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Abstract

An estimation is given for the free vibration eigenfrequencies (normal modes) of a homogeneous solid sphere with a large radius, with application to Earth's free 
vibrations. The free vibration eigenfrequencies of a fl uid sphere are also derived as a particular case. Various corrections arising from static and dynamic gravitation, 
rotation, and inhomegeneities are estimated, and a tentative notion of an earthquake temperature is introduced.

Research Article

Vibration eigenfrequencies of an 
elastic sphere with large radius
Bogdan Felix Apostol*
Department of Engineering Seismology, Institute for Earth's Physics, Magurele-Bucharest MG-6, POBox 
MG-35, Romania

Received: 29 September, 2023
Accepted: 06 May, 2024
Published: 07 May, 2024

*Corresponding author: Bogdan Felix Apostol, 
Department of Engineering Seismology, Institute for 
Earth's Physics, Magurele-Bucharest MG-6, POBox MG-
35, Romania, E-mail: afelix@theory.nipne.ro

ORCiD: https://orcid.org/0000-0002-9990-9390

Keywords: Elastic vibrations; Solid sphere; Earth's 
vibrations; PACS: 46.40.-f; 91.10.Kg; 91.30.Cd; 91.30.
Fn; 46.15.-x

Copyright License: © 2024 Apostol BF. This is an 
open-access article distributed under the terms of the 
Creative Commons Attribution License, which permits 
unrestricted use, distribution, and reproduction in any 
medium, provided the original author and source are 
credited.

https://www.mathematicsgroup.us

Introduction 

The long-standing interest in the vibrations of a solid 
sphere is related to the seismic vibrations of the Earth [1,2]. 
After a relatively short burst of energy in an earthquake the 
Earth continues to vibrate freely for a long time. Though with 
a liquid outer core and a viscous mantle, the Earth is still 
approximated by a solid sphere. Great progress in studying 
the vibrations of a homogeneous and isotropic elastic sphere 
has been made since the early days when Lamb introduced 
the vector spherical harmonics (Hansen vectors) [3-5]. The 
relevant eigenfrequencies were computed numerically as early 
as 1898 [6]. We discuss in this paper a natural simplifi cation of 
this problem, which arises from the fact that a large radius of 
the sphere is a natural cutoff. Apart from giving formally the 
general solution of vibrations generated by the seismic tensorial 
force, we show that a large radius simplifi es appreciably the 
boundary conditions, leading readily to the estimation of the 
eigenfrequencies (normal modes). The particular case of a fl uid 
sphere is treated to a larger extent.

As it is well known, the vibrations of the Earth following 
an earthquake are of great importance in revealing the inner 

structure of the crust, mantle, and even the inner cores of 
the Earth. These vibrations imply a large number of modes, 
usually classifi ed as spheroidal and toroidal, with periods in 
a wide range from 10−3 − 10−4s to hours. They attenuate slowly 
in time, leading to the thermalization of the residual energy of 
the earthquake. Usually, they are studied numerically, from the 
recorded data. We give in this paper a thorough description of 
the vibrations of a sphere in the limit of a large radius, which 
simplifi es greatly the problem. This simplifi cation allows us 
to perform analytical calculations to a great extent. First, we 
present the eigenvibrations for a homogeneous and isotropic 
elastic solid sphere, with general boundary conditions. Second, 
we introduce the assumption of a large radius, as appropriate 
for Earth's vibrations. We show that the toroidal vibrations 
are easily amenable to analytical calculations, while useful 
quantitative estimations can be made for the spheroidal 
vibrations. As a useful example, we include the analysis of 
the vibrations of a fl uid sphere. Further on, we investigate 
the effects of static and dynamic gravitation, a problem with 
a higher degree of diffi culty. Also, the effects of the Coriolis 
and centrifugal forces are analyzed, with emphasis on their 
well-known frequency splitting. Finally, we discuss the 
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possibility of estimating the temperature gained by the Earth, 
as a consequence of the thermalization energy released in an 
earthquake. 

Solid sphere 

The elastic vibrations of a homogeneous and isotropic solid 
are described by the equation 

2( 2 ) = ( ) ,      curlcurl grad divu u u F             (1)

where u is the local displacement,  is the density, μ and  are 
the Lame elastic moduli,  is the frequency, and F() is the 
force [7]. The components of the seismic tensorial force are 

( ) = ( ) ( ) ,   F Mi ij j 0r r               (2)

where Mij() is the Fourier transform of the seismic moment, 
r0 is the position of the point where the force is placed and i, 

j, … = 1,2,3 are cartesian labels [8,9]. An equivalent form of 
equation (1) is 

2 2 2 2( ) = ,2 1 2     c c c grad divu u u f              (3)

where = ( 2 ) /1c     is the velocity of the longitudinal 

elastic waves, = /2c   is the velocity of the transverse elastic 

waves, and f() = F() /  (also, mij() = Mij() / ). As it is 
well known, equation (3) is separated into two inhomogeneous 
Helmholtz equations 

