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It is shown that the Reynolds equations for a turbulent flow over an unbounded flat surface in 
the presence of a constant pressure-gradient lead to a displaced logarithmic profile of the velocity 
distribution; the displaced logarithmic profile is obtained by assuming a constant production rate 
of turbulence energy. The displacement height measured on the (vertical) axis perpendicular to the 
surface is either positive or negative. For a positive displacement height the boundary layer exhibits 
an inversion, while for a negative displacement height the boundary layer is a direct one. In an inversion 
boundary layer the logarithmic velocity profile is disrupted into two distinct branches separated by a 
logarithmic singularity. The viscosity transforms this logarithmic singularity into a sharp edge, governed 
by a generalized Reynolds number. The associated temperature distribution is calculated, and the results 
are discussed in relation to meteorological boundary-layer jets and stratified layers. The effects of 
gravitation and atmospheric thermal or fluid-mixture concentration gradients (“external forcings”) are 
also considered; it is shown that such circumstances may lead to various modifications of the boundary 
layers. A brief presentation of a similar situation is described for a circular pipe.

© 2015 Elsevier B.V. All rights reserved.
Usually, the velocity logarithmic profile in the boundary layer of 
a turbulent flow over an unbounded flat surface is derived by using 
dimensional or similarity arguments [1,2]. We examine here the 
implications of the Reynolds equations for the turbulent bound-
ary layer in the presence of a pressure gradient. It is shown that 
a constant pressure-gradient leads to a linear dependence of the 
Reynolds shear stress on the distance from the surface; such a de-
pendence, combined with the assumption of a constant production 
rate of turbulence energy, yields a displaced logarithmic profile of 
velocity. The displacement height, measured along the (vertical) 
axis perpendicular to the surface, is either positive or negative, cor-
responding to an inversion or a direct boundary layer, respectively. 
The difference between the two types of boundary layers arises 
from the boundary conditions. In the inversion layer the fluid flows 
in the direction opposite to the main flow, and the logarithmic law 
of the velocity profile is splitted into two branches separated by 
a logarithmic singularity. The viscosity transforms this singularity 
into a sharp edge, governed by a generalized Reynolds number. 
The temperature distribution associated with such boundary layers 
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is calculated, and the results are discussed in connection with the 
meteorological boundary-layer jets and stratified layers. Gravitation 
and atmospheric thermal or fluid-mixture concentration gradients 
(“external forcings”) are also considered; it is shown that such 
circumstances may lead to various modifications of the boundary 
layers. A similar situation is presented for a circular pipe.

Specifically, we are interested in a turbulent flow of an incom-
pressible fluid along an infinite plane surface. The coordinates x
and y lie on the surface and the coordinate z is perpendicular to 
the surface (vertical coordinate). The velocity components (u, v, w)

correspond to the (x, y, z)-directions. The fluid flows along the x
axis with velocity u. As usually, we introduce the mean veloci-
ties u, v and w and the fluctuating velocities u′ , v ′ and w ′ , by 
u → u + u′ , etc. (we consider time averaging; also, spatial averag-
ing will be discussed below). We assume v = w = 0 and u(z) �= 0
depending only on z (a uniform flow along the x-direction). Under 
these conditions the Navier–Stokes equations lead to the Reynolds 
equations [1,3,4]

0 = − 1
ρ

∂ p
∂x − ∂

∂x u′ 2 − ∂
∂ y u′v ′ − ∂

∂z u′w ′ + ν ∂2u
∂z2 ,

0 = − ∂
∂x u′v ′ − ∂

∂ y v ′ 2 − ∂
∂z v ′w ′ ,

0 = − ∂ u′w ′ − ∂ v ′w ′ − ∂ w ′ 2 , (1)

∂x ∂ y ∂z
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where ρ is the fluid density, p is the (mean) pressure (depend-
ing only on x) and ν is the viscosity coefficient. We note the 
occurrence in equation (1) of the correlation functions u′ 2, u′v ′ , 
etc. (also called variances, like u′ 2, and covariances, like u′v ′); 
these quantities are the components of the Reynolds stress tensor 
(which, multiplied by ρ , is a momentum flux density). We assume 
a constant, negative pressure-gradient ∂ p/∂x = const < 0. We note 
that the Reynolds stress tensor generates forces which may com-
pete with the pressure-gradient force in equation (1) (and with the 
viscosity “force”); therefore, equation (1) is in fact an equilibrium 
equation (corresponding to a steady flow), as expected.

