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Screening length in concentrated electrolytes 
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A B S T R A C T   

The law of increase of the electrostatic screening length with increasing concentration, recently reported in 
highly-concentrated electrolytes (ionic liquids, inorganic salts), References (Smith et al., 2017; Lee et al., 2017; 
Lee et al., 2017; Gaddam and Ducker, 2019), is derived from the dispersive plasmons generated by Coulomb and 
short-range interactions, the latter arising from screened-charge electrostatic interactions.   

1. Introduction 

It is well known that an electrostatic potential Q/r, generated by a 
pointlike charge Q at distance r in vacuum, is screened in an electrolyte 
according to the law Qe− r/λD/r, where λD is the Debye length [1,2]. For a 
binary electrolyte consisting of cations/anions with charge ±q and 
density n = 1/a3 at temperature T the Debye length is λD =

a
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
εaT/8πq2

√
, where ε is the dielectric constant. The screening law is 

valid as long as the screened potential varies slowly over distances much 
longer than the mean inter-ionic distance. This condition is met in dilute 
electrolytes, where λD≫a. In concentrated electrolytes, where λD < a 
(Bjerrum length lB = q2/εT≳a), the screened potential is, practically, 
vanishing over long distances. In both cases in the immediate vicinity of 
the ions the screened potential approaches the bare Coulomb potential. 

Recently, it was found experimentally that, at high concentrations, in 
a wide class of electrolytes, ionic liquids and inorganic salts, a screening 
length Λ exists, which obeys the law Λ ≃ r3

0/λ2
D (up to a small additive 

constant), where r0 is the mean ion diameter [3–6] (see also Refs. [7–9]). 
We can see that, for high concentrations, this screening length increases 
with increasing concentration, in contrast to the Debye length. Scaling 
arguments have been advanced in Ref. [4] to justify this new law, valid 
at high concentrations. The scaling arguments are based on the obser-
vation that at high concentrations the role of the screening length is 
played by the Bjerrum length, i.e. lB→Λ. Then, the formula of the Debye 
length gives Λ ∼ a3/λ2

D, where a is approximately r0, up to a numerical 
factor. This observation needs to be substantiated by a specific dynamics 
which governs the motion and the interaction of the ions. We show in 
this Note that this law is a consequence of the dispersive plasmons, 
arising from Coulomb and short-range interactions. The short-range 
interactions arise from electrostatic interactions between screened 

ionic charges. Short-range interactions, besides Coulomb interaction, 
are well known in the elementary theory of ionic solids [10]. 

In the next sections we derive the dispersive plasmons, the short- 
range interactions and the screening law Λ ≃ r3

0/λ2
D; also, we derive 

the chemical potentials in the limits of low and high concentrations and 
estimate the critical concentration of a gas-liquid transition in binary 
electrolytes. 

2. Dispersive plasmons 

Let us consider a set of identical particles with mass m and density n, 
with a pair-wise interaction energy V(r1 − r2). A local displacement u(r)
gives a density variation δn = − ndivu, such that the interaction energy 
is 

U =
1
2

∫

dr1dr2V

(

r1 − r2

)

δn

(

r1

)

δn

(

r2

)

=
1
2
∑

k
V

(

k

)

δn

(

k

)

δn

(

− k

)

, (1)  

where V(k) and δn(k) = − inku(k) are the Fourier transforms of the 
interaction V(r) and the density variation δn(r). We can see that δn(k) is 
given by the longitudinal displacement u(k) (along the k-direction), such 
that the interaction energy can be written as 

U = −
1
2
∑

k
n2k2V

(

k

)

u

(

k

)

u

(

− k

)

. (2)  

Similarly, the interaction energy with an external source ϕ(r) is 
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Ue =

∫

drϕ

(

r

)

δn

(

r

)

= − in
∑

k
kϕ

(

k

)

u

(

− k

)

(3)  

and the kinetic energy is 

T =
1
2

∫

drnm[u̇(r)]2 = −
1
2

nm
∑

k
u̇

(

k

)

u̇

(

− k

)

. (4)  