2 2 2 2= , = ,1 2       c c A A h               (4)

by = = 0 , grad curl divu A A , = = 0  , grad curl divf h h , 

where  and h are given by = =  , div curlf h f  (Helmholtz 
potentials). We get 

1 1 1 1= , =
4 | | 4 | |

 
 

    
0 0r-r r-rij i j i ijk kl j lm h m             (5)

(where ijk is the antisymmetric tensor of rank three), such that 
we are led to consider the equation 

12 2 =c F F
r

                (6)

with solution 

1 cos 2 2 2( ) = , = / ;2
krF r k c
r





               (7)

This solution results immediately from the vibration 

Green function cos= 24
krG
c r

  of the Helmholtz equation 

2 2 = ( ).  c G G r  We get a particular solution of equation (3) 

1= (| |)24
  

1 (| |) (| |) .1 24




 
 

  

    

pu m Fi ij j

m F Fi jjk k

0

0 0

r-r

r-r r-r

             (8)

For a fl uid, where c2 = 0 (μ = 0) and mij = −mij, this solution 
becomes 

cos | |1= .  2 | |4 1


kmp grad
c

u 0
0
r-r

r-r                (9)

To apply these results to a sphere we need to use expansions 
in a series of (orthogonal) vector spherical harmonics, defi ned 
by[10]

= ,

1= ,
sin

1= ,
sin

Y rlm lm

Y Ylm lm
lm

Y Ylm lm
lm

  

  

 


 

 


 

R e

S e e

T e e

              (10)

l ≠ 0, where Ylm are spherical harmonics and er,, are 

the spherical unit vectors. The functions Rlm Slm are called 
spheroidal functions, while the functions Tlm are called toroidal 
functions. The series expansion reads 

= ( ) ,p p p pf g hlm lm lm lm lm lmlm
 u R S T              (11)

where 
p

lmf , 
p
lmg  and 

p
lmh  are functions only of the radius r. A 

similar series holds also for the free solution uf of equation (1).

The explicit form of the coeffi cients p
lmf , 

p
lmg  and p

lmh  is 
extremely cumbersome. We prefer to work formally with 
equation (1) and series expansions of the full solution u = up 
+ uf and the force F(), with coeffi cients flm, glm, and hlm and 
Fr,s,t, respectively. Making use of such series expansions and the 
properties of the vector spherical harmonics,[10] we get the 
equations 

22 ( 1) 1' ' 2 22 2

( 3 ) ( 1) ( ) ( 1) ' = ,2 ( 2 ) 2( 2 )

22 ( 2 ) ( 1)' '
2

2( 2 ) ' = ,2

22 ( 1)' ' = ,2

l lf f f f
r r

rl l l l Fg g
rr

l lg g g g
r r

sFf f
rr

tl l Fh h h h
r r

 
   

   
    

  
 

   
 


 

 
 
 

     
 

     
 

     

   

    

        (12)

where, for the sake of simplicity, we dropped out the suffi xes 
lm.

We turn now to the boundary conditions. The force P acting 
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(inwards) on the surface r = R of the sphere, where R is the 
radius of the sphere, with the spherical components P = ( 
= r,  ,) is P = nr, where the stress tensor is given by 

= 2 u u      ; we get 

2 = , 2 = ,

2 = ,

u P u Prr

u div Prr r

    

  u
             (13)

where divu is written in spherical coordinates, 

1 2= ( ) ( 1)2
gd lmdiv r f l l Ylm lmdr rlm r

 
 
  

 u               (14)

(by using the properties of the vector spherical harmonics 
equations[10]). We compute the strain tensor u in spherical 
coordinates[7] 

1 1= , = , = cot ,
sin

1 1 12 = cot , 2 = ,
sin

12 =
sin

u uuu u ur r ru u urr r r r r r r

u u uu uru u urr r r r r

u uuru r r r r

     

       

 
  

 
  
 

 
  

  

  
   

   


 

 

 
       
       
                  (15)

by using the spherical components 

= ,

= ,
sin

=
sin

u f Yr lm lmlm

Y h Ylm lm lmu glmlm lm

g Y Ylm lm lmu hlmlm lm

   

   



 
  

 
  

               (16)

of the expansion of the displacement vector and the defi nition 
of the vector spherical functions (equations (10)). Similarly, 
we decompose the force P in vector spherical harmonics (with 
coeffi cients Pr,s,t) and identify its spherical components. The 
boundary conditions given by equations (13) lead to 

2' '2 ( 1) | = ,=

' | = ,=

' | = ,=

g rf f f l l Pr Rr r

g f sg Pr Rr r

h th Pr Rr

 





 
  

 
 
 

 
 
 

   

  

 

               (17)

where we dropped the subscripts lm.

