
ON THE MOTION OF AN ELECTRIC CHARGE IN HIGH-INTENSITY
ELECTROMAGNETIC RADIATION

CRISTINA MIRON1, MARIAN APOSTOL2,a

1Department of Physics,
University of Bucharest,
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Abstract. The motion of an electrically charged particle in high-intensity elec-
tromagnetic radiation is revisited; the problem is relevant for the charge acceleration in
ultra-intense laser radiation in vacuum. It is shown that for many practical purposes a
charged particle accelerated by a traveling high-intensity electromagnetic plane wave
can be treated as a (quasi-) classical relativistic particle. The effects of the damping
force are estimated by a direct method; it is shown that in realistic cases these effects
are small. A “stopping” point (“turning”, “reflection” point) is identified for charges
propagating initially (launched) against the electromagnetic beam; this circumstance
has been considered recently by numerical simulations. Particular aspects of a relati-
vistic quantum-mechanical charge accelerated by a high-intensity electromagnetic wave
are discussed, which indicate that a (quasi-) classical treatment is appropriate for very
strong fields in many respects. Also, it is shown that charges in a standing electromag-
netic wave behave as non-relativistic and quantum-mechanical charges, as in an optical
lattice. The increase in the particle-antiparticle energy gap in high electromagnetic
fields is highlighted, which points out difficulties in achieving pair production assisted
(induced) by high-intensity electromagnetic radiation in vacuum.

Key words: charges accelerated in high-intensity electromagnetic fields;
damping force; Volkov states; charges in standing electromagnetic
fields; optical lattice; pair creation from vacuum.
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1. INTRODUCTION

The recent advances in the technique of focused pulses of optical laser beams
offer the opportunity of reaching very high intensities of electromagnetic fields [1–
8]. New and interesting phenomena can be made available for experimental study in
the laboratory by using this technique [9, 10]. Particle acceleration in high-intensity
laser fields has been achieved up to energies of GeV’s order [11–13]; vacuum po-
larization, vacuum breakdown, photon-photon scattering, electron-positron pair cre-
ation or non-linear quantum electrodynamics effects are envisaged [14–18]; multiple
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Compton scattering, generation of higher harmonics, atomic and even nuclear ef-
fects are currently produced and investigated in gaseous or solid plasmas subject to
high-intensity laser fields [19–22]. In all these phenomena, the basic element is the
electric charge acceleration in electromagnetic fields, and, generally, the motion of
an electric charge in strong electromagnetic fields. We discuss in this Note some
particular points of the motion of an electric charge in high-intensity electromagnetic
radiation in vacuum, with a theoretical character, which, usually, are insufficiently
emphasized, in spite of their relevance.

2. EQUATIONS OF MOTION

Let us consider the motion of a charge q with mass m in an electromagnetic
field generated by the vector potentialA=Az =A0 cos

ω
c (ct−x), propagating along

the x-direction; ω denotes the radiation frequency and c is the speed of light in va-
cuum. With usual notations the equation of motions are

mc
dui

ds
=
q

c
F ikuk , (1)

where ui is the four-velocity. The non-vanishing components of the field intensity
(electric field E = −(1/c)∂A/∂t, magnetic field H = ~∇×A) are F 03 = F 13 =
−F 31 =−F 32 =−E, where E =Ez =

ω
cA0 sin

ω
c (ct−x) (and Hy =−E). Conse-

quently, the equations of motion are re-written as

mcdu
0

ds = qE
c u

3 , mcdu
1

ds = qE
c u

3 ,

mcdu
3

ds = qE
c (u0−u1)

(2)

(u2 = 0), where s = kix
i = ct−x is the world-line length and ki = (1,−1,0,0) is

the four-wavevector; we get immediately u0−u1 = const= 1, for a charge initially
at rest at the origin (we recall u0 = γ, u = γv/c, where γ = (1− v2/c2)−1/2); it
follows

u1 = q2A2

2m2c4
, u0 = γ = 1+ q2A2

2m2c4
,

u3 =− q
mc2

A

(3)

(we can check uiui = 1). The velocities are given by

vx = c
q2A2/2m2c4

1+ q2A2/2m2c4
, vz =−c

qA/mc2

1+ q2A2/2m2c4
(4)

and the energy is

E =mc2γ =mc2+
q2A2

2mc2
. (5)
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We can see that for high fields the charge reaches the ultrarelativistic limit along the
direction of propagation of the radiation field (vx→ c, vz → 0). From ui = dxi/ds
we get the coordinates

x=
q2A2

0/4m
2c3

1+q2A2
0/4m

2c4

[
t+ 1

2ω sin2
ω
c (ct−x)

]
,

z =− qA0

mcω sin
ω
c (ct−x) .

