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Summary

The notions of ‘elementary’seismic sources and ‘elementary’earthquakes are introduced, as being
associated with ‘elementary’ tensorial point forces with a δ-like time dependence (where δ is the
Dirac delta function). The tensorial character of these forces, known in Seismology as the dipole
(or double-couple) representation, is given by the tensor of the seismic moment. A regular seismic
source and a regular earthquake can be represented as a superposition of elementary sources and,
respectively, elementary earthquakes, governed by a space-time structure factor of the seismic
focal region. All these are new concepts. Elementary seismic sources are considered here for
a homogeneous isotropic elastic half-space bounded by a free plane surface, the sources being
located at an inner point in the half-space. A transient regime of generation and propagation
of seismic waves is identified, as distinct from the stationary regime of elastic vibrations. This
is another new concept. It is shown that elementary seismic sources produce (double-shock)
spherical-shell waves (in the wave region), which are the well-known P and S waves associated
with the feeble tremor in the recorded seismograms. Their mathematical expression, derived
here from the tensorial force, differs from known, particular cases. These waves are called here
collectively ‘primary’ waves. It is shown that the primary waves interact with the surface of the
half-space, where they give rise to ‘secondary’wave sources, placed on the surface. The secondary
waves generated by the secondary sources (which may be called ‘surface seismic radiation’) are
estimated here in a simplified model. It is shown that the secondary waves have a delay time
in comparison with the primary waves and give rise to a main shock and a long seismic tail, in
qualitative agreement with the seismic records. The secondary wave introduced here is a new
concept; the main shock and its long tail derived here are elements of novelty. Similarly, the
secondary waves generated by an internal discontinuity in the elastic properties of the half-space
(an interface parallel with the free surface) are also estimated; it is shown that the discontinuity
reduces appreciably the singular main shock on the free surface of the homogeneous half-space.

1. Introduction

It is widely accepted that the main problem in Seismology is the generation and propagation of the
seismic waves. It gives information about processes occurring in the earthquake focal region, the
nature and structure of the Earth’s interior, and the effect of the seismic waves on the Earth’s surface.
The problem originates with the classical works of Rayleigh, Love and Lamb (it is sometime known
as Lamb’s problem) (1)–(4). In a simplified model, the Earth may be viewed as a homogeneous
isotropic elastic half-space bounded by a plane surface, the seismic sources being placed at an inner
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point in the half-space. For sufficiently long distances the spatial localisation of the seismic sources
may be represented by δ-functions, or their derivatives (point sources), where δ is the Dirac delta
function. The dipole (or double-couple) representation of point seismic sources by means of the
tensor of the seismic moment emerged gradually in the first half of the 20th century (5)–(8). The
exact mathematical expression of the elementary tensorial point seismic force is derived here, as a
basic element for characterising earthquakes’ foci.

The standard way of treating the seismic waves starts with a point vector force placed in the
seismic source; this is known as the Stokes problem (9). Two solutions of the Stokes problem in
the infinite space are superposed, as arising from a Stokes point dipole. The point dipole conserves
the total force, but it does not conserve the total angular momentum. The angular momentum is
conserved by two dipoles suitably arranged; this is the double-couple representation of the seismic
sources. A distribution of point dipoles which conserve the total force and angular momentum is
not unique. Obviously, the point dipoles indicate a tensorial character of the seismic sources (10)–
(12). We derive here the exact mathematical expression of the tensorial point force governed by
the tensor of the seismic moment and solve directly the equation of the elastic waves in the direct
space for a homogeneous isotropic medium (in the time-domain) for a δ-like time dependence of the
force. We call the point seismic sources (forces) with such a time dependence ‘elementary’ sources
(forces); they generate ‘elementary’ earthquakes. The importance of the elementary seismic sources
introduced here resides in their being associated with Green functions in the time domain which allow
direct, explicit calculations. Quasi-static unphysical terms may appear in solution, which should be
discarded by a regularisation (calibration) procedure. It is shown that the elementary tensorial forces
produce two (double-shock) spherical-shell elastic waves which can be viewed as the well-known
P and S seismic waves. They are currently associated with the feeble preliminary tremor recorded
in seismograms (3), (13). We call these waves, collectively, ‘primary’ waves. (We recall that in the
seismological literature the P wave is called primary wave, while the S wave is called secondary
wave). The mathematical expression of the P and S waves derived here from the tensorial force
differs from known, particular cases. For sources with a finite temporal or spatial extension, or both,
or for multiple sources a space-time structure factor of the focal region is introduced here, which
may be viewed as an imprint of the focal region in recorded seismograms. Such structure factors are
responsible for the ‘succession of primitive shocks’ (2) and the oscillations and the irregular motion
exhibited by the seismic records. The concept of structure factor introduced here is new.

Also, a model of isotropic elementary source is introduced here (which may be relevant for
explosions) and the seismic waves produced by such a source are derived by solving directly the
equation of the elastic motion; it is shown that these waves can be obtained from the general solution
corresponding to the tensorial force by using an isotropic (scalar) seismic moment, as expected.