Vibration eigenfrequencies for  large radius

The solutions f, g and h of equations (12) consist of free 
solutions (solutions of the homogeneous equations (12)) plus 
particular solutions. The homogeneous third equation (12), 
which describes toroidal vibrations, is the equation of the 

spherical Bessel functions 2( ), = / = / 2j kr k cl    . For Ft = 

0 and Pt = 0 (a free surface) the third equation in the boundary 
conditions (17) gives 

'( ) = ( ) ;j kR kRj kRl l                (18)

this equation has an infi nity of solutions ln, labeled by an 
integer n, such that we get the eigenfrequencies 

2= .
c

ln lnR
                  (19)

We can get an approximate estimate of the numbers ln by using 
the asymptotic expression of the spherical Bessel functions[11] 

1( ) cos ( 1) , 1;
2

j kr kr l krl kr
 

  
                (20)

For kR ≫ 1 equation (18) becomes 

2tan ( 1) = ,
2

kR l
kR

 
  

                 (21)

which have the approximate zeroes 

( 1) ,
2

n lln
                  (22)

where n is any (large) integer. We can see that the frequencies 

are dense for large  2= /lnR c R  . The free toroidal solution is 

a superposition of ( )j k rl ln , where = / = /2k c Rln ln ln  , with 
undetermined coeffi cients.

In general, for Ft ≠ 0 and Pt ≠ 0 the free toroidal solution 
is Cljl(kr), where the constants Cl are determined from the 
boundary condition. It is easy to see that these coeffi cients 

include singular factors proportional to 
1

ln 
 , such that, 

the integration over frequencies leads to toroidal vibrations 
governed by the eigenfrequencies ln. In general, the solution 
hlm depends on two integration constants, which are determined 
by the boundary condition and the condition of a fi nite solution 
at the origin.

We pass now to the spheroidal components which involve 
the functions f and g in equations (12) and (17). We note that 
the two coupled equations (12) of the functions f and g include 
Bessel operators for spherical Bessel functions. We can get 
a simplifi ed picture of these equations for large values of r. 
Indeed, it is easy to see that in the limit ωr / c1,2 ≫ l2 the free 
solutions are 
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1 21 2
cos( / ) , cos( / ) ,      A Bf r c g r cl lr r

              (23)

where the coeffi cients A and B and the phases 1l,2l remain 
undetermined. In this limit the boundary conditions are 

| = | = 0= =f gr R r R   and the eigenfrequencies are given by

1 2 1 2
/ =, ,  R c nnl l l , where n is any integer (the roots of the 

equation 1 2 1 2
sin( / ) = 0, , R c l l ).

The condition r / c1,2 ≫ l2 is satisfi ed for a large r and a 
reasonably large range of frequencies and parameter l. For 
instance, for r close to the Earth's surface, which is the spatial 

region of interest, we get R / c of the order ≃ 103 for the mean 
radius of the Earth R = 6370 km and the mean velocity of the 
elastic waves c = 5 km / s. Indeed, frequencies as low as  = 10−3 
s−1 are known for Earth's seismic vibrations [12-14].

We can see that there are two branches of spheroidal 
eigenfrequencies (corresponding to the velocities c1,2), which 
are dense (continuous) for large R, very similar to the infi nite 
space (as expected for large R); the (2) -branch, although 
close to the toroidal branch, is distinct (there is a total of 
three branches of eigenfrequencies, corresponding to the three 
degrees of freedom; in the limit of the rotations of the sphere 
as a whole their frequencies go to zero (acoustic modes)). For 
non-vanishing forces, we have spheroidal vibrations driven 
by these forces, as discussed in the previous cases. The set of 
all eigenfrequencies is called the (seismic) spectrum. Earth's 
eigenmodes with eigenfrequencies of the order 10−3 − 10−4 S−1, 
excited by earthquakes, have been discussed in Refs [12-14].

The numerical solution of equations (12) indicates that the 
lowest mode (the fundamental mode) is Slm with l = 2 and n = 0 

(therefore, we may denote it as ( =0)
=2,
nSl m );[6] it is denoted by 0 S2, 

and its eigenfrequency is denoted 20; the corresponding period 
is approximately 1 an hour. Much later, the Earth's crust was 
modeled as a series of superposed layers, with welded interfaces; 
the vibrations of such a stack of layers can be computed and 
long periods of the fundamental modes have been obtained; 
the dispersion relation of these modes (i.e., the dependence 
of the frequency on their label n) can give information about 
the inner crustal structure [15,16]. The fi rst observation of " 
free oscillations of the Earth as a whole" was made for the 
Kamchatka earthquake of November 4, 1952;[17] they were 
followed by many observations of the Earth's vibrations caused 
by the great Chile earthquake of May 22, 1960 [18-20] (with 
magnitude greater than 8, which saturated the scales[21]). 
Today, eigenoscillations of the Earth can be recorded even for 
small earthquakes [22].