At high concentrations both the Coulomb interaction and a short-range 
interaction are present. We apply these results to a binary electrolyte 
consisting of cations with charge q, mass m1 and density n and anions 
with charge − q, mass m2 and density n, with a Coulomb interaction φ(k)
= ±4πq2/k2 and short-range interactions χ1,2(k) (cation-cation, anion- 
anion) and χ(k) (cation-anion) with spherical symmetry. In the above 
formulae V(k) = φ(k)+χ1(k) for cations, V(k) = φ(k)+χ2(k) for anions 
and V(k) = − φ(k)+χ(k) for the cation-anion interaction. A dielectric 
constant can be included in the Coulomb potential. From Eqs. (2)–(4) the 
equations of motion for the two displacements u1,2(k) are 

m1ü1 + nk2(φ + χ1)u1 − nk2(φ − χ)u2 = − ikϕ ,

m2ü2 + nk2(φ + χ2)u2 − nk2(φ − χ)u1 = ikϕ ,

(5)  

where we dropped out the argument k. It is convenient to introduce the 
centre-of-mass displacement u and the relative displacement v, 

u =
m1u1 + m2u2

M
, v = u1 − u2 ,

u1 = u +
m2

M
v , u2 = u −

m1

M
v ,

(6)  

where M = m1 + m2; Eqs. (5) become 

Mü + nk2(χ1 + χ2 + 2χ)u −
nk2

M
(m1χ2 − m2χ1 + Δmχ)v = 0 ,

Δmü + nk2(χ1 − χ2)u + 2mv̈ + nk2
(

2φ − χ +
m2χ1 + m1χ2

M

)
v = − 2ikϕ ,

(7)  

where Δm = m1 − m2 and m = m1m2/M is the reduced mass. By making 
use of u,v ∼ e− iωt , we get the solutions 

u = − ikϕ
nk2(m1χ2 − m2χ1 + Δmχ)
mM2(ω2 − ω2

1

)(
ω2 − ω2

2

) ,

v = ikϕ
1

m(ω2 − ω2
1

) ,

(8)  

where 

ω2
1 = ω2

p +
nk2

2m1m2
mχ , ω2

p =
nk2φ

m
=

4πnq2

m
,

mχ =
2
M
(
m2

1χ2 + m2
2χ1 − 2m1m2χ

)

(9)  

and 

ω2
2 =

nk2

M
(χ1 + χ2 + 2χ) (10)  

in the long-wavelength limit k→0 (see also Ref. [11]). We can see that ω2 
is the frequency of a sound wave, associated with the motion of the 
centre of mass. In the limit of long wavelengths this motion mode may be 
neglected, since u ∼ k3 (equations (8)). The frequency ω1 corresponds to 
dispersive plasmons, associated with the motion of the relative coordi-
nate. Its square can be written as ω2

1 = ω2
p + v2

s k2, where ωp is the plasma 

frequency and vs = (nmχ/2m1m2)
1/2. The dispersive plasmons are well 

known in the theory of the electron liquid [12]. They have been re- 
derived recently for heavy atoms [13]. Also, they are documented 
experimentaly, by various spectroscopies, in various other contexts, e.g. 
in multi-component molecular mixtures [14]. 

If the external interaction arises from an electric potential φ0, i.e. ϕ =

qφ0, the internal electric field is Ei = − 4πnqv = − ik ω2
p

ω2 − ω2
1
φ0 (from Gauss 

equation) and the total electric field is 

Et = − ikφ0

(

1 +
ω2

p

ω2 − ω2
1

)

= − ikφt (11)  

in the long-wavelength limit, where φt is the total potential. We get the 
dielectric function (εi = φ0/φt) 

εi =
ω2 − ω2

1

ω2 − ω2
1 + ω2

p
= 1 −

ω2
p

ω2 − v2
s k2 . (12)  

This dielectric function exhibits spatial dispersion (k-dependence; 
compare with the excitonic dielectric function with spatial dispersion in 
Refs. [15–17]). In the static limit ω = 0 this dielectric function tends to 
infinity for k→0 (a perfect screening). In this case the total dielectric 
constant tends to the dielectric function of the medium. 

We are interested in the total electric potential in the static limit (Eq. 
(11)), given by 

φt = φ0

(

1 −
ω2

p

ω2
1

)

= φ0
k2

k2 + k2
0
, (13)  

where k2
0 = ω2

p/v2
s = 8πMq2/mχ. From this equation we can see that an 

external Coulomb potential φ0 = Q/r, generated by a pointlike charge Q 
in vacuum at distance r, is screened as 

φt =
Q
r

e− k0r , (14)  

the screening length being 

Λ =
1
k0

=

(
mχ

8πMq2

)1/2

= vs

/

ωp . (15)  

This screening is due to plasmons, which, at shorter wavelengths 
(ω1 ≃ vsk for k≳k0), are disrupted by the individual motion of the ions 
(this is a Landau damping, see Ref. [18]). 