The standard course in the seismological literature continues with the decomposition of the seismic
waves in (in-plane) Fourier series for a half-space (or their expansions in normal modes for a spherical
model of Earth) and Rayleigh surface waves (14), (15) are added to these extended waves to satisfy
the boundary conditions at the surface (usually a free surface); also, the Laplace transform is used
to this end (the well-known Cagniard-de Hoop method (16), (17)). Thereafter, the recomposition is
looked for, in order to get the seismic main shock (which is expected to appear in this context from
the surface waves). However, the primary waves are propagating waves concentrated on spherical
shells, while the boundary conditions are relevant for surfaces acted continuously, in their entirety, by
stationary waves (vibrations). The elastic waves may suffer multiple reflections on the Earth’s surface
(or on the interfaces of the internal Earth’s layers) and a stationary regime of oscillations may set in
after a lapse of time. The relevant magnitude of this time interval is of the order RE/c, where RE is
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the radius of the Earth and c is the wave velocity. For RE = 6370 km and a mean velocity c = 5 km/s
of the elastic waves we get RE/c � 1274 s; this time interval is much longer than the time taken by
the seismic waves to propagate from the source to the Earth’s surface (that is to the epicentre and
the surface zones surrounding the epicenter). We can see that the effects of the seismic waves on the
Earth’s surface are produced in a time much shorter than the time needed for attaining the stationary
regime of vibrations. It follows that we are interested primarily in the transient regime of the seismic
waves (where the boundary conditions are practically radiation conditions in the infinite space and
the quasi-spherical Earth may be approximated locally by an elastic half-space). The identification
of the transient regime in the propagation of the seismic waves is new. We show here (by using
energy balance among other arguments) that the intersection of the ‘zero-thickness’ wavefront of the
primary spherical-shell waves with the plane surface of the half-space (or layers interfaces) leads
to an interaction which gives rise to additional ‘secondary’ wave sources, confined (and moving)
on the surface. The secondary waves generated by secondary surface sources are estimated here by
means of a simplified model. Since the secondary waves are generated by sources moving on the
surface, they may be called ‘surface seismic radiation’. It is shown that the secondary waves have
a time delay with respect to the primary waves and generate a seismic main shock and a long tail,
in qualitative agreement with the seismic records. The interaction of the primary waves with the
surface has been suggested long ago by Lamb, (2), (18) and the seismic main shock and long tail
have been associated since long with surface phenomena (19), (20). The estimation done here of
the mathematical expression of the main shock is new. The effect of an internal discontinuity in the
half-space is also discussed here; it is shown that such a discontinuity reduces appreciably the main
shock on the free surface.

The problem dealt with in this article is an old problem, which, in spite of its relevance, received
little attention in the recent literature. It consists in realising that the effects of the earthquakes’
on the Earth’s surface are associated with the transient regime of the seismic waves; this transient
regime together with the localised character of the primary waves (which are spherical shells)
require a direct-space approach, in contrast with the k-space approach, which introduces an artificial
delocalised character associated with the Fourier components of the seismic waves (plane waves).
In addition, we emphasise that the problem discussed in this article points to another, more complex,
mathematical problem, related to inhomogeneous boundary conditions, which may raise appreciable
difficulties (and which may be viewed as an open problem).

2. Elementary seismic sources

The seismic load in a point focus consists of opposite forces, usually at (quasi-) equilbrium, so that
the total force and angular momentum are vanishing. The load can be accommodated by successive
small, (quasi-) static deformations of the Earth’s crust and tectonic plates. During the earthquake,
the resistance of the rocks in the focus yields, such that we have a localised, active distribution of
opposite forces. The seismic tensorial forces (see, for instance, Ref. (5), 2nd edn, p. 60, Exercise 3.6)
can be derived by estimating the couple produced by a force density F(R, t) = f (t)w(R), where
f is the force and w(R) is a distribution function; a point couple along the i-th direction can be
represented as

fiw(x1 + h1, x2 + h2, x3 + h3) − fiw(x1, x2, x3) � fihj∂jw(x1, x2, x3), (2.1)

where fi, i = 1, 2, 3, are the components of the force, hj, j = 1, 2, 3, are the components of an
infinitesimal displacement h and xi are the coordinates of the point with the position vector R. The
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Fig. 1 The load accumulated in two elements of tectonic plates in (quasi-) equilibrium (a) may lead to
resistance loss and a localized active focal region f (b)

moments fihj are generalised to a symmetric tensor Mij, which is the seismic moment; in addition,
the distribution w(R) is replaced by δ(R − R0), where δ denotes the Dirac function localised at
the point with the position vector R0. We prefer to use the seismic moment divided by density ρ,
mij = Mij/ρ; then, the force distribution per unit mass reads

Fi(R, t) = mij(t)∂jδ(R − R0), (2.2)

where mij(t) has a certain time dependence during the earthquake. Usually, this function is localised
over a short, finite duration T , such that we may use the δ-pulse time dependence mij(t) = Tmijδ(t). It
is easy to see that the total force and angular momentum associated with the force distribution given
by (2.2) are zero (the latter by the symmetry of the tensor mij).According to our definition, the moment
tensor is positive definite for an ‘implosion’, and negative definite for an ‘explosion’ (in general,
it is an indefinite tensor). A schematic representation of a tensorial force distribution is shown in
Fig. 1. We call the tensorial force distributions given by (2.2) with mij(t) = Tmijδ(t) elementary force
distributions; they are produced by elementary seismic sources and generate elementary earthquakes.

Similarly, we can use a model force distribution

F(R, t) = p(t)
R − R0

|R − R0|θ (a − |R − R0|) (2.3)

for an isotropic source localised in a volume with a small radius a, where p(t) = f (t)/a3 is force per
unit mass, f (t) is a force (divided by density) and θ (x) = 1 for x > 0, θ (x) = 0 for x < 0 is the step
function; for an elementary force distribution p(t) = Tpδ(t). We show in this article that the waves
produced by this isotropic source in the limit a → 0 (for a δ-pulse time dependence) can be obtained
from the force given by (2.2) by replacing formally the tensor mij by −mδij, where the scalar seismic
moment is of the order m � fa.

It is worth attempting an estimation of the order of magnitude of the localisation length l of the
focal region. We note that the seismic moment M has the dimension of a mechanical work (energy;
we use notation M as a generic notation for the components Mij); it is reasonable to admit that an
energy of the order M is spent to destroy the elastic consistency of the material which is ruptured
in the focal volume V during the earthquake; this energy density is of the order of the elastic
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energy density of the material ρc2, where ρ is the material density and c is a mean value of the
velocity of the elastic waves. Therefore, the equality M /V � ρc2 may hold. For M = 1026dyn· cm
(corresponding to an earthquake magnitude Mw = 7, from the Gutenberg–Richter definition (21)–
(23) lg M = 1.5Mw + 16.1), ρ = 5 g/cm3 for the average Earth’s density and c = 5 km/s for a mean
value of the velocity of the elastic waves we get a volume V = 8 × 1013cm3 of the focal region and
a localization length l = V 1/3 � 400 m. This spatial uncertainty leads to a time uncertainty of the
order T = l/c = 0.08 s (for a mean velocity c = 5 km/s, though, very likely, the rupture propagation
in the focus is slower than the elastic waves ). The Dirac delta function used in the representation of
the tensorial force may be viewed as being localised over a distance of the order l (volume l3).