(6)

3. HAMILTON-JACOBI EQUATION

The same results can be obtained from the Hamilton-Jacobi equation

gij
(
∂S

∂xi
+
q

c
Ai

)(
∂S

∂xj
+
q

c
Aj

)
=m2c2 , (7)

where the metrics is gij = (1,−1,−1,−1), E = −∂S/∂t is the energy, P = p+
q
cA = ∂S/∂R is the generalized momentum and S is the mechanical action (R is
the position vector). We seek a solution of the form S = −fixi+F (s), where f i

is the four-momentum of a free particle, fif i = m2c2 (the initial momentum, the
interaction is introduced adiabatically). Since kiki = 0 and kiAi = 0 (transversality
condition, with zero scalar potential), we get

F
′
=− q

cα
fiA

i+
q2

2αc2
AiA

i , (8)

where α = kif
i. The solution is well known [23]. Since α = f0− f1 and f i =

(f0,f1,κ), fif i = (f0)2− (f1)2−κ2 =m2c2, we get

f0 =
1

2
α+

m2c2+κ2

2α
, f1 =−1

2
α+

m2c2+κ2

2α
(9)

and

S =−1

2
α(ct+x)−m

2c2+κ2

2α
s+κr+

q

cα

∫ s

ds
′
κA− q2

2c2α

∫ s

ds
′
A2 , (10)

where κ is the transverse momentum and r = (y,z) is the transverse position vec-
tor. The derivatives of S with respect to the momentum κ and the parameter α are
constants of motion; they may be set equal to zero. We get

y =
κy
α s−

q
cα

∫ s
ds

′
Ay ,

z = κz
α s−

q
cα

∫ s
ds

′
Az ,

x= 1
2

(
m2c2+κ2

α2 −1
)
s− q

cα2

∫ s
ds

′
κA+ q2

2c2α2

∫ s
ds

′
A2

(11)
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and
py = κy− q

cAy ,

pz = κz− q
cAz ,

px =−1
2α+

m2c2+κ2

2α − q
cακA+ q2

2c2α
A2 ;

(12)

the energy is given by
E = c(α+px); (13)

we note the linear dependence on the momentum. For a charge initially at rest at x=
y = z = 0 at the initial moment of time t= 0 (κ= 0, f1 = 0), and a vector potential
A=Az =A0 cos(ωt−kx) =A0 cos

ω
c (ct−x) =A0 cos

ω
c s (linear polarization) we

get α=mc (α2 =m2c2) and

z =− qA0

mc2
λsin(ωt−kx) , y = 0 ,

x=
q2A2

0/4m
2c4

1+q2A2
0/4m

2c4

[
ct+ λ

2 sin2(ωt−kx)
]
,

px =
q2A2

0
2mc3

cos2(ωt−kx) , pz =− qA0

c cos(ωt−kx) , py = 0

(14)

and

E =mc2+
q2A2

0

2mc2
cos2(ωt−kx) , (15)

where λ= c/ω is the radiation wavelength. For time-averaged quantities an effective
mass can be defined by

E2/c2−p2x =m∗2c2 , m∗2 =m2

(
1+

q2A2
0

2m2c4

)
, (16)

by analogy with the free particle [24, 25]. Equations (14) and (15) coincide with
equations (6), (3) and, respectively, (5) (we recall pi =mcui).

We can see that, apart from oscillations, the charge exhibits a drift motion
along the direction of propagation of the wave, governed by the ratio of the field
energy qA0 to the rest energy mc2. There exist also solutions with negative energy
E = c(−α−px) and negative momentum px (corresponding to α=−mc in the above
calculations), which move in opposite direction. The oscillations of the charge give
rise to radiation [9, 26, 27] (Compton effect); the Lorentz reaction force is extremely
small [28]; in the limit of high fields, where x is approximately ct, the phase is very
small and the oscillations and the radiation are fading out.