Equations (1) represent a system of three equations with seven 
unknowns: the components of the Reynolds tensor and the mean 
velocity u; it is an under-determined system of equations. We are 
interested in the first equation (1), where we assume ∂(u′v ′)/∂ y =
0, u′w ′(z) �= 0 depending only on z and ∂u′ 2/∂x = const. In gen-
eral, constant Reynolds stress components with respect to a coor-
dinate amount to a homogeneous turbulence along that axis [5–7]. 
Under these conditions, the first equation (1) reads

0 = A − d

dz
u′w ′ + ν

d2u

dz2
, (2)

where A = −(1/ρ)dp/dx − ∂u′ 2/∂x; for the sake of generality we 
keep for the moment ∂u′ 2/∂x = const in equation (2), correspond-
ing to an inhomogeneous turbulence along the x-axis.

We leave aside for the moment the viscosity term in equa-
tion (2); then, the integration of this equation gives

u′w ′ = Az − βu2∗ , (3)

where β = ±1 and the parameter u∗ is a surface friction velocity; 
for the sake of generality we keep both signs in the boundary con-
dition u′w ′ |z=0= −βu2∗; ρu2∗ is the friction force per unit area of 
the surface and ρu′w ′ is the xz-component of the momentum flux 
density (Reynolds shear stress). Equation (3) can also be written as

u′w ′ = βu2∗
h

(z − h) , h = βu2∗
A

, A �= 0. (4)

Such a linear dependence of the shear stress is known in the at-
mospheric turbulence of the boundary layers [8] and in turbulent 
flow on flat plates or in channels [1]. We note that the displace-
ment height h may have both signs.

Multiplying the Navier–Stokes equations by u and using the 
same procedure (u → u + u′ , etc.), we get the conservation law 
for the mean-flow energy

0 = ∂

∂t

[
1

2
u2

]
=

= u

[
− 1

ρ

∂ p

∂x
− ∂

∂x
u′ 2 − ∂

∂ y
u′v ′ − ∂

∂z
u′w ′ + ν

∂2u

∂z2

]
, (5)

which is the first equation (1) multiplied by u. Similarly, multiply-
ing the Navier–Stokes equations by the fluctuating velocities and 
taking the average we get the conservation equation for the turbu-
lence energy

0 = ∂
∂t

[
1
2 (u′ 2 + v ′ 2 + w ′ 2)

]
=

= −u′w ′ ∂u
∂z − 1

2 u ∂
∂x

(
u′ 2 + v ′ 2 + w ′ 2

)
+

+ ν
(

u′�u′ + v ′�v ′ + w ′�w ′
)

, (6)

where third-order terms involving products of three fluctuating ve-
locities and velocity derivatives, as well as the contribution of the 
fluctuating part of the pressure have been dropped out; in ad-
dition, in deriving equation (6) the continuity equation ∂u′/∂x +
∂v ′/∂ y + ∂ w ′/∂z = 0 has been used. The main assumption made 
here is that the fluctuations are small in comparison with the 
mean flow. Adding the two equations (5) and (6), we get the con-
servation law of the total energy

0 = ∂
∂t

[
1
2 (u2 + v2 + w2)

]
=

= − 1
ρ

∂ p
∂x u − ∂

∂x

(
uu′ 2

)
− ∂

∂ y

(
uu′v ′

)
−

− ∂
∂z

(
uu′w ′

)
− ∂

∂x

[
1
2 u

(
u′ 2 + v ′ 2 + w ′ 2

)]
+

+ ν
(

u ∂2u
∂z2 + u′�u′ + v ′�v ′ + w ′�w ′

)
. (7)

The first term on the right in equation (7) is related to the work 
done by the pressure forces per unit time; the next four terms are 
related to the energy flux density due to the fluid mass transfer; 
the last term, involving the viscosity coefficient, can be written as

ν
(

u ∂2u
∂z2 + u′�u′ + v ′�v ′ + w ′�w ′

)
=

= ν ∂2

∂z2

(
1
2 u2

)
+ 1

2ν�
(

u′ 2 + v ′ 2 + w ′ 2
)