3. Primary waves

The equation of the elastic waves in a homogeneous isotropic body is

ü − c2
t �u − (c2

l − c2
t )grad · divu = F, (3.1)

where u is the displacement vector, cl,t are the wave velocities and F is the force (per unit mass).
(14), (15) We consider this equation in an isotropic elastic half-space extending in the region z < 0
and bounded by the flat surface z = 0. The elementary source, which generates the force F, is placed
at R0 = (0, 0, z0), z0 < 0; the force is given by (2.2) (with mij(t) = Tmijδ(t)), where mij is the tensor
of the seismic moment (divided by density). The coordinates of the position vector R are denoted
by (x1, x2, x3); also, the notation x = x1, y = x2, z = x3 is used. In the transient regime, the waves
generated by the elementary force in (3.1) are those propagating in the infinite space. We use the
Helmholtz decomposition F = gradφ + curlH (divH = 0), whence

�φ = divF, �H = −curlF. (3.2)

similarly, the displacement u is decomposed as u = grad�+ curlA, with the notation ul = grad�
and ut = curlA, by using the Helmholtz potentials� and A (divA = 0); equation (3.1) is transformed
into two standard wave equations

�̈− c2
l �� = φ, Ä − c2

t �A = H, (3.3)

we can see that the l, t-waves are separated.
From (3.2), and making use of the force distribution given by (2.2), we get immediately

φ = − 1

4π
Tmijδ(t)

∫
dR1

1

|R − R1|∂i∂jδ(R1)

= − 1

4π
Tmijδ(t)∂i∂j

1

R
(3.4)

and

Hi = 1

4π
Tεijkmklδ(t)

∫
dR1

1

|R − R1|∂j∂lδ(R1)

= 1

4π
Tεijkmklδ(t)∂j∂l

1

R
, (3.5)
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where R stands for R − R0 and εijk is the totally antisymmetric tensor of rank three. Making use of
these sources in (3.3), and using the Kirchhoff retarded solutions, we get the potentials

� = − T

(4πcl)2
mij∂i∂j

∫
dR1

δ(t − |R − R1| /cl)

|R − R1|
1

R1
(3.6)

and

Ai = T

(4πct)2
εijkmkl∂j∂l

∫
dR1

δ(t − |R − R1| /ct)

|R − R1|
1

R1
. (3.7)

We extend the integral

I =
∫

dR1
δ(t − R1/c)

R1 |R − R1| (3.8)

occurring in the above equations (where c stands for cl,t) to the whole space, where it can be effected
straightforwardly by using spherical coordinates; we get

I = 4πc

[
θ (ct − R)+ ct

R
θ (R − ct)

]
, (3.9)

inserting this result in (3.6) and (3.7) we get the Helmholtz potentials

� = − T

4πcl
mij∂i∂j

[
θ (cl t − R)+ cl t

R
θ (R − cl t)

]
(3.10)

and

Ai = T

4πct
εijkmkl∂j∂l

[
θ (ctt − R)+ ctt

R
θ (R − ctt)

]
. (3.11)

Making use of the notation

Fl,t = T

4πcl,t

[
θ

(
cl,t t − R

) + cl,t t

R
θ

(
R − cl,t t

)]
, (3.12)

the potentials can be written as

� = −mij∂i∂jFl, Ai = εijkmkl∂j∂lFt, (3.13)

it follows the displacement

ul
i = ∂i� = −mjk∂i∂j∂kFl,

ut
i = εijk∂jAk = mjk∂i∂j∂kFt − mij∂j�Ft . (3.14)

We can see that these solutions consist of two parts: spherical waves propagating with velocities cl,t ,
given by δ-functions and derivatives of δ-functions (arising from the derivatives of the θ -functions in
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Fig. 2 The functions Ft (a) and Fl (b) vs R

(3.12)), and a quasi-static displacement which includes the functions θ (R− cl,t t) and extends over the
distance�R = (cl − ct)t. The quasi-static contributions, being proportional to third-order derivatives
of t/R, are solutions of the homogeneous wave equation. In the transient regime, the quasi-static
contributions should be removed, and we should limit ourselves to the δ-functions and derivatives
of δ-functions arising from the derivatives of the θ -functions in (3.12). This is the regularisation
(calibration) procedure used for getting the solution. Outside the support of the δ-functions and their
derivatives (that is for R �= cl,t t) the displacement is zero. We note also that for R �= ctt the function
Ft in (3.12) is either T/4πct or Tt/4πR; in both cases the term with the laplacian in the second
equation (3.14) cancels out, and ut acquires the same expression as −ul

i with cl replaced by ct . The
functions Fl,t are shown schematically in Fig. 2.

The solution is given by the potentials in (3.13), provided we remove the quasi-static displacement;
the basic expression mjk∂i∂j∂kF becomes mjk∂i∂j∂kF

=
[mjjxi

2R3
(1 − 2ct/R) + mijxj

R3
(1 − 3ct/r)

]
δ(R − ct)

−3mjkxixjxk

2R5 (1 − 4ct/R)]δ(R − ct)

−
[mjjxi

2R2
(1 − ct/R) − mjkxixjxk

2R4
(1 − 3ct/R)

]
δ

′
(R − ct), (3.15)

where F is a generic notation for Fl,t with the pre-factor 1/4πc omitted; this expression includes
only contributions proportional to δ(R − ct) and δ′(R − ct); in the pre-factors of the functions δ and
δ′ we may set R = ct. We get ul

i = Al
i + Bl

i , where

Al
i = T

8πclR3

(
mjjxi + 4mijxj − 9mjkxixjxk

R2

)
δ(R − cl t) (3.16)

and

Bl
i = Tmjkxixjxk

4πclR4
δ′(R − cl t), (3.17)

in these expressions cl and the factor 1/4πcl are restored and xi,j,k , i, j, k = 1, 2, 3, are the
coordinates of the position vector R = (x1, x2, x3). Similarly, we get ut

i = −At
i − Bt

i + Ct
i , where
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At
i , Bt

i are given by Al
i and, respectively, Bl

i with cl replaced by ct and

Ct
i = − Tmijxj

4πctR2

[
1

R
δ(R − ctt) − δ′(R − ctt)

]
. (3.18)

For a scalar seismic moment mij = mδij, equation (3.1) with Fi = Tmδ(t)∂iδ(R) is solved
immediately by u = grad�, where �̈− c2

l �� = Tmδ(t)δ(R) and� = (Tm/4πcl)δ(R − cl t)/R; we
can check that the regularisation (calibration) procedure used in deriving (3.16), (3.17) and (3.18)
leads immediately to this particular solution.