We introduce the parameter

η =
qA0

2mc2
(17)
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(or η = qE0/2mωc, where E0 = ωA0/c is the electric field, q > 0); from Eq. (14)
the drift velocity of the charge is given approximately by

vx '
η2

1+η2
c , (18)

and the coordinates x and z can be written as
x' vxt+ 1

2
vxλ
c sin2(ω−kvx)t= vt+ 1

2
vxλ
c sin2ω(1− vx

c )t ,

z =−2ηλsinω(1− vx
c )t ;

(19)

a current J = qvx occurs, along the direction of propagation of the radiation. The
charge gets rapidly ultrarelativistic, as shown by Eqs. (19) [29].

Usually, the parameter η is small (η � 1). However, a laser high intensity
I = 1022 w/cm2, focalized in a pulse of dimension d, generates an electric field
E0 =

√
4πI/c ' 1010 statvolt/cm (E2

0d
3 = 4πId2τ = 4πId3/c, where τ = d/c is

the duration of the pulse). For a linear dimension of the pulse d= 10µm, τ ' 30 fs;
the intensity 1022 w/cm2 corresponds to' 10 Pw, i.e. a total energy per pulse' 300
w. The vector potential is A0 = cE0/ω = 10−5E0 = 105 statvolt for the optical
frequency ω ' 3×1015 s−1 (ν = ω/2π, λ = 0.5 µm); the corresponding energy for
an electron is qA0 = 4.8×10−5 erg' 30 MeV. This energy is much higher than the
rest energy of the electron mc2 = 0.5 MeV, such that the ratio η = qA0/2mc

2 = 30
is much larger than unity. It follows that an electron can be accelerated, during the
short duration τ of the pulse, up to velocities close to the speed of light, along the
direction of propagation of the radiation field, and up to energies of the order 1 GeV.

If the radiation is propagated in gaseous plasmas [30], then a radiation pulse is
a wavepacket; when focalized, it is a three-dimensional wavepacket which distributes
the electrons over its surface, such as to compensate the radiation field. Under such
circumstances, the charges are accelerated by the transport motion of the wavepacket
(pulse; pulsed polariton) [31]. The mechanism of charge acceleration presented here
is distinct from, and complementary to the mechanism of charge acceleration in plas-
mas.

4. DAMPING FORCE

The general solution of the equations of motion of a charge driven by an elec-
tromagnetic plane wave and the damping (reaction) force has been given in Ref. [32].
We estimate here, by a direct method, the magnitude of the damping force and show
that in realistic cases the effect of the damping is small. The damping force [23] is
given by

gi =
2q3

3mc3
∂F ik

∂xl
uku

l− 2q4

3m2c5

[
F ilFklu

k− (Fklu
l)(F kmum)u

i
]
; (20)
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it must be much smaller than q2/cγa2, where a= q2/mc2 is the classical electromag-
netic radius of the charge; this condition, which indicates the limits of applicability
of the electromagnetism, does not imply always that the damping (reaction) force is
smaller than the electromagnetic (Lorentz) force; in the extreme limit v' c the damp-
ing may be higher than the driven force. Making use of the field given by equations
(1) we get the reaction force

g0 = 2q3

3mc3
(u0−u1)

{
ω2

c2
Au3+ qE2

mc2

[
1− (u0−u1)u0

]}
,

g1 = 2q3

3mc3
(u0−u1)

{
ω2

c2
Au3+ qE2

mc2

[
1− (u0−u1)u1

]}
,

g3 = 2q3

3mc3
(u0−u1)2

(
ω2

c2
A− qE2

mc2
u3
)

(21)

(we can check uigi = 0). Making use of the four-velocity given in equation (3) we
get

g0 =−2a2ω2A2

3c3

(
1+a E2

2mω2

)
,

g1 =−2a2ω2

3c3

[
A2− c2E2

ω2

(
1− q2A2

2m2c4

)]
,

g3 = 2aqAω2

3c3

(
1−a E2

mω2

)
,

(22)

or, in the limit of high-intensity fields,

g0 = g1 '−a
3A2E2

3mc3
, g3 '−2a2qAE2

3mc3
. (23)

Using the numerical data given above (E0=1010 statvolt/cm,A0=105 statvolt,
ω ' 3× 1015 s−1 (λ = 0.5 µm)) for an electron, we can see that the damping force
(g0= g1' 10−12g/s, g3' 10−13g/s) is much smaller than the Lorentz force (qEu30/c
' 10−8g/s, qE0/c' 10−10g/s; γ ' 104) and the validity condition gi� q2/cγa2 is
satisfied (q2/cγa2 ' 10−8g/s).