3. Short-range interaction. Screening length 

For long distances, i.e. in the limit k→0, the (screened) Coulomb 
interaction dominates; for short distances (k→∞) it is replaced by the 
short-range interaction. We assume that a short-range interaction χ(k) is 
the Fourier transform of a hard-core interaction energy χ0 extending 
over a volume v with a radius r, such that, in the long-range limit rk≪1 it 
is given by χ(k) = χ0v. Within the hard-core approximation two like ions 
in contact can be viewed as a rigid solid with an orientation given by a 
vector r, whose magnitude is twice the ion diameter. For various ori-
entations this vector describes a sphere. Therefore, the short-range 
interaction appears in a sphere with radius twice the ion diameter. We 
note that such a sphere involves two pairs of ions. 

The ionic charge is screened locally within a Debye length λD. At high 
concentrations λD may be shorter than r/2. For short Debye lengths a 
screened potential qe− κr/r, κ = 1/λD, can be approximated by a Coulomb 
potential q/r in a volume vl with radius l. For short distances the 
screened potential can be written as qe− κr/r = q/r − qκ…. The term − qκ 
is the contribution of the other ions. Therefore, the interaction energy of 
an ion with charge q is 12q

2κ (known as correlation energy [19]). On the 
other hand, the interaction energy due to a Coulomb potential at 
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distance l is q2/l; therefore, κl = 2, i.e. l = 2λD. A charge density q/vl 
generates a Coulomb interaction at the distance l. The charge in an 
infinitesimal volume Δv is qΔv/vl, so the interaction energy with a 
pointlike charge q is q2Δv/vll (for a purely Coulomb potential the charge 
is pointlike). The total interaction energy with the nearest neighbours is 
obtained by summing up all these contributions over the volume v, such 
that we get χ0 = q2v/vll and χ(k) = q2v2/vll. Therefore, we have χ1,2(k)
= q2v2

1,2/vll. As said above, this interaction involves two pairs of ions. 
The cation-anion interaction involves two cation-anion pairs, which 
amounts to a cation pair and an anion pair; consequently, we have χ(k)
= − q2v1v2/vll. These are short-range interactions arising from screened 
ionic charges. We note that these interactions are thermal-equilibrium 
effective interactions, through the temperature dependence of the 
Debye length (l = 2λD). By making use of χ1,2(k) and χ(k) derived above, 
we get 

mχ =
2q2

Mvll
(m1v1 + m2v2)

2 (16)  

from Eq. (9), such that the screening length given by Eq. (15) becomes 

Λ =
1
̅̅̅̅̅̅̅̅̅̅
4πvll

√
m1v1 + m2v2

M
=

1̅
̅̅
3

√
m1r3

1 + m2r3
2

Ml2 , (17)  

where r1,2 are the radii of the volumes v1,2. According to our assumption 
of a hard-core interaction, r1,2 should be replaced by twice the ion di-
ameters 2r01,2; also, we replace the radius l by twice the Debye length, 
l = 2λD. It follows that in Eq. (17) we get an additional factor 2; Eq. (17) 
becomes 

Λ = 1.15
m1r3

01 + m2r3
02

Mλ2
D

(18)  

(2/
̅̅̅
3

√
= 1.15). For ionic diameters close to each other, r01 ≃ r02 ≃ r0, 

we may approximate the fraction in Eq. (18) by r3
0/λ2

D. Eq. (18) gets the 
form Λ ≃ 1.15r3

0/λ2
D, which is the scaling law derived in Ref. [4] (where 

the numerical coefficient is 1.12, see Ref. [4], Supplemental Material). 
The dielectric constant enters this formula through the Debye length. 

Also, we note that under these conditions the frequency of the sound 
mode given by Eq. (10), ω2

2 ∼ χ1 + χ2 + 2χ ∼ (v1 − v2)
2
≃ 0, is van-

ishing (v1 ≃ v2). The interplay between the Coulomb interaction q2/d at 
distance d and the short-range interaction χ0 = q2v/vll gives d = vll/v, 
or, from Eq. (17), d ≃ 8r3

0/3Λ2 ≃ 2λ4
D/r3

0, which, at high concentrations 
may be smaller than 2r0. In the range from d to 2r0 we have a super-
position of Coulomb interaction and short-range interaction. 