−

− ν
(

∂u
∂z

)2 − ν

[(
∂u′
∂x

)2 +
(

∂u′
∂ y

)2 +
(

∂u′
∂z

)2
]

−

− ν

[(
∂v ′
∂x

)2 +
(

∂v ′
∂ y

)2 +
(

∂v ′
∂z

)2
]

−

− ν

[(
∂ w ′
∂x

)2 +
(

∂ w ′
∂ y

)2 +
(

∂ w ′
∂z

)2
]

; (8)

the first two terms on the right in equation (8) are related to 
the energy flux density due to internal friction (momentum trans-
fer through collisions caused by viscosity); the remaining terms 
imply heat production; for an adiabatic flow they are equal to 
−(1/ρ) div q, where q is the heat flux density [2].

A similar analysis can be done for each of the equations (5) and 
(6) separately. The terms −u ∂

∂z u′w ′ on the right in equation (5)

and −u′w ′ ∂u
∂z in equation (6) (which together give an energy flux 

density − ∂
∂z

(
uu′w ′

)
), have a special meaning when taken sep-

arately: each of them represents a coupling between the mean 
flow and the turbulent flow. In particular, −u′w ′ ∂u

∂z is a production 
rate of turbulence energy (while −u ∂

∂z u′w ′ is a production rate of 
mean-flow energy; “production” means here either a positive or a 
negative contribution).

We focus now on equation (6). The components of the Reynolds 
stress tensor have a small, local (finite) variation, at least for a ho-
mogeneous turbulence; assuming a homogeneous turbulence along 
the x, y-coordinates and taking a spatial averaging with respect to 
these coordinates we get from equation (6)

u′w ′ du
dz = ν

(
u′ d2

dz2 u′ + v ′ d2

dz2 v ′ + w ′ d2

dz2 w ′
)

− νC =

= 1
2ν d2

dz2

(
u′ 2 + v ′ 2 + w ′ 2

)
−

− ν

[(
du′
dz

)2 +
(

dv ′
dz

)2 +
(

dw ′
dz

)2
]

− νC , (9)

where C is a positive constant arising from spatial averages of 
the type u′ ∂2

∂x2 u′ (for the sake of simplicity, in equation (9) the 
spatial averaging is not indicated explicitly by an additional aver-
aging sign). The first term on the right in equation (9) involves 
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the turbulence energy, while the second term is the heat produced 
by internal friction (viscosity) along the z-axis. For small fluctu-
ations these terms have a slow variation with z, at least for not 
too small distances from the surface; therefore, we may assume 
that the main contribution to the rhs of equation (9) is a con-
stant. The deviations of this term from a constant are viewed as 
small corrections, which are neglected here; this implies a limited, 
intermediate range of validity for the coordinate z. Therefore, we 
assume a constant production rate of turbulence energy

u′w ′ du

dz
= const = −βu2∗u1 , (10)

where u1 = du
dz |z=0= u′ |z=0. This scheme of approximation

amounts to a perturbation-theoretical treatment, where the corre-
lation functions of the fluctuating quantities (including correlation 
functions of derivatives of fluctuating quantities), like those in-
volved in equation (9), are assumed to vary slowly along the z-axis. 
The sign of the constant in equation (10) (the sign of the product 
βu1) remains undetermined. A constant production rate of turbu-
lence energy is suggested by experimental studies, at least for not 
too small distances from the surface [9,10].

Equation (10) is a closure assumption, which amounts to a tur-
bulence model; [11] using equation (4) we get

du

dz
= − hu1

z − h
(11)

and

u(z) = −hu1 ln

∣∣∣∣ z − h

h

∣∣∣∣ (12)

for a vanishing velocity on the surface (u |z=0= 0). This law is 
different from the well-known logarithmic profile u(z) = (u∗/k)×
ln(z/z0) [12–17], where k � 0.4 is the von Karman constant and 
z0 is a cut-off parameter [1,2]; in particular, equation (12) includes 
a characteristic length h and the slope of the velocity at z = 0. The 
difference arises from the fact that the governing quantities of the 
velocity distribution are not only the velocity u∗ and the coordi-
nate z, but the Reynolds tensor too. Various logarithmic laws have 
been suggested for various z-regions in turbulent boundary layers, 
[18–21] including similarity analysis in the presence of a pressure 
gradient [22]. Equation (12) gives a displaced logarithmic profile 
of velocity, with h the displacement height. For large values of z
(z � h) we recover a logarithmic law