5. “STOPPING” POINT

Let us assume that initially the charge moves with momentum f1 = −bmc,
b > 0, in direction opposite to the laser beam. Then, from Eqs. (11)-(13), we get

x= 1+2η2−β2

1+2η2+β2 ct+
η2

1+2η2+β2λsin
2ω
c s , z =−

2η
β λsin

ω
c s ,

px =
mc
2β

(
1−β2+4η2 cos2 ωc s

)
, E = mc2

2β

(
1+β2+4η2 cos2 ωc s

)
,

(24)
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where β = b+
√
1+ b2. We can see that there exists a value β2 = 1+2η2 for which

x= η2

2(1+2η2)
λsin 2ω

c s , px =
mc√
1+2η2

η2 cos 2ω
c s ,

E = mc2√
1+2η2

(
1+η2+2η2 cos2 ωc s

)
,

(25)

where the drift motion ceases. If the initial action of the launched particle is main-
tained, the charge oscillates indefinitely at the stopping point, and radiates (mainly
with frequencies ω and 2ω); if not, this is a turning point, where the charge is re-
flected. The associated stochastic photon emission in the so-called radiation-domina-
ted regime (non-linear Compton effect) was considered recently by numerical simu-
lations [33, 34].

6. QUANTUM CHARGE

As it is well known [35, 36], the wavefunction of a relativistic quantum charge
in an electromagnetic plane wave is

ψ =

[
1+

q

2c

(γk)(γA)

(pk)

]
e

i
~Su , (26)

where

S =−px−
∫ ξ

dξ
′
[

q

c(pk)
(pA)− q2

2(pk)c2
A2

]
(27)

is the mechanical action, p is the charge momentum four-vector, k is the field four-
wavevector, γ denotes the Dirac matrices and u is a constant bispinor; the notation
(pk) stands for the scalar product of the two four vectors p and k (Volkov wavefunc-
tion; compare with the classical action given by Eq. (10), where p is replaced by
f ). The electromagnetic wave depends only on the phase s= (kx). We assume that
the interaction is introduced adiabatically; then u is the solution of the free Dirac
equation (γp−mc)u = 0, i.e. it is the plane wave constant bispinor. Therefore, the
wavefunction can be written as

ψpσ =
1√
2εV

[
1+

q

2c

(γk)(γA)

(pk)

]
e

i
~Supσ , (28)

where σ = ±1 is the spin label, V is the volume, ε =
(
m2c4+p2c2

)1/2 and upσ is
normalized such as upσupσ′ = 2mc2δσσ′ , u−pσu−pσ′ = −2mc2δσσ′ [37]. We give
here these constant bispinors

upσ =

(
(ε+mc2)1/2wσ

(ε−mc2)1/2(nσ)wσ

)
, u−p−σ =

(
(ε−mc2)1/2(nσ)w′

σ

(ε+mc2)1/2w
′
σ

)
, (29)
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where n = p/p, w
′
σ = −σyw−σ and wσ can be taken as the eigenvectors of the

matrixσz; σ denotes the spin matrices. We note that u∗pσupσ′ = upσγ
0upσ′ = 2εδσσ′ .

The wavefunctions ψpσ are orthonormal [38]; also, the completeness of these wave-
functions can be proved (see, for instance, Refs. [39–41]). The phase S given by Eq.
(27) is the classical mechanical action [38]; it contains the drift motion of the charge
along the propagation of the radiation wave, while the pre-exponential factor in the
wavefunction given by Eq. (26) includes the oscillations of the charge in the radiation
field. The current ji= cψγiψ (with the probability density ρ=ψγ0ψ=ψ∗ψ= j0/c)
and the momentum qi = ψ∗pσ(p

i− q
cA

i)ψpσ can be computed straightforwardly, and
an effective mass m∗ can be derived, identical with the effective mass in the classical
case [42].

Let us consider an electromagnetic wave propagating along the x-direction,
ki=(1,1,0,0), s= kix

i= ct−x, with the electromagnetic potentialsAi=(0,0,0,A),
A=A0 cos

ω
c s (linear polarization) and a charge moving initially along the y-direction,

pi = (mc,0,py,0), with a small py; then, the pre-exponential factor of the wavefunc-
tion in Eq. (26) is

1+
q

2c

(γk)(γA)

(pk)
= 1−

qA0 cos
ω
c s

2mc2

(
−iσy σz
σz −iσy

)
(30)

(we note that the matrix (γ0− γ1)γ3 entering the pre-exponential factor is twofold
degenerate); the mechanical action given by Eq. (27) becomes

S =−
(
mc2+

q2A2
0

4mc2

)
t+pyy+

q2A2
0

4mc3
x− q2A2

0

8mc2ω
sin

2ω

c
s . (31)

The charge acquires an average drift momentum

Px '
q2A2

0

4mc3
=mcη2 , (32)

an energy

E 'mc2+ q2A2
0

4mc2
=mc2(1+η2) (33)

and a phase velocity

vx '
E
Px

=
1+e2A2

0/4m
2c4

e2A2
0/4m

2c4
c=

1+η2

η2
c , (34)

which is higher than the speed of light in vacuum c; the group velocity may attain
values as large as c.

