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Abstract: The cross-section is computed for non-relativis-
tic charged particles (like electrons and ions) scattered by 
electromagnetic radiation confined to a finite region (like 
the focal region of optical laser beams). The cross-section 
exhibits maxima at scattering angles given by the energy 
and momentum conservation in multi-photon absorption 
or emission processes. For convenience, a potential scat-
tering is included and a comparison is made with the well-
known Kroll-Watson scattering formula. The scattering 
process addressed in this paper is distinct from the pro-
cess dealt with in previous studies, where the scattering is 
immersed in the radiation field.
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The potential scattering of charged particles in the pres-
ence of electromagnetic radiation has been enjoying much 
interest [1–10]. In the context of laser development, previ-
ous studies revealed the potential scattering assisted by 
multiple-photon exchange, as shown by the well-known 
Kroll-Watson cross-section [1, 2]. In the formulation of 
this problem, the scattering is immersed in the radiation 
field, that is, the asymptotic incoming and outgoing parti-
cle states and the scattering potential are included in the 
region containing the radiation. The duration of the laser 
pulse is much longer than the scattering time. The starting 
point of these approaches is the standard non-relativistic 
Hamiltonian where the particle momentum p = mv + eA/c 
includes the electromagnetic contribution eA/c beside 
the purely mechanical contribution mv (the notations 
are the usual ones, i.e. m and e denote the particle mass 
and charge, respectively, v is the particle velocity, A is 

the vector potential of the radiation field and c denotes 
the speed of light in a vacuum). The Kroll-Watson cross-
section corresponds to radiation-assisted potential scat-
tering, that is, it shows how the potential cross-section is 
modified by the presence of the radiation; it becomes zero 
when the potential is removed.

With the advent of high-intensity lasers and strongly 
focused laser beams [11–18], it appears there is the possi-
bility of scattering charged particles by the radiation field 
confined to the focal region of the beam (the radiation is 
vanishing smoothly ouside the focal region). In this case, 
the asymptotic scattering states are radiation free; they 
are the eigenstates of the quantum-mechanical momen-
tum corresponding to the purely mechanical momentum, 
without including the electromagnetic contribution. This 
is the scattering problem addressed in this paper. It resem-
bles, to some extent, the electron diffraction from standing 
light waves, where the scattering proceeds by spontaneous 
emission of Compton photons (the Kapitsa-Dirac effect) 
[19]. We envisage charged particles like electrons or ions, 
with non-relativistic energies, scattered off electromag-
netic radiation confined to the focal region (in a vacuum) 
of an optical laser beam. Usually, the order of magnitude of 
the dimension of the focal region is a few tens of radiation 
wavelengths, and the radiation field has a reasonably high 
intensity, such that the non-relativistic character of the 
particle motion is preserved. For convenience, we include 
in the focal region a static potential. We assume first a laser 
pulse much longer than the radiation period.

We consider a non-relativistic particle with mass m 
and charge e scattered by an electromagnetic radiation 
field with the vector potential A = A0cos(ωt − kr) (linear 
polarisation), where A0 is the amplitude, and ω and k 
are the radiation frequency and wavevector, respectively; 
t and r denote the time and position, respectively. Since 
the phase velocity of the non-relativistic charge is much 
smaller than the speed of light c in a vacuum (ω = ck), we 
may neglect the spatial phase kr in comparison with the 
temporal phase ωt; consequently, the vector potential 
may be approximated by AA0cosωt. The Hamiltonian of 
the particle in the radiation field becomes the well-known 
dipole Hamiltonian [20–25]
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where E(t) = E0sinωt, E0 = ωA0/c, is the electric field, and 
V(r) is a potential which does not depend on time. The 
non-relativistic character of the motion is preserved in 
the radiation field provided eA0/mc2  1. Making use of 
the notations H0 = p2/2m and U  = −erE, the wavefunc-
tion ψi of the incident particle satisfies the Schrodinger 
equation
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with the initial condition (incoming state)