u(z) � −hu1 ln |z/h| , z � |h| , (13)

while for small values of z (comparable with |h|) equation (12)
gives a linear z-dependence u(z) � u1z; this linear dependence 
corresponds also to the absence of the pressure-gradient (A = 0
in equation (4)), where h → ∞. For h > 0 (β/A > 0) the displaced 
logarithmic profile given by equation (12) corresponds to an in-
version boundary layer, while for h < 0 (β/A < 0) the displaced 
logarithmic profile indicates a direct boundary layer. A positive dis-
placement height (in an inversion layer) disrupts the logarithmic 
velocity profile ln z in two branches, separated by a logarithmic 
singularity at z = h, as shown by equation (12) and in Fig. 1. For 
z < 2h the direction of the flow is opposite (negative, for u1 < 0) 
to the direction of the main flow for z > 2h. In the vicinity of the 
surface the velocity is linear in z, u(z) � u1z for z 	 h, and nega-
tive (u1 < 0).

Records are known of inversion layers in Meteorology (“counter-
gradient” layers) [23]. The inversion layer may also be viewed as 
a “sub-layer”, though it is different from what is usually called a 
sub-layer in the logarithmic profile [2]; rather, the range of small 
values of z where the velocity is linear in z can be considered a 
Fig. 1. Logarithmic singularity (velocity “rupture”) in an inversion layer, which may 
occur in the turbulent boundary layer. The arrows indicate the velocity (equa-
tion (12)).

sub-layer. The “linear sub-layer” is well documented, both experi-
mentally and theoretically [9,24]. An offset to the z-coordinate of 
the h-type inside the logarithm in equation (12) has been pointed 
out in atmospheric turbulence, especially in connection with self-
similarity symmetries of the equations of motion [25–29]. Local 
self-similarity arguments used in getting a consistent organization 
of the experimental data in the turbulent structure of the atmo-
spheric boundary layer indicated the existence of a finite param-
eter similar to h (the boundary-layer depth), a linear dependence 
on the coordinate z of the shear stress u′w ′ , a connection between 
the shear stress u′w ′ and the gradient of the mean velocity as 
given in equations (6) and (9), and, especially, a constant rate of 
production of the turbulence energy, as expressed by equation (9), 
at least for not too small distances from the surface (usually for 
z/ |h| > 0.2; the Coriolis force and the gravitational force are ne-
glected in our considerations) [30–34]. A parametrization model of 
the planetary boundary layer in conditions of general atmospheric 
circulation suggests similar conclusions [35].

It is also worth noting that assuming an inhomogeneous tur-
bulence along the x-axis with ∂u′ 2/∂x = const within the same 
procedure as above, equation (6) leads to

u′w ′ du

dz
= C1u + C2 , (14)

where C1,2 are two constants; making use of u′w ′ given by equa-
tion (4), we get u ∼ (z−h)C3 +const, where C3 is another constant. 
Therefore, in this case the velocity profile is changed into a power 
law. Consequently, it seem that a (displaced) logarithmic profile of 
velocity is obtained only for homogeneous turbulence along the 
in-plane directions and a constant pressure-gradient. In the equi-
librium equation (2) this pressure gradient is compensated by the 
gradient (along the vertical axis) of the Reynolds shear stress (for 
vanishing viscosity).

We turn now to equation (2) and include the viscosity coeffi-
cient; we are interested in the limit ν → 0. We assume a homo-
geneous turbulence, i.e. A = −(1/ρ)dp/dx > 0 (∂u′ 2/∂x = 0). For a 
direct boundary layer we have β = −1 and u1 > 0; changing h into 
−h, we get from equations (2) and (9)

0 = u2∗
h

− d

dz

u2∗u1

u′ + νu′′ (15)