We can see that in the far-field region (wave region) the source generates two (double-shock)
spherical-shell waves (derivatives of the δ-function), propagating with velocities cl,t , given by

uf
i = Tmijxj

4πctR2
δ′(R − ctt) + Tmjkxixjxk

4πR4

[
1

cl
δ′(R − cl t) − 1

ct
δ′(R − ctt)

]
. (3.19)

We note that the mathematical expression of the far-field waves derived here from tensorial forces
(3.19) is new in comparison with known, particular cases (5), (6). We emphasise that these waves
are spherical shells, described by zero-support delta-functions; they are localised waves.

The waves propagating with velocity cl are the primary P waves (compressional waves), while the
waves propagating with velocity ct are the primary S-waves (they include the shear contribution).
The second term on the right in (3.19) is longitudinal (∼ R), while the polarisation of the first term
depends on the moment tensor. The magnitude of these waves is of the order uf � Tm/cRl2, where
m is a generic notation for the components of the seismic moment (divided by density), c is a mean
wave velocity and l = cT is the linear size of the localization of the δ-function (linear size of the
earthquake’s focus). Making use of a seismic moment M = 1026 dyn· cm (earthquake’s magnitude
7), density ρ = 5 g/cm3 (m = M /ρ), a mean velocity c = 5 km/s, l = 400 m, for an earthquake’s
duration T = 0.08 s, we get at distance R = 100 km a far-field displacement uf of the order 1m.

4. Isotropic sources

For an isotropic source of the form F = p(t)(R/R)θ (a − R) (2.3) we have curlF = 0; therefore, H = 0
and ut = 0. For such a force there exist only l-waves (dilatational waves), given by ül − c2

l �ul =
gradφ, where �φ = divF; we may take gradφ = F, such that we have

ul = Tp

4πc2

∫
dR1

δ (t − |R − R1| /c)
|R − R1|

R1

R1
θ (a − R1) (4.1)

for p(t) = Tpδ(t), where we write c for cl . It is easy to see that ul = ulR/R, that is an isotropic
source generates only longitudinal waves, as expected. From (4.1) we get

ul = Tp

2c2

∫ a

0
dR1R2

1

∫ 1

−1
du · u

δ

(
t −

√
R2 + R2

1 − 2RR1u/c

)
√

R2 + R2
1 − 2RR1u

. (4.2)
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The argument of the δ-function has a zero for

−1 ≤ u0 = R2 + R2
1 − c2t2

2RR1
≤ 1, (4.3)

which gives

ul = Tp

4cR2

∫
dR1(R2 + R1

2 − c2t2). (4.4)

The function u0(R1) given by (4.3) has a minimum for R1 =
√

R2 − c2t2 for R > ct and u0(R1) = 1
for R1 = R ∓ ct; for R < ct the function u0(R1) has a zero for R1 =

√
c2t2 − R2 and u0(R1) = ∓1

for R1 = ct ∓ R; taking into account these conditions, we get

ul = Tp

4cR2
faθ (a − |R − ct|) , (4.5)

where

fa = 1

3
a3 + (R2 − c2t2)a − (R2 − c2t2) |R − ct| − 1

3
|R − ct|3 . (4.6)

This wave extends inside the region −a < R − ct < a and exhibits a wavefront which moves with
velocity c (R = ct). The function fa has two extrema ∓(a3/24 − 2cta2) at R − ct = ∓a/2. Making
use of p = f /a3 (where f is force divided by density), it is easy to see that in the limit a → 0 the
displacement ul given by (4.5) and (4.6) may be represented approximately by

ul � − Tm

4πcR
δ′(R − ct), (4.7)

where we introduced the scalar seismic moment m (of the order m � fa). We can see that the
displacement caused by such an isotropic source can be obtained from the far-field displacement
generated by a tensorial source (3.19) by replacing formally in the latter the tensor mij of the seismic
moment by an isotropic (scalar) seismic moment m, mij → −mδij (this representation amounts to
use −mgradδ(R) for pRθ (a − R)/R in the limit a → 0).

5. Structure factor

It is worth noting that the spherical-shell character of the displacement (involving δ- and δ′-functions)
is closely connected to the localisation of the source, that is to the functions δ(t) and δ(R − R0)
occurring in the mathematical expression of the force. Let us assume that we have a succession of
shocks in the source, labelled by i, occurring at times ti, with duration Ti; then, the displacement
given by (3.17) and (3.18) includes summations of the type

∑
i

Tiδ (R − c(t − ti)),
∑

i

Tiδ
′ (R − c(t − ti)) , (5.1)
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where c is a generic notation for the velocities cl,t ; for a sufficiently dense distribution of such shocks,
we may replace the summations over i by integrals:

∑
i

Tiδ (R − c(t − ti)) = 1

�T

∫
dt1T (t1)δ(R − ct + ct1)

= 1

c�T
T (t − R/c) (5.2)

and

∑
i

Tiδ
′ (R − c(t − ti)) = 1

�T

∫
dt1T (t1)δ′(R − ct + ct1)

= − 1

c2�T
T ′(t − R/c), (5.3)

where �T is the mean separation between the pulses. We can see that the displacement has not a
spherical-wave character anymore, but instead it is given now by the functions T (t) and its derivative
T ′(t) (at a retarded time), which play the role of time signatures of the source. A similar analysis can
be done for shocks distributed spatially; we have, for instance

u =
∑

ij

Tiδ
′ (∣∣R − Rj

∣∣ − c(t − ti)
)

g
(
R − Rj

)