From studies of propagation of the seismic waves, it was 
inferred the Earth's solid inner core [23,24] of ≃1000km and 
the outer liquid core of radius ≃2000km. The inner-outer core 
discontinuity is called the Bullen, or Lehmann, discontinuity. 
The temperature of the inner core is radius ≃3000K (iron and 
nickel) and the pressure is ≃1012 dyn /cm2. The buoyancy at 
this boundary could be the source of convection currents that 

generate the Earth's magnetic fi eld (geodynamo effect). The 
next layers are a viscous mantle of thickness ≃3000km and the 
solid crust of thickness≃70km. The boundary between mantle 
and crust is known as the Mohorovic discontinuity.

Fluid sphere

For a fl uid sphere, the shear modulus μ is ze ro (μ= 0); 
equations (12) become 

2 2 ( 1)' ' 2 =2

1 2 ( 1)' 2 = ,2 2

rd l l g Ff f k f f
r dr rr

sl l Ff f g k g
r r r





 
  

     

   

          (24)

where k2 = 2 / c2; the boundary condition reads 

2 ' ( 1) | = .=
rg Pf f l l r Rr r 

 
  

                (25)

Let us introduce divu, given by equation (14), which includes 

2'= ( 1) .gd f f l l
r r

                (26)

Then the boundary condition becomes 

| = ,=
rPd r R                 (27)

the second equation (24) reads 

2 =
sd Fk g

r 
              (28)

and the fi rst equation (24) is 

' 2 = .
rFd k f


                (29)

Hence, we have 

'
= , = .2 2 2 2

s rd F d Fg f
k r k k k 

                          (30)

Now we introduce these functions in equation (26) and get 

' '2 ( 1) ( ) 2' 2 = ( 1) .2
r r sd l l F F Fd k d d l l

r r rr   
                  (31)

For free vibrations this is the Bessel equation for spheri-

cal Bessel functions = ( )ld j kr ; the boundary condition (27) 

leads to the eigenfrequencies =( / )ln lnc R  , ( )=0l lnj  . In 

a fl uid, we have only pressure p, and the stress tensor is 

=ij ijp   ( =2ij ij kk iju u     with =0 ); therefore, for a fl uid 

= =iip u div   u ; the equations written above for d are in fact 

equations for the pressure p. It is convenient to introduce the de-

composition in Helmholtz potentials = ,grad curl u A  =0divA  
and = grad curl F h , = 0hdiv ; then, =p    and the equation 
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of motion = =grad div gradp     u u F F  becomes =      

where the potential   is given by = Fdiv  and = 0h . For 

vibrations this equation reads 2 2 1=c  


     and for 

0= ( ) F r rMgrad  we get = ( )   0r rM , 0
2

0

cos | |
=

4 | |


 


r r
r r

k
m

c
 

( = /m M  ) and the solution up  given by equation (9).

Static self-gravitation

A gravitational force 

4 2= =2 3
mFdV G dV G rdV
r

               (32)

acts upon a volu me element dV placed at a distance r from 
the center of a sphere, where G = 6.67 × 10−8 cm3/ g  s2 is the 
universal constant of gravitation,  is the density of the sphere 
(assumed incompressible), and m = (4π / 3)r3 is the mass of 
the sphere with radius r. If the sphere is compressible, the 
gravitational potential  is given by the Poisson equation ∆ 
= 4πG and the gravitational force per unit mass is F = −grad; 
the condition of (hydrostatic) equilibrium (for a non-rotating 
sphere) reads grad = F = −grad, such that div[(grad)/] = 
−4πG; the dependence of the pressure on the density is given 
by the equation of state; for a constant density the pressure for 
a self-gravitating sphere of radius R at rest with free surface 
is p = (2π/3) G2(R2−r2) (it seems that the pressure in the inner 
Earth's (solid) core is ≃300GPa = 3 × 1012dyn/cm2). Making use 
of equation (32), the equation of the elastic motion reads 

( ) = = ,grad div        u u u F r            (33)

where 2= (4 / 3)G   . Since =1/ 400Y   we may write 

= = 4 ,00rY r  F r e             (34)

whence we can see that F has an expansion is series of spheroidal 
and toroidal functions with all the coeffi cients zero, except the 

coeffi cient = 400
rF r  of the function R00; it follows that the 

motion may include all the eigenmodes Slm and Tlm, as well as 

all the eigenmodes Rlm, the latter with l ≠ 0; for l = 0 , m = 0 the 

motion, described by f = f00, is driven by the gravitational force. 
We note also that the force in equation (33) is static, which 
means that its Fourier transform is proportional to ). For l = 
0 the fi rst equation (12) includes only the function f, i.e. f ); 
this equation reads 

2 2 4' ' = .2 2
f f f r

r r


 
  

                            (35)

It is easy to see that a particular solution of this equation 

is 3[ 4 /10(2 )]r   , while the homogeneous part of this 

equation has the solution C1r +C2/ r2, where C1,2 there are 

constants of integration; we must take C2 = 0 , because the 
solution is fi nite at the origin. We are left with the solution 