We can see that for high-intensity fields [43], η = qA0/2mc
2� 1, the charge

becomes ultrarelativistic; leaving aside the pre-exponential factor given by Eq. (30),
the wavefunction can be written as

ψpσ '
1√
2V

(
wσ
σywσ

)
e

i
~S , ψ−p−σ '−

1√
2V

(
w−σ
σyw−σ

)
e−

i
~S , (35)
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where

S '− q
2A2

0

4mc2
t+

q2A2
0

4mc3
x=− q

2A2
0

4mc3
(ct−x) =−mcη2(ct−x) ; (36)

(the two bispinors are not independent, which corresponds to the ultrarelativistic
case). The extremely fast oscillations produced by the large phase S indicate that
we may view the charge as being in the quasi-classical limit (ray approximation); for
practical purposes the charge may be viewed as a classical charge. A similar result
can be obtained by taking the limit m→ 0, either formally in the Volkov wavefunc-
tion given by Eq. (26), or in the initial Dirac equation (Weyl equation, with only one
spinor) [36]. We can check that the current is ψpσγ

iψpσ =
1
V (1,1,0,0), correspond-

ing to a plane wave which describes an ultrarelativistic particle. The spinor ψ−p−σ
corresponds to negative energy (and momentum). The negative-energy electrons in
the Dirac Fermi sea get lower and lower (negative) energy (as if they would have a
negative mass); such that the gap between the negative-energy states and positive-
energy states is increased by radiation. Similar considerations are valid for pair cre-
ation in laser fields in the presence of a Coulomb potential (Bethe-Heitler process
[44, 45]). It is also worth noting that the accelerated charge “feels” not anymore
the radiation for very strong fields; in the rest frame of an ultrarelativistic particle
the electromagnetic fields are vanishing. From Eq. (36) we get the charge wave-
length λ' ~/η2mc; we can see that for large η the wavelength is much shorter than
the Compton wavelength; it follows again that for many practical purposes we may
use the classical approach for the accelerated charge [46–48]. Within this approach
small interference effects or rapidly varying spin dynamics are lost; in the limit of
high-intensity fields these effects are small, so they can be disregarded. An ultrarela-
tivistic particle is practically a “radiation” field; as such, it does not radiate, and does
not “feel” the accelerating electromagnetic field.

7. STANDING WAVE

Let us consider now a classical relativistic charge in a standing electromagnetic
wave with the vector potential

A=Az =
1

2
A0[cos(ωt−kx)+cos(ωt+kx)] =A0 cosωtcoskx (37)

(linear polarization); the frequency of the wave is in the optical range, ν = ω/2π '
1015 s−1, and the wavelength is λ= 2π/k = c/ν ' 3×10−5 cm= 0.3 µm. A charge
in a standing wave spends there more time than the wave period (1/ν = 10−15 s);
consequently, in the Hamilton-Jacobi equation

1

c2
(∂S/∂t)2 = (∇S− q

c
A)2+m2c2 (38)

(c) RJP 62(Nos. 7-8), id:117-1 (2017) v.2.0*2017.10.3#fc3b5b31
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we may take the average of A and A2 with respect to the time; Eq. (38) becomes

1

c2
(∂S/∂t)2 = (∂S/∂x)2+(∂S/∂y)2+(∂S/∂z)2+

q2A2
0

2c2
cos2 kx+m2c2 ; (39)

(a similar result holds for a circularly polarized wave). The solution of this equation
is the mechanical action

S =± qA0√
2ω

coskx+pyy+pzz−Et , (40)

where py,z are constant transverse momenta and E is the energy, given by

E2 =m2c4+
1

2
q2A2

0+(p2y+p
2
z)c

2 . (41)

We note that the energy acquires the form of the energy of a free particle, at
rest along the longitudinal x-direction (wave direction), with a renormalized mass.
This indicates that the assumption of a relativistic classical charge in a standing elec-
tromagnetic wave is not warranted, as expected. In particular, we can see that the
coordinate x is not determined.