= − 1

c2�T�v

∫
dR1T ′(t − |R − R1| /c)g (R − R1) , (5.4)

where g(R) represents the spatial dependence in (3.19) (except the δ′-functions) and�v is the mean
volume associated with individual shocks. The integral in (5.4) reflects the time-space structure of the
earthquake’s focal region. The factor 1/�v can be replaced by a spatial distribution weight ws(R1),
a procedure which is also valid for the factor 1/�T , which may be replaced by a weight function
wt(t1); a more general situation would imply a weight function w(t!,R1) instead of Ti/�T�v, which
plays the role of a structure factor for the focal region; then, the displacement can be represented as

u =
∫

dR1dt1w(t!,R1)δ′ (|R − R1| − c(t − t1)) g (R − R1)

= − 1

c2

∫
dR1w′(t − |R − R1| /c,R1)g (R − R1) , (5.5)

where the weight function w is localised over the focal region and over the time duration of the
earthquake; such weight functions can be derived, in principle, from recorded seismograms, as an
imprint of the structure of the focal region, by de-convoluting equations of the type given by (5.5).
The occurence of shocks in succession is reflected in the irregular oscillations exhibited usually by
the weight function (and by the displacement, velocity and acceleration recorded in seismograms). In
general, the source of an earthquake may be viewed as a spatial-temporal succession of elementary
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events (i, j) of the form ∼ δ(t − ti)δ(R − Rj), localised in the focal region. This succession of
elementary (‘primitive’) earthquakes contribute to the oscillations which are a prominent feature in
all seismic records (2), (4).

6. Energy balance

Multiplying the waves equation (3.1) by u̇ we get the energy conservation law

∂E
∂t

= −divS + W, (6.1)

where

E = 1

2
u̇2

i + 1

2
c2

t (∂jui)
2 + 1

2
(c2

l − c2
t )(∂iui)

2 (6.2)

is the energy density (per unit mass),

Si = −c2
t (u̇j∂iuj) − (c2

l − c2
t )(u̇i∂juj) (6.3)

are the components of the energy flux density (per unit mass) and W = u̇iFi is the density of the
mechanical work done by the external force F per unit time (and unit mass). It is easy to see that
for a force localised for a short time T in the focal point the mechanical work W is non-vanishing
only at this point and for the short time T , while for a spherical-shell wave the continuity equation
∂E/∂t + divS = 0 is satisfied identically at any point outside the focus, the energy density E and
the energy flux density S being zero outside the support of the wave. The mechanical work done by
the external force for a short period of time in the focus is transferred to the wave energy, which is
carried through the space by the propagating wave without loss.

For an order of magnitude estimation we may use F � M /ρl4 for the force given by (2.2) and
u � M /ρc2Rl for a spherical wave of the form u = (MT/ρcR)δ′(R − ct), with l = cT . The density
of the mechanical work per unit time is W � M 2/ρ2cl7 and the total mechanical work is W �
M 2/ρc2l3. The energy density is E � M 2/ρ2c2R2l4 and the total energy is E0 = M 2/ρc2l3 = W
(similarly, the energy flux density is S � M 2/ρ2cR2l4, and divS can be represented as M 2/ρ2cR2l5;
we can check the continuity equation ∂E/∂t + divS = 0). It is worth noting that the energy E0 = W
transferred to the waves is smaller than the energy M released in the focal region by the factor
W/M = M /ρc2l3 = u0/l, where u0 = M /ρc2l2 is the displacement in the focal region (at distance
R = l). Making use of M = 1026 dyn · cm, ρ = 5 g/cm3, c = 5 km/s and l = 1 km, we get a focal
displacement of the order u0 � 80 m (for l = 400 m we get u0 = l).

The wavefront of the spherical-shell waves given by (3.19) intersects the surface x3 = z = 0

along a circular line defined by R = (x1, x2,−z0), R = (
r2 + z2

0

)1/2
, where r = (

x2
1 + x2

2

)1/2
is the

distance from the origin (placed on the surface, the epicentre) to the intersection points (we recall that
R and R are in fact R − R0 and R − R0). The radius R moves with velocity c, R = ct, t >| z0 | /c,

and the in-plane radius r moves according to the law r =
√

R
2 − z2

0 =
√

c2t2 − z2
0, where c stands

for the velocities cl,t ; its velocity v = dr/dt = c2t/r is infinite for r = 0 (R = ct =| z0 |) and tends
to c for large distances.
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Fig. 3 Spherical-shell wave intersecting the surface z = 0 at P

The finite duration T of the source makes the δ′-functions in equation (3.19) to be viewed as
functions with a finite spread l = �R = cT 	 R; consequently, the intersection line of the waves
with the surface has a finite spread �r, which can be calculated from

R
2 = r2 + z2

0, (R + l)2 = (r +�r)2 + z2
0, (6.4)

hence,

�r � 2Rl

r +
√

r2 + 2Rl
. (6.5)

we can see that for r → 0 the width �r � √
2 | z0 | l of the seismic spot on the surface is much

larger than the width of the spot for large distances �r � l (2 | z0 |� l). For values of r not too
close to the epicentre we may use the approximation �r � Rl/r. A spherical wave intersecting the
surface z = 0 is shown in Fig. 3.

As long as the spherical wave is fully included in the half-space its total energy E0 is given by the
energy density E integrated over the spherical shell of radius R and thickness l. If the wave intersects
the surface of the half-space, its energy E is given by the energy density integrated over the spherical
sector which subtends the solid angle 2π (1 + cos θ ), where cos θ =| z0 | /R (see Fig. 3). It follows
E = 1

2 E0 (1+ | z0 | /ct) for ct >| z0 |. We can see that the energy of the wave decreases by the

amount Es = 1
2 E0 (1− | z0 | /ct), ct >| z0 |. This amount of energy is transferred to the surface,

which generates secondary waves (according to Huygens principle).