3= , = .1 10(2 )
u Ar C r Ar


 




             (36)

This solution must satisfy the boundary conditions at the 
surface of the sphere; making use of equations (16), we have 

the strain tensor '=u urr r  and = = /u u u rr ; the force 

on the surface is |r R , where the stress tensor is given by 

= 2      u u ; for a free surface we get the boundary 

condition 

'(2 ) 2 | = 0=
urur r Rr

                 (37)

( | = 0r R ), whence we determine the constant 

2= [(6 5 ) / (2 3 )]1C AR       and, fi nally, the radial 

displacement 

6 5 6 52 2 2 2= = ;
2 3 10(2 ) 2 3

u Ar r R r r Rr
    
     

   
   
   

  
  

 
       
               (38)

we note that the radial displacement u, is negative, as expected. 
It is worth estimating the radial displacement at the surface 
due to gravitation 

3| = ;= 5(2 3 )
u Rr r R


 


              (39)

making use of  = 5g /cm3, ,μ ≃ 1011dyn/cm2 (parameters for Earth), 

we get ≃ 10−6 g/cm3s2 and 18 3 8 3| 10 10 =10u R cm cm kmr R
  , 

for the Earth's radius R ≃ 6 ×108 cm; this is a distance of the 
order of the Earth's radius. Moreover, the strain is of the order 
1/6, which may cast doubts on the validity of the linear elasticity 
used in this estimation. In addition, we note that the density 
suffers an important change due to the static gravitational 
fi eld. Indeed, the change in density is  = −div(u) = −0divu, 
where 0 is the uniform initial density; with u given by equation 
(38) we get 

0

6 52 2= (3 5 ) , = ,   
2 3

   
  




A R r             (40)

which is of the order unity. The proper estimation of the static 
effect of the self-gravitational fi eld on the elastic sphere is to 
solve simultaneously the equation of elastic equilibrium (33) 
with F = −grad and the Poisson equation for the gravitational 
fi eld , ∆ =4πG. With spherical symmetry we have 

4 '= ;'0< <23
G dr r rr

   
rF r            (41)

the Poisson equation for the gravitational potential may be 
written as ∆(F/) = −4πGgrad, such that the problem involves 
two equations and unknowns, u and . Since this is a more 
diffi cult problem it is preferable to consider the density  
as an empirically known function of r (a parametrization in 
powers of r can be used for  and a variational approach can be 
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applied to the problem). Even so, the equations governing the 
infl uence of the gravitational fi eld upon the elasticity of a self-
gravitating sphere are diffi cult.

Dynamic self-gravitation

Let us assume a spheric, non-rotating, homogeneous, 
elastic Earth at e quilibrium under the action of its gravitational 
fi eld; we consider small elastic deformations of this equilibrium 
state; in the fi rst approximation, we have a small change 
denoted by K in the gravitational potential as a consequence of 
the small changes in density  div(u), i.e., we have 

= 4 ( ) ,K Gdiv   u               (42)

where  is a known function of r. The equation of elastic motion 
reads 

( ) = .grad div gradK        u u u             (43)

These two coupled (vectorial) equations are diffi cult to be 
treated by an analytical method, due to the non-uniformity of 
the density. For a uniform density, taking the div in equation 
(43) and using equation (42) we get for D = divu 

2( 2 ) = 4 ,D D G D                     (44)

an equation which indicates that the frequency  changes by 

2( ) = 4 ;G                  (45)

for frequencies as low as  = 10−4 s−1  the variation 
given by equation (45) is large. Let us use the Helmholtz 
decomposition =  u Agrad curl , divA = 0; then, from equation 
(42) we have K = −4πG and from equation (43) we get 

2 2= 0, = 01 2k k   A A . These are the same equations 

as those which hold in the absence of the gravitational fi eld, 

except that 2
1k  is changed into 2 2 24 /1 1 1k k G c  . Moreover, 

we can see that only the spheroidal modes are affected by 
gravitation (since divTlm = 0). It follows that the spheroidal 

frequencies (i.e., the branches (1,2)) are given by the same 
relations of the type  = (c/ R), where   denote the zeros the 
spherical Bessel functions in the limit of largeR; for c =c1, 

this relation reads 2 2 2 24 = ( / )1G c R   . Hence, we may 

see that we should have the inequality 2 2 2( / ) > 41c R G  , 

or 2 2 2( 2 ) > 4 GR    . The term on the right side of this 

inequality is, up to an immaterial numerical factor, the pressure 
due to the gravitation at the origin; it is much larger than 
the elastic pressure  + 2μ. The inequality is not satisfi ed for 
small values of  (as required by experimental observations). It 
follows that the model of an elastic solid Earth is not valid for 
the interior of the Earth. In those central regions, the elasticity 
is not able to sustain the gravitational pressure. Likely, an 
additional pressure exists there, which compensates for the 

gravitational pressure. The large dimensions of the mantle and 
liquid outer core complicate the matter, and such an Earth's 
model may exhibit very low frequencies (undertones);[25] 
If so, we may leave aside the effects of the gravitation in 
estimating the elastic vibrations of the Earth. In this case, c= 
5km/s we get a period T ≃ (2.2/) of hours; the smallest zero of 
j2 (corresponding approximately to the mode 0 S2) is ≃= 3.6;[11] 
we get T ≃ 37 minutes (for a velocity c = 3km/s the period is T = 
61 minutes, which agrees with the experimental observations).