(with the notation A = − 1
ρ

dp
dx = u2∗/h). A first integration leads to

u′ = u2∗
2hν

[
−(z + h) ±

√
(z + h)2 + z2

h

]
, (16)

where
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h = h

(
1 − 1

R

)
, z2

h = 4h2

R
(17)

and R = u2∗/νu1 is a generalized Reynolds number; Rc = 1 plays 
the role of a critical value for the existence of a positive parameter 
h (h > 0 for R > Rc = 1). Equation (11) is recovered in the limit 
ν → 0 (R → ∞) by the sign + in equation (16). The solution u
can be obtained by integrating this equation with the boundary 
condition u |z=0= 0. We get

u(z) = hu1

{
ln

z+h+
√

(z+h)2+z2
h

h+
√

h2+z2
h

− z2
h

2
[

z+h+
√

(z+h)2+z2
h

]2 +

+ z2
h

2
(

h+
√

h2+z2
h

)2

}
; (18)

by comparing this equation with the displaced logarithmic equa-
tion (12), we can see that the only effect of the viscosity is to 
bring corrections of the order 1/R in the limit R � 1.

The modification brought by viscosity is more appreciable in 
the inversion boundary layer. For an inversion layer we assume 
A = −(1/ρ)dp/dx > 0, β = 1 and u1 < 0; equation (2) becomes

0 = u2∗
h

+ d

dz

u2∗u1

u′ + νu′′ (19)

with A = − 1
ρ

dp
dx = u2∗/h > 0. A first integration leads to

u′ = − u2∗
2hν

[
z − h ±

√
(z − h)2 + z2

h

]
, (20)

where h = h(1 − 1/R), z2
h = 4h2/R and R = u2∗/ν |u1|; a positive 

displacement height h exists for R > Rc = 1. Equation (11) is re-
covered in the limit ν → 0 (R → ∞) by

u′ =

⎧⎪⎪⎨
⎪⎪⎩

− u2∗
2hν

[
z − h +

√
(z − h)2 + z2

h

]
, z < h ,

− u2∗
2hν

[
z − h −

√
(z − h)2 + z2

h

]
, z > h ;

(21)

we can see that the derivative u′ has a discontinuity at z = h, given 
by

u′(h) = sgn(z − h) |u1|
√

R ; (22)

the function u(z) acquires a “sharp-edge” profile in the vicinity of 
z = h, controlled by the Reynolds number R; for R → ∞ (ν → 0) 
the logarithmic singularity is recovered. The solution u can be ob-
tained by integrating equations (21) with the boundary condition 
u |z=0= 0. We get

u(z) = −h |u1|
{

ln

∣∣∣∣
√

(z−h)2+z2
h−

∣∣∣z−h
∣∣∣√

h2+z2
h−h

∣∣∣∣+
+ 1

2z2
h

[√
(z − h)2 + z2

h −
∣∣∣z − h

∣∣∣]2

−

− 1
2z2

h

(√
h2 + z2

h − h

)2}
(23)

and

u(h) = −1

2
h |u1|

(
ln R + 1 − 1

R

)
; (24)

by comparing with equation (12) (with h negative) we can see that √
R scales as h/ |z − h| for z in the vicinity of h and R → ∞. For 

a viscous flow the inversion layer is preserved for R > Rc = 1 (ν <

u2∗/ |u1|), while acquiring an edge at h, which gets sharper with 
Fig. 2. A sharp-edged inversion layer (equation (23)), shown schematically.

increasing R; an estimate for the width of the sharpness of the 
inversion layer is the parameter zh , while 2h can be taken as an 
estimate of the width of the inversion layer for large values of R . 
A sketch of a sharp-edged inversion layer is shown in Fig. 2. Such 
turnovers or cusps in wind profile have been recorded in nocturnal 
jets in turbulent atmospheric boundary layers [36–41]. We note 
also that for large values of the viscosity (R 	 1) the sign of the 
“renormalized” height h may change in the above equations, and a 
transition direct-inversion layer may occur.