7. Interaction with the surface

In the seismic spot with the width�r generated on the surface by the far-field primary waves given
by (3.19) we may expect a reaction of the (free) surface, such as to compensate the force exerted by
the incoming spherical waves. This localised reaction force generates secondary waves, distinct from
the incoming, primary spherical waves. The secondary waves can be viewed as waves scattered off
the surface, from the small region of contact of the surface seismic spot (practically, a circular line).
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If the reaction force is strictly limited to the zero-thickness surface (as, for instance, a surface force),
it would not give rise to waves, since its source has a zero integration measure. We assume that
this reaction appears in a surface layer with thickness�z (�z 	| z0 |) and with a surface extension
2πr�r, where it is produced by volume forces. The thickness �z of the superficial layer activated
by the incoming primary wave may depend on R (and r), as the surface spread �r does (7.2); for
instance, from Fig. 3 we have �z = l | z0 | /R. Since for an intermediate, limited region of the
variable r (and R) (that is, for a region not very close to the epicentre and not extending to infinity),
the dependence on r of the product�r�z is weak, we may neglect this dependence in what follows.

The volume elastic force per unit mass is given by ∂jσij/ρ, where
σij = ρ

[
2c2

t uij + (c2
l − 2c2

t )ukkδij
]

is the stress tensor and uij is the strain tensor. The reaction force
which compensates this elastic force is

fi = −∂jσij/ρ = −∂j

[
2c2

t uij + (c2
l − 2c2

t )ukkδij

]
. (7.1)

We calculate the strain tensor from the displacement given by (3.19) and use it in (7.1); to compute
the secondary waves we use the decomposition in Helmholtz potentials. We denote by us the
displacement vector in the secondary waves, and introduce the Helmholtz potentials ψ and B
(divB = 0) by us = gradψ + curlB; then, we decompose the force f according to f = gradχ + curlh
(divh = 0), where�χ = divf and�h = −curlf ; by the equation of the elastic waves, the Helmholtz
potentials satisfy the wave equations (3.3); by straightforward calculations we get χ = −c2

l uii and

h = c2
t curlu, where u is uf given by (3.19):

χ = −clTmjkxjxk

4πR3
δ′′(R − cl t), hi = εijk

ctTmklxjxl

4πR3
δ′′(R − ctt), (7.2)

we can see that the potentials χ and h ‘move’ with velocities cl and, respectively, ct (vl and,
respectively, vt in the plane z = 0).

We can calculate the displacement in the secondary waves us = gradψ + curlB, by solving the
wave (3.3)

ψ̈ − c2
l �ψ = χ, B̈ − c2

t �B = h, (7.3)

withχ = −c2
l uii and h = c2

t curlu restricted to the superficial layer of thickness�z and surface spread
2πr�r. Apart from appreciable technical complications, this procedure brings many superfluous
features which obscure the relevant physical picture. This is why we prefer to use a simplified model
which makes use of potentials of the form

χ = χ0(r)δ(z)δ(r − vl t), h = h0(r)δ(z)δ(r − vtt) (7.4)

(divh0 = 0); equation (7.4) describe wave sources, distributed uniformly along circular lines on the
surface, propagating on the surface with constant velocities vl,t and limited to a superficial layer
with zero thickness and a circular line with zero width; their magnitudes χ0(r) and h0(r) have an
approximate 1/R-dependence, which has a slow variation for r ≤| z0 | (and r not very close to the
epicentre); for this range of the variable r we may considerχ0 and h0 as being constant. The velocities
vl,t in correspond to the velocities vl,t = dr/dt = c2

l,t t/r calculated above, which are greater than
cl,t , depend on r and tends to cl,t for large values of the distance r. We make a further simplification
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Fig. 4 The function cosϕ0 vs r
′

for C > 0 (8.10)

and consider them as constant velocities slightly greater than cl,t (over an intermediate, limited range
of variation of r). Also, in the subsequent calculations we consider the origin of the time at r = 0
(the epicentre) for each primary wave and the associated secondary source. The simplified model of
secondary sources introduced here retains the main features of the exact problem, incorporated in the
surface localisation and propagation of the sources with velocities vl,t greater than wave velocities
cl,t ; on the other hand, by using this model we lose the anisotropy induced by the tensor of the
seismic moment and specific details regarding the dependence on the distance. Since the secondary
seismic sources are moving sources on the surface we may call the secondary waves produced by
these sources ‘surface seismic radiation’.

8. Secondary waves

Making use of the potentials given by (7.4), the solutions of (7.3) can be represented as

ψ = 1

4πc2
l

∫
dt1

∫
dR1

χ0(r1)δ(z1)δ(r1 − vl t1)

|R − R1| δ (t − t1 − |R − R1| /cl) (8.1)

and a similar equation for B. First, we focus on the potential ψ , which can be written as

ψ = 1

4πvc2

∫
dr1

χ0(r1)δ
[
t − r1/v − (

r2 + r2
1 − 2rr1 cosϕ + z2)1/2

/c
]

(
r2 + r2

1 − 2rr1 cosϕ + z2
)1/2

, (8.2)

where ϕ is the angle between the vectors r and r1 and we use c and v for cl and, respectively, vl , for
the sake of simplicity. To calculate the integral with respect to the angle ϕ in (8.2) we introduce the
function

F(cosϕ) = t − r1/v −
(

r2 + r2
1 − 2rr1 cosϕ + z2

)1/2
/c (8.3)
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and look for its zeroes, F0 = F(cosϕ0) = 0 (r1 < vt); we note that, if there exists one root of this
equation, there exists another one at least, in view of the symmetry cosϕ = cos(2π − ϕ). Then, we
expand the function F in a Taylor series in the vicinity of its zero, according to

F = F0 + (cosϕ − cosϕ0)F ′ + ... = (cosϕ − cosϕ0)F ′ + ..., (8.4)

where F ′ is the derivative of the function F with respect to cosϕ for cosϕ = cosϕ0. It is easy to see
that the integral reduces to

ψ = 1

2πcvr

∫ ∞

0
dr1

χ0(r1)

sin ϕ0
, (8.5)

where ϕ0 is the root of the equation F(cosϕ0) = 0, lying between 0 and π .
The root cosϕ0 is given by

F(cosϕ0) = t − r1/v −
(

r2 + r2
1 − 2rr1 cosϕ0 + z2

)1/2
/c = 0, (8.6)

or
(

1 − c2/v2
)

r2
1 − 2

(
r cosϕ0 − c2t/v

)
r1 −

(
c2t2 − r2 − z2

)
= 0 (8.7)

for r1 < vt. The important feature brought by the diference between the two velocities c and v can
be accounted for conveniently by assuming that the two velocities are close to one another; we set
v = c(1 + ε), 0 < ε 	 1 (as for sufficiently large distances). In this circumstance we may neglect the
quadratic term ∼ r2