Rotation effect

If a vector a rotates, its change is   a a , where   
is the infi nitesimal rotation an gle; therefore, its velocity is 

 a a  , where Ω is the angular velocity; its acceleration 

is 2 ( )       a a a a       . Let us apply this relation 

to the displaced position a = r + u; we get the acceleration

) 2 [ )]         u (r u u (r u       ; we can see that additional 

forces appear in rotation: 2 u is the Coriolis acceleration 

and [ )]   (r u    is the centrifugal acceleration. The Earth 
rotates with a constant angular velocity Ω=2π/T, T = 24 hours, 
oriented along the z -axis. We write the equation of elastic 
motion as 

2 = ,  u u F               (46)

where F includes the elastic force (i.e., Fi = ∂jij) and other 
external forces, and the centrifugal force is omitted since Ω 
is much smaller than the eigenfrequencies of the Earth (an 
estimation of the longest periods of the Earth's eigenmodes 
gives an order of magnitude 2πR/c≃37 minutes, for the wave 
velocity c = 5km/s and  = 3.6 where R is the Earth's radius).

In the absence of the Coriolis force in equation (46) we 
decompose the force F and the displacement u in normal 
modes by using the spheroidal and toroidal functions. Let 
us focus on one normal mode, for instance, a toroidal mode

( ) ( )=n nhlm l lmu T , corresponding to the eigenfrequency ln = 

(c2 / R)ln, where ln is, approximately, a zero of the function 

( )( )n
lj k R ; the eigenfunctions ( )nhl  are given by the spherical 

Bessel functions ( )( )nj k rl ; it is preferable to multiply these 

functions by constants and fi x these constants such as 

'( ) ( )2 ( ) ( ) = ;'
n ndr r h r h rl l nn

             (47)

we recall that the toroidal functions are orthogonal, i.e. 

* = .' ' ' 'do lm lm ll mm
  T T            (48)

Since Ω/ln << 1 we solve equation (46) by a perturbation-

theory method. First, we drop the labels l,m and n and use the 

notations
( ) = 0
n
lmu u , lm = 0; we seek the solution as a series in 

powers of Ω/0 
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= ... ,0 1
0
 u u u              (49)

where u1 to be determined, is assumed orthogonal on u0,[26] 
with respect to the scalar product defi ned as the integration 
over the whole space, i.e. 

= 0.1 0d ru u                (50)

A similar series is valid for the frequency 

= ....0 1
0

  

                  (51)

Introducing these series in equation (46), with time Fourier 
transforms, we get 

2 = ,0 0

2 2 = 0;0 1 1 0 0 0i



   



     

u F

u u u

            (52)

the fi rst equation (52) defi nes the function u0; in the second 
equation (52) we take the scalar product with u0 and use the 
orthogonality of u0 with u1 we get 

*0= ( ) ,1 0 0( 1)
i

d zl l


  
re u u                (53)

where we put Ω = Ωez, ez being the unit vector along the z 

-axis. Here we use ez = coser − sine, 
( )=0
nhl lmu T  and Tlm 

from equations (10); we get immediately 

= ,1 0 ( 1)
m

l l
 

               (54)

where m denotes all integers from −l to l. It follows that the 
frequencies ln, which are degenerate with respect to m, are 
split into 2 l + l branches 

;
( 1)
m

ln ln l l
  

           (55)

using 1 thus determined, we can get u1 from the second equation 
(52). Higher-order contributions can be obtained similarly. 
An m -band occurs for each ln, of the widths 2Ω/(l+1), with 
the separation frequency Ω/(l+1). For a typical eigenperiod 60 
minutes the ratio Ω/0 is approximately 1/20 ≪ 1.