	
ψ

− +
= � �0 1 ,i i

i iE t

i e
v

p r

�
(3)

where pi is the initial momentum, Ei is the initial energy 
and v denotes the volume (ħ is the Planck’s constant); the 
solution of (2) is given by
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The wavefunction of the final scattering state (outgo-
ing state) is
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where pf is the final momentum, and Ef is the final energy. 
The transition amplitude (S-matrix) reads
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In (2), we successively insert the Goeppert-Mayer 
transform [26]
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and the Kramers-Henneberger transform [27–30]
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We recognise in (7) the standard non-relativistic 
Hamiltonian of the particle in the radiation field. With 
regards to the potential V, we limit ourselves to the Born 
approximation; consequenty, the wavefunction χi can be 
written as
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and the transition amplitude becomes
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The advantage of the canonical transformations 
carried out above consists of the possibility of applying 
the Born approximation. The U term in (10) corresponds to 
the scattering by the radiation field; we can see in (10) that 
the scattering by the potential V is dressed with the radia-
tion (terms ∼ 1 2iS iSVe e , �∼V ). In addition, there appears an 
interference term, which includes the product � .UV

We may make certain simplifications in (10). It 
is easy to see that the phase S1 (7) is of the order (r/λ)
(eA0/ħω)  eA0/ħω, where λ is the radiation wavelength, 
while the phase S2 (8) is of the order (p/mc, eA0/mc2)
(eA0/ħω) = eA0/ħω; consequently, we may neglect the 
phase S2 in (10). In addition, the position given by the 
argument of �V  (8) is of the order r − λc(eA0/ħω), where 
λc = ħ/mc is the Compton wavelength of the particle; it 
takes the potential �V  far away from its short range in 
very short times, especially for (reasonably) high-inten-
sity radiation. Similarly, the Coulomb potential is rapidly 
reduced to an appreciable extent by the radiation, such 
that we may neglect the potential �V  in (10).

Making use of these simplifications, the transition 
amplitude given by (10) becomes
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or
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where p = pi − pf is the momentum transfer. In (12), we use 
the decomposition
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where Jn is the Bessel function (n being any integer) and 
get
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We can see the occurrence of multiple-photon scatter-
ing processes with energy conservation Ef = Ei + nħω. The 
transition probability per unit time is given by
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We multiply wfi by the density of the final states 
Ω π�2 3d d /(2 ) ,f fvp p  where dΩ is the element of the solid 

angle, divide by the current density vi/v, where vi is the 
initial velocity, and integrate over the final momentum 
pf in order to get the differential cross-section for the 
n-process

	
σ ω ω Ω

π
= +∫ �� �

�

2

02d d [ ( )] ( / ) d .
2

i
fn

n n
i

p m n V J e e
p

pr
r r rE

�
(16)

The momentum pfn is given by the energy conserva-
tion ω= + �2 2/ 2 / 2 .fn ip m p m n

We can see in (16) the cross-section of the scattering 
by the radiation and the cross-section of the scattering 
from the potential V. In addition, there are mixed radia-
tion-potential scattering terms; for n = 0, we get from (16) 
the elastic Born scattering in the field of the potential V 
affected by the radiation, due to the presence of the func-
tion J0. The argument of the Bessel function in (16) varies 
rapidly over the integration domain; therefore, we may 
use the asymptotic expression for the Bessel function. In 
doing so, we can easily see that the r integration in the 
contribution of the radiation scattering is non-vanishing 
for peE0/ω, that is, the momentum is trasferred along 
the direction of the electric field, as expected; this is the 
momentum conservation. Making use of this relation and 
the energy conservation, we get pfnpi(1 + nħω/2Ei) (for 
nħω = Ei) and
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where θn is the scattering angle. For n > 0 (photon absorp-
tion), the scattering angle θn increases, while for n < 0 
(photon emission), the scattering angle decreases, with 
respect to the elastic scattering angle θ0. Equation (17) indi-
cates that there exists a limitation which can be written as 
−nħω/2Ei <(eA0cosα/2Ei)(v/c) < 2 + nħω/2Ei, where α is the 
angle the initial momentum makes with the electric field; 
for very low incident energies, the scattering occurs only 
for angles close to the right angle made by the incident 
momentum with the electric field. Finally, we note that 
the order of magnitude of the cross-section of the scatter-
ing due to the radiation is d2[nħω/(ħ2/md2)]2(ħc/eA0d), 
where (ħc/eA0d) = 1 and d is the dimension of the region 
where the radiation is confined to. We can see from (16) 
that the cross-section due to the radiation may acquire 
large values as a consequence of the large dimension of 
the region containing the radiation; the cross-section 
increases with increasing n, that is, for large scattering 
angles, where, however, the scattering maxima coalesce.

