatment becomes inapplicable when the oscil-
lations of the external field interfere with the collisions, i.e. when the frequency ω is comparable with the collision frequency.

In conclusion, it is shown in this paper that the penetration of an oscillating electric field in a semi-infinite classical plasma obeys
the standard exponential penetration law e−x/λe (besides a uniform component), which may exhibit spatial oscillations, the extinction
length λe (penetration depth, attenuation length) being of the order ≃ ∣ ∣ −λ ε ε v ω[ /(1 )] /e

1/3
th ; (ε is the dielectric function, ω is the

frequency of the field and =v T m/th is the thermal velocity). The surface term is included explicitly in these calculations.
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