It is worth giving a numerical estimation of typical values of the 
quantities discussed above. We take a = 3Å, r0 = 2Å and m corre-
sponding to the atomic mass number 35; we get the plasma frequency 
ωp ≃ 4.4 × 1012s− 1 (electron charge q = − 4.8× 10− 10esu), the Debye 
length λD ≃ 0.4Å at room temperature (ε = 80) and the screening length 
Λ ≃ 62Å. The velocity vs = ωpΛ is vs ≃ 2.7× 106cm/s. These parameters 
are given in Table 1. Also, the thermal velocity of the ions is vt =
̅̅̅̅̅̅̅̅̅̅
T/m

√
≃ 2.4× 104cm/s, such that we may estimate a collision fre-

quency τ− 1 ≃ 1012s− 1 (τ ≃ a/vt). We can see that ωpτ > 1, i.e. the plas-
mon is relatively well defined, in a collisionless regime, which means 
that the screening described above is effective. Also, we expect a much 
smaller dielectric constant for small distances a, such that the plasma 

frequency is higher (a better defined plasmon). Similarly, the propaga-
tion time a/vs ≃ 10− 14s of the plasmon dispersion is very short, which 
shows again that the screening described above is effective. 

4. Chemical potential 

The plasma excitations derived above govern the thermodynamic 
properties at high concentrations. According to the hamiltonian given 
by equations (2)–(4) and the second equation of motion (7), we may 
restrict ourselves to the motion of the relative coordinate v in the long- 
wavelength limit. This is the motion of Vk3

0/6π2 independent harmonic 
oscillators with frequency ωp, where V denotes the volume. The corre-
sponding free energy is 

F = −
Vk3

0T
6π2

[ℏωp

2T
− ln

(
eℏωp/T − 1

) ]
; (19)  

this formula is valid at thigh concentrations; it leads to a chemical po-
tential 

μc ≃ −
7k3

0ℏωp

48π2n
. (20)  

The high-concentration is defined by q2/T≳a (or q2/εT≳a), i.e. 

ℏωp/T≫
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

4πℏ2/ma2T
√

, where the quantum-mechanical localization en-

ergy ℏ2/ma2 is much smaller than the temperature T. The chemical 
potential given by Eq. (20) increases with concentration like 
μc ∼ − 1/n1/2Λ3 ∼ − 1/n7/2, which is faster than the dependence 
μc ∼ − 1/n suggested in Ref. [4]. It is worth noting that the thermody-
namics of these oscillators is in the quantum-mechanical regime 
(ℏωp/T > ln2). 

The chemical potential given by Eq. (20) can be compared to the 
well-known chemical potential of the dilute gas of charges 
μd ≃ − q2κ, κ = 1/λD (the logaritmic term in the well-known formula of 
this chemical potential [19] may be neglected) in order to get a very 
approximate estimate of the critical temperature Tc and the critical 
density nc = 1/a3

c of the transition to a liquid (at constant volume); the 
resulting relationship between these two chemical potentials is, 

approximately, T7/2
c (ac/r0)

12
≃ 2.3 × 106

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

mr2
0/ℏ2

√

(q2/εr0)
4 (at con-

stant pressure the chemical potential of the dilute gas is μd ≃ − 2
3q

2κ, 
which produces a very minor difference). Making use of the numerical 
data given above (r0 = 2 Å, m = 35) we get ac/r0 ≃ 29/ε1/3 at T =

300 K and λD,c ≃ 3.3 Å, such that r0/λD,c ≃ 0.6 (λD,c is the Debye length 
for ac). A direct comparison of these formulae with the experimental 
data would imply the poorly known concentration dependence of the 
dielectric constant [20]. The quantities 1012μd ≃ − 2

3q
2κ (curve a) and 

1012μc given by Eq. (20) (curve b) are shown vs concentration x =

104(r0/a)3 for r0 = 2 Å, m = 35,T = 300 K and ε = 1 in Fig. 1; the 
critical concentration is xc = 0.41. We can see that the curves (a) and (b)
in Fig. 1 agree qualitatively with the experimental data and the theo-
retical curve given in Ref. [4] (for aqueous NaCl solutions). In particular, 
we note the sharp upturn in the chemical potentiel at the critical con-
centration, in agreement with the results of Ref. 4, as well as the nega-
tive curvature at high concentrations (which seems to be in contrast to 
the experimental data, as given in Ref. [4]). 

5. Conclusion 

In conclusion, the long screening length appearing in highly- 
concentrated electrolytes is due to the screening produced by disper-
sive plasmons, arising from the Coulomb interaction and the short-range 
interaction of the screened ionic charges, the latter being effective at 
high concentrations. By using this short-range interactions, the scaling 
law of the long screening length reported in Ref. [4] is derived. 

Table 1 
Dispersive plasmon and screening parameters for a = 3Å, r0 = 2Å,m = 35,T =

300K, ε = 80 (see text).  