We turn now to the temperature distribution associated with 
the turbulent flow in the boundary layer. We assume a homoge-
neous turbulence along the x, y-directions, according to the dis-
cussion above. According to our hypothesis the production rate of 
turbulence energy is a constant, −u′w ′ du

dz = βu2∗u1; for both a di-
rect and an inversion layer the product βu1 is negative; we can 
see that the turbulence energy is diminished in fact (the “produc-
tion” rate of turbulence energy is in fact a “loss” rate of turbulence 
energy). Equation (10) gives a representation of the main contribu-
tion to the sum of the correlation functions involved in the rhs of 
equation (9), spatially averaged, in terms of our notations −βu2∗u1. 
We note that for the opposite sign βu1 > 0, the flow direction 
is reversed both in the direct and inversion layer, corresponding 
to an increase in the turbulence energy (this situation can also 
be obtained for −(1/ρ)dp/dx < 0). In addition, it is worth not-
ing that there is a non-vanishing energy flux transported along 
the z-coordinate for large z, due to the fact that the surface is 
unbounded (as seen from an increasing velocity u(z) with increas-
ing z); this is why the validity of the present results is limited to 
finite values of z.

According to equation (8), the equation of heat transfer is

T
ds

dt
= − 1

ρ
div q + ν

(
∂u

∂z

)2

+

+ ν

[(
∂u′
∂z

)2

+
(

∂v ′
∂z

)2

+
(

∂ w ′
∂z

)2
]

+ νC , (25)

where s is the entropy per unit mass, T is the temperature, q is 
the heat flux density and C is the same constant that appears in 
equation (9); the thermal conduction is given by q = −κ grad T , 
where κ is the thermal conductivity [2]. Equation (25) shows the 
increase in time of the entropy by internal friction and heat con-
duction. In general, in the lhs of equation (25) we take both a time 
averaging and a spatial averaging with respect to the in-plane co-
ordinates; it implies both mean and fluctuating temperatures and 
entropies (and velocities). Since the fluctuating quantities are as-
sumed to be small in comparison with the mean quantities, we 
may leave aside these contributions to equation (25). In addition, 
the lhs of equation (25) is vanishing (as for an adiabatic flow) for 
our particular problem (since we have only one component u of 
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the mean velocity along the homogeneous-turbulence x-axis). Then 
the temperature distribution is given by

κ
d2T

dz2
= −ρν

(
du

dz

)2

. (26)

For ν → 0 we may use equation (11) for du/dz; we get

T = ρνu2
1h2

κ
ln

∣∣∣∣ z − h

h

∣∣∣∣ + ρνu2
1h

κ
z (27)

with the boundary conditions T |z=0= dT
dz |z=0= 0. We can see that 

the temperature decreases with the distance from the surface; for 
an inversion layer the temperature has a logarithmic singularity 
at z = h; in general, the temperature distribution for an inver-
sion layer exhibits a non-monotonous dependence on z. For the 
evolution of the temperature in time, we use ds = cpdT in equa-
tion (25), where cp is the specific heat at constant pressure [2]; 
the solution is specific to a diffusion process. Models of temper-
ature distributions in atmospheric boundary layers, or associated 
with stratified air-flow inversion layers (jets), or in convective at-
mospheric boundary layers have been discussed in Refs. [23,42,43].

A more general situation may appear for boundary layers in 
the presence of so-called “external forcings”, which may gener-
ate local gradients of temperature or of fluid-mixture concentra-
tion along the z-coordinate [23]. Under such circumstances we 
may expect a z-dependence of the pressure p; consequently, the 
parameter A = (−1/ρ)(∂ p/∂x) is not a constant anymore, as as-
sumed heretofore, but, instead, it becomes a function of z (the 
gravitation produces a similar effect). For instance, for a sim-
ple linear dependence of the form A = (−1/ρ)(∂ p/∂x) = a + 2bz, 
where a and b are two (positive) constants, the procedure de-
scribed in the present paper (equations (2) and (9)) leads to a 
quadratic z-dependence of u′w ′ and 1/(du/dz), of the form u′w ′ =
az + bz2 − u2∗ , for β = 1 (inversion layer). The velocity distribution 
is u ∼ ln [|z/h1 − 1|/(z/h2 + 1)], where h2 > h1 > 0 are two pa-
rameters related to the roots of the equation az + bz2 − u2∗ = 0. 
We can see that the inversion layer is preserved, but the logarith-
mic velocity profile suffers now an appreciable change for large z, 
where the velocity tends to a constant ∼ ln(h2/h1) (we remind 
that the derivations made here are not valid for large z). A similar 
result is obtained for b < 0 (gravitation effect), where the veloc-
ity profile u ∼ ln |(z/h1 − 1)/(z/h2 − 1)|, h2 > h1 > 0, exhibits a 
“scissors-like”, double inversion layer (stratified layers).