Indeed, contradictions can appear from such an assumption. For instance, the
longitudinal momentum is

Px = px =
∂S

∂x
=± qA0√

2c
sinkx , (42)

whence, making use of px =mvx/(1−v2x/c2)1/2, we get a “velocity”

dx

dt
= vx = c

qA0√
2mc2

sinkx√
1+

q2A2
0

2m2c4
sin2kx

(43)

and a “force”
dpx
dt

= vx
dpx
dx

=
1

2
c
d

dx

√
m2c2+p2x =mc2k

2η2 sinkxcoskx√
1+2η2 sin2 kx

, (44)

which looks like a ponderomotive force. However, the motion under the action of
such a force is meaningless. In particular, both the “velocity” and the “force” given
by Eqs. (43) and, respectively, (44), vanish at kx= nπ, where n is any integer.

The situation is different for a non-relativistic charge; in this case the energy
reads

E = 1

2m
(P− q

c
A)2 =

p2x
2m

+
p2y
2m

+
p2z
2m
− q

mc
pzA+

q2

2mc2
A2 , (45)

or, taking the temporal average,

E = p2x
2m

+
p2y
2m

+
p2z
2m

+
e2A2

0

4mc2
cos2 kx ; (46)
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we can see that the charge moves in a periodic potential

U(x) =
q2A2

0

4mc2
cos2 kx ; (47)

the standing wave acts as an optical lattice for the charge. It follows that the quantum-
mechanical motion of a charge in a standing electromagnetic wave generates energy
bands, as it is well known [49]; and, in addition, a charge may suffer diffraction
on a standing wave (Kapitza-Dirac effect [50]). The classical motion is confined
within the potential wells centered at kx = (2n+1)π/2, according to the potential
energy included in the expression of the Hamiltonian given by Eq. (46), subject to a
ponderomotive force mc2kη2 sin2kx.

8. CONCLUDING REMARKS

Finally, it is worthwhile commenting upon the Compton effect in a classical
electromagnetic wave. It is instructive at this moment to have an estimation of the
(mean) photon density in a laser pulse with moderate intensity I = 1018 w/cm2; this
intensity corresponds to an electric field of the orderE0'

√
4πI/c=108 statvolt/cm

(and a similar magnetic field). The energy density is of the order w ' I/c = 1014

erg/cm3, with a density of photons n' 1025 cm−3 with energy, say, ~ω = 1 eV; the
photon flow (flux) is cn ' 1035/cm2·s. Currently, electrons may be injected in an
electromagnetic waves to give an electric current of, at most, the order ' 100 mA,
which corresponds to ' 1017 electrons per second (we may admit that such an elec-
tric current can be produced experimentally over a cross-sectional area 1 cm2); it
follows that we may have an electron flow ' 1017/cm2·s. We may see that electron
flow is much weaker than the photon flow. Therefore, we may conclude that the dis-
ruption of an electromagnetic wave by electron beams is unlikely and the Compton
effect is not likely to disturb appreciably either the electromagnetic wave or the elec-
tron dynamics. We may view the Compton scattering in an electromagnetic wave
as a statistical-mechanical effect, where the mean free path of the electron is of the
order of the mean separation distance between the photons (' 10−8 cm), the Comp-
ton cross-section σ is of the order of the square of the classical electromagnetic ra-
dius of the electron (re = e2/mc2 ' 2.8× 10−13 cm), for the radiation wavelength
' 3×10−5 cm (~ω = 1 eV).

In conclusion, we may say that the acceleration of a classical relativistic charge
by a traveling high-intensity electromagnetic wave is analyzed here. Such a charge
acquires quickly a fast drift motion and becomes ultrarelativistic, moving with ener-
gies in the GeV’s range; under these circumstances it ceases to radiate and “feels”
not anymore the carrying wave. Also, it is shown that a relativistic quantum charge in
high-intensity laser radiation (Volkov state) becomes rapidly “localized”, such that
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a (quasi-) classical treatment is more adequate for many practical purposes. Simi-
larly, it is shown that a charge in a standing electromagnetic wave behaves quantum-
mechanically and non-relativistically. This situation leads to energy bands and charge
diffraction on a standing electromagnetic wave (Kapitza-Dirac effect), as it is well
known in an optical lattice.
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