1 in (8.7) and replace t by the ‘advanced’ time τ = t(1 − ε) (i.e., τl,t = t(1 − εl,t));
we get

cosϕ0 � 2cτ r1 − C

2rr1
, C = c2τ 2 − r2 − z2 (8.8)

for r1 < vt = cτ (1 + 2ε). It is easy to see that this equation has no solution for C < 0 (because of
the condition r1 < vt); for C > 0 (c2τ 2 − r2 − z2 > 0) it has two solutions

r(1)
1 = C

2(cτ + r)
, r(2)

1 = C

2(cτ − r)
(8.9)

corresponding to cosϕ0 = −1 (ϕ0 = π ) and, respectively, cosϕ0 = 1 (ϕ0 = 0) (Fig. 4). For z = 0

the two roots r(1,2)
1 reduce to r(1,2)

1 = (cτ ∓ r)/2; we can see that the sources of the secondary waves

which arrive at r lie inside an anullus with radii r(1,2)
1 and a constant width r, which expands on the

surface with velocity c/2, after a time interval τ = r/c. In the integral given by (8.7) we pass from

the variable r1 to the variable ϕ0; for a limited range of integration r (from r(1)
1 to r(2)

1 ), we may take
χ0 out of the integral sign; we get

ψ � Cχ0

4πc2

∫ π

0
dϕ0

1

(r cosϕ0 − cτ )2
, (8.10)
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or

ψ � Cχ0

4πc2r2

∂

∂x

∫ π/2

0
dϕ0

(
1

cosϕ0 − x
− 1

cosϕ0 + x

)
, x = cτ/r > 1. (8.11)

The integrals in (8.11) can be effected immediately; we get the potential

ψ � χ0

4c2
l

(c2
l τ

2
l − r2 − z2)clτl(
c2

l τ
2
l − r2

)3/2
, (8.12)

where the velocity cl is restored. Similarly, we get the vector potential

B � h0

4c2
t

(c2
t τ

2
t − r2 − z2)ctτt(
c2

t τ
2
t − r2

)3/2
; (8.13)

these equations are valid for Cl,t = c2
l,tτ

2
l,t − r2 − z2 > 0.

We can see that the wavefronts r2 + z2 = c2
l,tτ

2
l,t defines two spherical perturbations which

move with velocities cl,t . The singular behaviour of these waves for z = 0 resembles the
algebraic singularity of the waves in two dimensions produced by localised sources (18), (24). The
discontinuities exhibited by these functions are present irrespective of the particular dependence on
r of the source potentials, as long as these potentials remain localised; they are related to a constant,
finite velocity of propagation of the waves.

Making use of us = gradψ + curlB we can compute the displacement vector us in the secondary
waves. We are interested mainly in the waves propagating on the surface (z = 0). First, we note that
the displacement is singular at cl,tτl,t = r; this indicates the existence of two main shocks, occcurring
after the arrival of the primary waves. Indeed, the primary waves arrive at the observation point r
at the time tp = r/vl,t = (r/cl,t)(1 − εl,t), while the main shocks occur at tm = τl,t/(1 − εl,t) �
(r/cl,t)(1 + εl,t); we can see that there exists a time delay �t � tm − tp � 2(r/cl,t)εl,t between the
primary waves and the wavefronts of the secondary waves (the main shocks). The sharp singularity
in (8.12) and (8.13) is related to our using constant velocities vl,t ; actually, an uncertainty of the
form �v � cε exists in these velocities, which entails an uncertainty τε in the time τ , such that the
smallest value of the denominator in (8.12) and (8.13) is of the order c2τ 2ε. In the vicinity of the
two main shocks, the leading contributions to the components of the surface displacement (z = 0,
in polar cylindrical coordinates) are given by

usr � χ0τl

4cl
· r(

c2
l τ

2
l − r2

)3/2
, usϕ � −h0zτt

4ct
· r(

c2
t τ

2
t − r2

)3/2
(8.14)

and

usz � h0ϕτt

4ct
· c2

t τ
2
t

r
(
c2

t τ
2
t − r2

)3/2
, (8.15)

we can see that there exists a horizontal component of the displacement perpendicular to the
propagation direction (usϕ) and both the r-component and the ϕ, z-components, which make right
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Fig. 5 Primary wave (PW ), moving with velocity v on the Earth’s surface, secondary wave (SW ), moving
with velocity c < v, the main shock (MS) and the long tail (LT ); the separation between the two wavefronts
is �s = 2(v − c)t and the time delay is �t = (2r/c)(v/c − 1), where r is the distance on the surface from the
epicentre

angles with the propagation direction, are of the same order of magnitude (4). For long times
(cl,tτl,t� r) the displacement (from (8.14) and (8.15)) goes like

usr � χ0r

4c4
l τ

2
l

, usϕ � − h0zr

4c4
t τ

2
t
, usz � h0ϕ

4c2
t r

(8.16)

which show that the displacement exhibits a long tail, especially the z-component; it subsides as
a consequence of the time-dependence induced in the potential h0 by the integration variable r1,
a circumstance which is neglected in the calculations presented here. The main shock and its long
tail obtained here, in qualitative agreement with the recorded seismograms, are new. Primary and
secondary waves, the main shock and the long tail are shown in Fig. 5.

9. Internal discontinuity

Let us consider a homogeneous isotropic elastic half-space extending in the region −∞ < z < z1
with a superposed homogeneous isotropic elastic layer extending from z = z1 to z = 0, in welded
contact with the half-space at the plane surface z = z1; we assume z1 < 0. The elastic properties
of the half-space and the layer are distinct. This model can serve as a representation of an internal
discontinuity in the elastic properties of the half-space investigated above. An elementary seismic
source as given by (2.2) is located at depth z0, either above (z0 > z1) or beneath the discontinuity
(z0 < z1). In the subsequent calculations we assume z0 < z1. We denote the half-space by 1 and the
superposed layer by 2. A primary spherical wave generated by the elementary z0-source arrives at
the z1-interface, along a circular line of contact, where it generates secondary waves; the secondary
waves propagate both in the half space 1 and in the layer 2, where they arrive at the surface z = 0;
we estimate here these secondary waves generated by the z1-interface.