As regards the modification brought about by the 
presence of the radiation in the scattering produced 
by the potential V(r), there are two differences in the 
present case, where the radiation is limited to a finite 
region, in comparison with the case where the scattering 
is immersed in radiation. If, in the latter case, we neglect 
the interaction U, leave aside the corresponding transfor-
mation given by U1 and start directly with the standard 
non-relativistic Hamiltonian given by (7), then it is easy 
to see that we get from (11) and (16) the Kroll-Watson 
formula σ ω σ= �2 2

0d ( / ) ( / )d ,n fn i n Bp p J e mpE  where dσB is 
the elastic Born cross-section [1, 2, 31]. This formula shows 
that the Born cross-section is modulated by the function 

2 ,nJ  whose argument includes the energy conservation 
with the exchange of n photons. In our case, the first dif-
ference consists of the presence of the interference term 
~nħωV(r)Jn(erE0/ħω) in (16), arising from both potentials 
U and V, which is absent in the Kroll-Watson formula. 
The second difference is related to the Bessel function 
Jn(erE0/ħω), which is included in the integral in (16) and 
depends on the range of the interaction V(r) through its 
argument erE0/ħω, while in the Kroll-Watson formula, 
the Bessel function depends on epE0/mħω2 and is placed 
outside the integral. These differences are important, 
especially for the Coulomb potentials. In addition, while 
in the Kroll-Watson formula the momentum transfer p is 
given by the potential V(r), in our case it is given both by 
the potential V(r) and the radiation potential U(r) through 
the function Jn(erE0/ħω).

The above calculations are done for a sufficiently long 
laser pulse. In practice, the pulse has a finite duration τ 
and a repetition time Δt. In these conditions, the expansion 
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given by (13) remains valid, but the function δ(ΔE) in the 

scattering amplitude afi (14), where ΔE = Ef −Ei − nħω, is 

replaced by the function 
∆

ζ ∆ α∆ π∆
⋅

= �( ) sin / ,i
i E t

E e E E  
where α = τ/2ħ and ti denotes the time moment of the 
pulse (the pulse lasts from ti − τ/2 to ti + τ/2). For a large 
α, the function ζ(ΔE) has a maximum for ΔE = 0 and 
extends approximately over a bandwidth δEπ/α = 2πħ/τ. 
Since usually τ is much longer than the radiation period 
T = 2π/ω, the energy separation δE is much smaller than 
the radiation quanta of the energy ħω. It follows that the 
function ζ(ΔE) for different n values can be viewed as 
being well separated. In these conditions, the cross-sec-
tion dσn (16) preserves its form, except that it is multiplied 
by the reduction factor τ/(τ + Δt).

In conclusion, it is shown in this paper that non-rela-
tivistic charged particles may suffer scattering as a result 
of their interaction with the electromagnetic radiation in 
the focal region of laser beams. The cross-section of this 
scattering process is computed in this paper for a single-
mode radiation with linear polarisation. As expected, the 
cross-section exhibits maxima at certain scattering (dif-
fraction) angles θn, as given by (17), determined by the 
energy and the momentum conservation in multiple-pho-
ton exchange processes. The calculations can be easily 
extended to any polarisation; for realistic laser beams or 
for multi-mode radiation, we should take into account 
the particular beam shape [32] and the amplitude and 
frequency fluctuations [33]. For convenience, we included 
also the scattering from a potential placed in the radia-
tion field in the Born approximation. The cross-section 
of the potential scattering is modified by the presence of 
the radiation, because the scattering states are dressed by 
radiation. The cross-section is reduced for high-intensity 
radiation (preserving the non-relativistic character of the 
particle motion), and, similarly, the multi-photon scatter-
ing is diminished for the high energy of the particle, when 
the process reduces to elastic scattering in the forward 
direction. In contrast with previous studies, where the 
scattering process is immersed in the radiation field, in 
the scattering process addressed in this paper the radia-
tion field is confined to a finite region. The modifications 
brought by the radiation in this circumstance to the poten-
tial scattering are different from the well-known Kroll-
Watson formula.
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