ωp(s− 1) vs (cm/s) λD (Å) λD,c (Å) Λ (Å) vt (cm/s)

4.4× 1012 2.7× 106 0.4 3.3 62 2.4× 104  

M. Apostol                                                                                                                                                                                                                                        



Chemical Physics 558 (2022) 111514

4

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgments 

The author is indebted to the anonymous reviewer who brought this 
problem to his attention and to the members of the Laboratory of 
Theoretical Physics at Magurele-Bucharest for many fruitful discussions. 
This work has been supported by the Scientific Research Agency of the 
Romanian Government through Grant PN 19060101/2019. 

References 

[1] P. Debye, E. Huckel, Zur Theorie der Elektrolyte. Gefrierpunktserniedrigung und 
verwandte Erscheinungen, Phys. Z. 24 (1923) 185–206. 

[2] R.A. Robinson, R.H. Stokes, Electrolyte Solutions, Dover, NY, 2002. 
[3] A.M. Smith, A.A. Lee, S. Perkin, The electrostatic screening length in concentrated 

electrolytes increases with concentration, J. Phys. Chem. Lett. 7 (2017) 
2157–2163. 

[4] A.A. Lee, C.S. Perez-Martinez, A.M. Smith, S. Perkin, Scaling analysis of the 
screening length in concentrated electrolytes, Phys. Rev. Lett. 119 (2017) 026002. 

[5] A.A. Lee, C.S. Perez-Martinez, A.M. Smith, S. Perkin, Underscreening in 
concentrated electrolytes, Faraday Discuss. 199 (2017) 239–259. 

[6] P. Gaddam, W. Ducker, Electrostatic screening length in concentrated salt 
solutions, Langmuir 35 (2019) 5719–5727. 

[7] M.A. Gebbie, M. Valtiner, X. Banquy, E.T. Fox, W.A. Henderson, J.N. Israelachvili, 
Ionic liquids behave as dilute electrolyte solutions, Proc. Nat. Acad. Sci. USA 110 
(2013) 9674–9679. 

[8] M.A. Gebbie, H.A. Dobbs, M. Valtiner, J.N. Israelachvili, Long-range electrosattic 
screening in ionic liquids, Proc. Nat. Acad. Sci. USA 112 (2015) 7432–7437. 

[9] R. Espinosa-Marzal, A. Archifa, A. Rossi, N. Spencer, Micro-slips to avalanches in 
confined, molecular layers of ionic liquids, J. Phys. Chem. Lett. 5 (2014) 179–184. 

[10] Ch. Kittel, Introduction to Solid State Physics, Wiley, NY, 1953. 
[11] M. Apostol, E. Preoteasa, Density oscillations in a model of water and other similar 

liquids, Phys. Chem. Liqs. 46 (2008) 653–668. 
[12] D. Pines, Ph. Nozieres, The Theory of Quantum Liquids, vol. 1, CRC Press, Boca 

Raton, 1966. 
[13] M. Apostol, Resonant coupling of the electron cloud with the nucleus in heavy 

atoms, Roum. Reps. Phys. 71 (2019) 210. 
[14] M. Apostol, Dynamics of collective density modes in multi-component molecular 

mixtures, Phys. Chem. Liqs. 47 (2009) 34–44 (and References therein). 
[15] S.I. Pekar, The theory of electromagnetic waves in a crystal in which excitons are 

produced, Sov. Phys.-JETP 6 (1958) 785–796 (ZhETF 33 1022–1036 (1957)). 
[16] V.L. Ginzburg, Electromagnetic waves in isotropic and crystalline media 

characterized by dielectric permittivity with spatial dispersion, Sov. Phys.-JETP 7 
(1958) 1096–1103 (ZhETF 34 1593-1604 (1958)). 

[17] V.M. Agranovich, V.L. Ginzburg, Crystal Optics with Spatial Dispersion, and 
Excitons, Springer, NY, 1984. 

[18] M. Apostol, Penetration depth of an electric field in a semi-infinite classical plasma, 
Optik 220 (2020) 165009. 

[19] L. Landau, E. Lifshitz, Course of Theoretical Physics, in: Statistical Physics, vol. 5, 
Pergamon, Oxford, 1980. 

[20] M. Valsiko, D. Boda, The effect of concentration - and temperature-dependent 
dielectric constant on the activity coefficient of NaCl electrolyte solutions, J. Chem. 
Phys. 140 (2014) 234508. 

Fig. 1. The chemical potentials 1012μd for a dilute gas of charges (μd ≃ − 2
3q

2κ, 
curve a) and 1012μc for highly-concentrated charges (μc, Eq. (20)), in ergs, vs 
concentration x = 104r3
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