The logarithmic singularity of the inversion layer at z = h or 
the discontinuity in the slope of the function u(z) at z = h might 
be viewed as unsatisfactory features of the present model. How-
ever, u′w ′ ∼ z − h given by equation (4) can be considered as a 
first-order contribution in powers of z; an additional, next-order 
z2-term could lead to u′w ′ of the form u′w ′ ∼ (z − h)2 + ε2, 
where ε is a small parameter. Indeed, it seems that the condi-
tion of vanishing u′w ′ at z = h is too strong. Similarly, the con-
stant production rate of turbulence energy u′w ′ du

dz = −u2∗u1 (equa-

tion (9)) may acquire an additional z-term, leading to u′w ′ du
dz of 

the form u′w ′ du
dz ∼ z − h′ (where h′ is, in general, different from 

h). Then, u′ behaves essentially as u′ ∼ (z − h)/[(z − h)2 + ε2] and 
u ∼ ln[(z − h)2 + ε2], which might be a more acceptable functional 
dependence on z of the velocity. However, derivation of higher-
order terms in the shear stress and the production rate of turbu-
lence energy requires further, additional model assumptions.

In conclusion, we may say that a displaced logarithmic profile 
of velocity has been derived here for the boundary layer in the 
turbulent flow over an unbounded flat surface by assuming a con-
stant pressure-gradient and a constant production rate of turbu-
lence energy, associated with a homogeneous turbulence along the 
in-plane directions. For a direct boundary layer the displacement 
height is negative, while for an inversion boundary layer the dis-
placement height is positive. The inversion layer splits the logarith-
mic profile in two branches, separated by a logarithmic singularity 
(a “rupture” in the velocity distribution). In the inversion layer the 
fluid flows in direction opposite to the main flow. In a viscous flow 
the singularity in the inversion layer becomes a sharp edge con-
trolled by a generalized Reynolds number R (small values of the 
viscosity bring only corrections of the order 1/R 	 1 for the direct 
boundary layer). The associated temperature distribution has also 
been estimated for such boundary layers. It has been shown that 
gravitation and atmospheric, local, thermal or fluid-mixture con-
centration gradients (“external forcings”) can bring various modi-
fications to the inversion layers. The procedure employed in this 
paper of treating the turbulent boundary layer is based on the 
Reynolds equations and on certain assumptions regarding the com-
ponents of the Reynolds stress tensor, derived from the assumption 
of homogeneous turbulence, or the symmetry of the problem. The 
Reynolds equations remain, in general, undetermined, as well as 
some features of the boundary conditions; for instance, the dis-
tinction criterion between a direct boundary layer and an inversion 
one (the choice of the parameter β = ±1), or the choice of the 
sign of the product βu1 (as well as the parameter u2∗) remain un-
determined; there appears to be no obvious, physical, quantitative 
criteria to discriminate between the two types of boundary layers, 
the difference being made by the boundary conditions, and, prob-
ably, the (undetermined) preparation conditions of the turbulence.

Finally, we include here a brief description of a similar situ-
ation for a pipe with a circular cross-section of radius R . For a 
uniform flow with mean velocity u(r) along the z-axis of the pipe 
the Reynolds shear stress is

2rv ′
r v ′

z = βu2∗
h

(
r2 − R2 − 2hR

)
,

where h = βu2∗/A, A = −(1/ρ)(dp/dz) = const > 0 (r being the ra-
dial coordinate). The constant production rate of turbulence energy 
is −v ′

r v ′
z(du/dr) = −βu2∗u1, where u1 = − du

dr |r=R and the velocity 
distribution is given by

u(r) = hu1 ln

∣∣∣∣ r2 − R2 − 2hR

2hR

∣∣∣∣
for u(R) = 0 (and zero viscosity). For β = +1 and u1 > 0 the 
boundary layer is a direct one, and the viscosity brings only small 
corrections in the limit ν → 0. For β = −1 and u1 < 0 the pa-
rameter h is negative and we have an inversion layer; the velocity 
exhibits a logarithmic singularity at r = (R2 − 2 |h| R)1/2 (the flow 
is possible for R > 2 |h|), which is made finite by viscosity.
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