Centrifugal force

The equation of the elastic motion for a body in rotation 
with a (constant) angular velocity Ω reads 

2 [ )] = ( ) ,                grad divu u ( u u u Fr    
 

               (56)

w here F is an external force. We note that the centrifugal term 
Ω×(Ω×r) is static, so we can write it as 

2= ( ) ,c   F rr                 (57)

where we denoted by Fc the centrifugal force and removed any 
other external force (F=0); we may neglect u in the centrifugal 
force, since it is very small in comparison to r. The angular 
velocity is oriented along the z -axis, Ω = Ωez. Making use of ez 

= cos  er − sin e a and the spherical harmonics 

1 5 2= , = (1 3 ) ,cos00 20 164
Y Y 


             (58)

it is easy to see that we can write Fc as a series expansion 

 2= 200 20 20rc       F R R S           (59)

in spheroidal functions, where = 2 4 / 3   and = 16 / 5  . 
We seek a similar expansion for the displacement u, 

= ;1 00 2 20 20f f g u R R S
 (60)

equations (12) lead to 

       
       
               (61)

   

22 2' ' = ,1 12 2

22 2( 5 ) 1 6( 3 ) 1 6( ) 1 2' ' ' =2 2 22 22 2 2 2

22 6( 2 ) 1 2( 2 ) 1 1' ' ' = .2 22 2

f f f r
r r

f f f g g r
r rr r

g g g f f r
r rr r

 
 

       
       

       
   

   


        
   

        

We seek solutions of these equations of the form f1,2,g = 
Arn; the solution of the homogeneous equations (regular in the 
origin) corresponds to n =1; we get 

2 3=1 110( 2 )
f r C r 

 
 


               (62)

and 

2 3= , = ,2 2 36
f C r g r C r 


              (63)

where C1,2,3 are constants of integration. These constants are 

determined by the boundary conditions given by equations (17) 
for a free surface. Finally, we get the displacement 

2 5 22 2 2 2= (1 3 )cos3 5( 2 ) 3 2

2 2(3 )2 2 sin cos .
3 3

r r R R r r

r r R

    
    

      

  
  

  

 
  

     
 

  

u e

e

 
                 (64)

It is worth estimating the equatorial displacement ( = π/2) 
for the Earth radius R = 6370km; with  = 5g/cm3 and ,μ = 
1011dyn/cm2 we get u = ur, ≃ 10km.
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Earthquake " temperature"

Let us multiply by u the equation of the elastic motion, 

( 2 ) = ;curlcurl grad div     u u u F              (65)

integrating by parts, we get the law of energy co nservation 

= ,div w
t

  


S
               (66)

where 

1 1 12 2 2= ( ) ( 2 )( )
2 2 2

curl div     u u u             (67)

is the energy density, 

= ( ) ( 2 )S u u u u u ui j j i j i j i j j                      (68)

are the components of the energy fl ux density and =w uF  is 
the density of mechanical work done by the external force per 
unit time. It is worth noting that the energy density given by 
equation (67) differs from the energy density derived from the 
other form of the equation of motion, e.g., 

( ) = ,grad div      u u u F             (69)

by the divergence of a vector; it follows that the energy density 
and the energy fl ux density are not unique (well defi ned).

Making use of equations (6), (7) and (10) we can write 
symbolically 

1 1= ( 1) ( ) ( ) ,

1 2= ( ) ( 1) .2

h d f dcurl l l rh rg
r r dr r r dr

d gdiv r f l l
dr rr

 
  

   

 

u R S T

u

           (70)

We compute the total energy E by introducing these 
expressions for ucurl  and udiv  in equation (67), integrating 
over the solid angle and integrating by parts over the radius 
r; for large values of R the boundary conditions given by 
equations (17) for free vibrations ensure the vanishing of the 
" surface terms" in the r-integration by parts; in addition, for 
large values of R we may neglect the f -term in ucurl and the 
g -term in udiv ; making use of the equations of motion (12), 
we get fi nally 

2 1 2 2 2 2( 1) ( 1) ,
8
lE d f l l g l l h


 
  

     r             (71)

where the summation over l is omitted (the factor 2l + 1 
arises from the summation over m). The functions f, g and 
h in equation (71) are superpositions of their own normal 
modes (labeled by n); for large values of R all these eigenmodes 
may be taken as the spherical Bessel functions, and the 
eigenfrequencies are given by the zeros of the derivatives of 
the spherical Bessel functions; we note that these eigenmodes 
are orthogonal concerning the r -integration; the f -part in 

equation (71) is related to the velocity c1 (the combination of 
2   of the elastic moduli), while the g - and h -parts are 

related to the velocity c2 (modulus μ).

Let us write the energy given by equation (71) for the 
normal modes as 

1 ( )2 ( )2 ( )22 2 2 ,
8

r s tE d f g hln ln ln ln ln lnlmn
  


 
  

   r             (72)

where the summation over m is restored and the coeffi cients 
l(l+1) are included in gln and hln. We may use approximately the 
asymptotic expressions for the functions fln, gln hln of the form 

fln = aln cos[kr−(l+1)π / 2]/kr (spherical Bessel functions), with 

amplitudes aln; and, similarly, for gln and hln with amplitudes bln 

and, respectively, cln Effecting the integral, we get 

1 2 2 2 2 2 2 ,1 2 24
E R c a c b c cln ln lnlmn

   
  

               (73)

where R is the radius of the sphere and c1,2 are the wave 
velocities. This is a simple expression, of the form 

2 2= ,E Rc ass
                (74)

where s  is a generic notation for the normal modes.