By analogy with (8.2) we assume that the primary waves in the half-space 1 generate on the
interface z = z1 the force Helmholtz potentials

χ = χ0(r)δ(z − z1)δ(r − vl1t), h = h0(r)δ(z − z1)δ(r − vt1t), (9.1)

the velocities vl,t1 are considered constant and the r-dependence in χ0(r), h0(r) is weak for a finite,
intermediate range of distances r. It is easy to see, by analogy with the calculations described in the
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previous section, that the Helmholtz potentials ψ and B of the secondary displacement are given by

ψ � χ0

4c2
l2

[
c2

l2τ
2
l − r2 − (z − z1)2] cl2τl(

c2
l2τ

2
l − r2

)3/2
. (9.2)

Similarly, we get from the wave equation the vector potential

B � h0

4c2
t2

[
c2

t2τ
2
t − r2 − (z − z1)2] ct2τt(

c2
t2τ

2
t − r2

)3/2
, (9.3)

these potentials differ from the potentials given above by (8.13) and (8.14) by the presence of z1 �= 0.
The origin of the time is considered here the moment when the primary wave touches the z1-interface.
The above formulae are valid for Cl,t = c2

l,t2τ
2
l,t − r2 − (z − z1)2 > 0; for Cl,t < 0 the potentials

are equal to zero.
We are interested mainly in the surface z = 0. The presence of z1 �= 0 in (9.2) and (9.3) gives rise

to a qualitatively different behaviour of the secondary waves generated by the discontinuity. The
difference arises fom the condition Cl,t = c2

l,t2τ
2
l,t − r2 − z2

1 > 0, which prevents the singularity at

c2
l,t2τ

2
l,t −r2 = 0 to be reached; consequently, the secondary waves in the presence of the discontinuity

do not exhibit the singular main shock on the surface z = 0; the main shock is reduced appreciably
in this case.

We note also the advanced time τl,t = tl,t(1 − εl,t) in the above formulae (where τl,t is measured
from the moment the primary waves touches the z1-interface). For z0 < z1 the primary waves do not
arrive on the surface and the us2-waves generated by the interface are the only secondary waves which
arrive on the surface z = 0. For z1 < z0 < 0, primary waves arrive on the surface z = 0, (delayed)
secondary waves are generated on the surface z = 0 and, afterwards, much reduced secondary waves
generated by the interface arrive on the surface z = 0.

We emphasise also that the results given above are valid for small values of εl,t , that is for the
elastic properties of the layer 2 differing slightly from the elastic properties of the half-space 1. In
addition, the secondary waves us2 generate in their turn additional waves an the surface z = 0, which,
however, are too small to present any further interest here (they may be called ‘tertiary’ waves).

10. Concluding remarks

Tensorial point forces governed by the tensor of the seismic moment are derived here and used for a
homogeneous isotropic elastic half-space; such forces are placed at an inner point in the half-space.
Endowed with a δ-like time dependence (temporal pulses), where δ is the Dirac delta function, they
are termed here elementary seismic forces; they are generated by elementary seismic sources and
produce elementary earthquakes.Aweighted superposition of such forces (sources) can be performed
by using a structure factor introduced here for the earthquakes’s focal region. All these concepts
introduced here, and their mathamatical expressions, are new. The (double shock) P and S spherical-
shell seismic waves generated by such forces are derived here by solving the equation of the elastic
motion in the direct space; unphysical quasi-static contributions are removed by a regularisation
(calibration) procedure. These waves are called here primary waves. They are associated with the
feeble tremor exhibited usually by the seismic records (4), (13). Also, the primary waves produced
by an isotropic source are derived here by solving the equation of the elastic motion; it is shown



[14:32 22/7/2017 hbx009.tex] QJMAM: The Quarterly Journal of Mechanics & Applied Mathematics Page: 307 289–308

SURFACE SEISMIC RADIATION 307

that these waves correspond to an isotropic (scalar) seismic tensor, as expected (such waves may
correspond to the seismic waves produced by an explosion). The mathematical expression derived
here for the primary waves produced by elementary tensorial point forces is new; it differs from
known, particular cases.

It is shown, mainly by using energy-balance arguments, that the primary waves interact with the
surface of the half-space and transfer part of their energy to the surface; consequently, additional,
secondary wave sources occur on the surface, which generate secondary waves. Since the secondary
sources move on the surface, the secondary waves they generate may be called ‘surface seismic
radiation’. A similar suggestion was implied long ago by Lamb (2), (18). The secondary wave
sources are localised on the surface along circular lines. It is worth noting that the secondary sources
move on the surface with velocities greater than the elastic waves velocities. A simplified model is
put forward here for secondary waves sources, which allows the estimation of the secondary waves.
The model assumes a uniform distribution of sources along circular lines, moving with constant
velocities greater than the velocities of the elastic waves; it does not account for the anisotropy of the
sources, and gives only a qualitative dependence of the waves on the distance. The secondary waves
generated by the surface sources are estimated within this model, with emphasis on the secondary
waves propagating on the surface. It is shown that these secondary waves are responsible for the
seismic main shock and the long tail exhibited usually by earthquakes in the seismic records. These
two latter items have indeed been associated long ago to waves generated and propagating on the
surface (19), (20). The secondary waves generated by an internal discontinuity of the half-space are
also estimated; it is shown that they produce a much reduced main shock. The precise formulation
of the concept of secondary waves, generated by sources moving on the surface, the mathematical
expression of the secondary waves obtained here in a simplified model and the expression of the
main shock and its long tail are new.

Finally, a special situation deserves attention. If the source of the primary waves is located on the
surface, the primary waves it generates are those given above for z0 = 0. The interaction of these
primary waves with the surface is null, since the thickness�z = l | z0 | /R of the intersecting layer
is zero for z0 = 0 (Fig. 3). The support of the interaction force with the surface reduces to zero and,
consequently, the secondary waves are absent.
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