Let us assume that energy E is given to the vibrating 
sphere; we ask how it is distributed among the normal modes. 
It is reasonable to assume that, after many refl ections from 
the surface, the distribution of energy reaches an equilibrium 
state, in the sense that it does not depend anymore on time. 
This state is characterized by a probability density w, which is 
multiplicative for different spheres; In w is additive, and the 
function 

= lnS w w                 (75)

should have a maximum value in the equilibrium state, 
corresponding to a maximal " disorder"; this represents our 
idea of equilibrium. Obviously, the function S given by equation 
(75) is the entropy. Its maximum value for constant energy 
is reached for the extremum of the function S −wE, where 
 is a Lagrange multiplier; we get the Boltzmann (canonical) 
distribution 

= ,Ew const e                (76)

or, for one mode, 

2 22= / .Rc aw Rc e                  (77)

The mean energy per mode is 

1= ,
2

e T                (78)

as expected, and the mean value of the square amplitude is 
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2 = ,22
Ta
Rc

               (79)

where we introduced the temperature T = 1/. The total mean 

energy is = = / 2E Ne NT , where N is the total number of modes; 

this equality gives the temperature parameter.

Making use of the asymptotic expressions of the spherical 
Bessel functions (for the radial functions) we get the normal 

modes given by = (2 1) / 2k R n lln   ; hence, we see that the 

normal modes are equidistant; the corresponding wavelengths 

are = 4 / (2 1)R n lln   . We may take, tentatively, a cutoff of 

short wavelengths of the order 10−4 cm (1μm, corresponding 
to a frequency ≃5GHz, for velocity 5km/s); it is reasonable 
to admit that below this distance the homogeneous elastic 
qualities of the Earth do not hold anymore. For this cutoff, 
we get a maximum number 2n+l+1 of the order Nc = 1013 and 

several modes of the order 3 39= =10N Nc . Also, it is reasonable 

to assume that the earthquake energy is spent mainly on 
mechanical work (like fracture of the rocks, structural damage, 
etc). The largest part of the energy released in an earthquake 
is spent in mechanical work associated with the motion of the 
rocks, soil, and the damage produced at the Earth's surface; 
the remaining is dissipated as heat, after a long while. We 

may assume tentatively that only the energy 15.6510E erg  

is spent in thermalization (corresponding to magnitude Mw = 

0) in the Gutenberg-Richter law 
3lg = 15.65
2

E Mw   (in erg). 

This way, we get a temperature T = 10−23 erg (i.e., ≃10−7 K, since 
161.38 10 = 1 , 1 1   erg K erg dyn cm ); the inner Earth's temperature is ≃6000K. The quantity Rc2 in equation (78) is Rc2 ≃ 1020 g/s2 

(for  = 5g/cm3, R≃6×108 cm and c=5km/s). The estimation of 
the temperature is very sensitive to the number of eigenmodes 
N, which may be much lower; also, we may allow for the 
thermalization of higher energies, corresponding to higher 
magnitudes. In both cases the temperature increases. We 
note that the cutoff wavelength, which affects essentially the 
numerical estimation of the temperature, corresponds to the 
mean inter-atomic distance in the Debye estimation of the 
statistical equilibrium of the elastic vibrations (phonons) in 
crystals.

Concluding remarks

A systematic analysis of vibrations of an elastic sphere is 
presented in this paper, to get analytical results. Such results 
are useful, on one hand , in analyzing the recorded data, and, 
on the other, in comparing them with the current numerical 
investigations. It is shown that the hypothesis of a large radius, 
appropriate for Earth's vibrations, simplifi es the analysis 
to a great extent. We discuss the general formulation of the 
problem, the use of spherical harmonics, the approximation 
of a large radius, and the example of a fl uid sphere. Specifi c 
results are given for toroidal and spheroidal vibrations. Also, 

the self-gravitation and rotation effects are analyzed in detail. 

Apart from self-gravitation and rotation, the 
inhomogeneities may have an important effect on the 
vibrations of the solid sphere. For instance, from equation (1), 
a (uniform) change  in density causes a change  = − 
in frequency. The effect of similar changes in the elastic moduli 
 and μ can be estimated by using the changes in the wave 
velocities c in the relation ln ≃ (c/R)ln.

An approximate procedure is given in this paper 
for estimating the spectrum of eigenfrequencies (and 
eigenfunctions) of the vibrations of a solid sphere, with 
application to Earth's vibrations, as those produced by an 
earthquake. The procedure is suffi ciently convenient to apply 
to other, more complex situations involving the vibrations 
of a solid sphere, as, for instance, the corrections brought 
about by self-gravitation, rotation, and inhomogeneities. The 
distribution of the energy among the vibrations eigenmodes 
is also estimated here and the concept of the earthquake " 
temperature" is tentatively introduced, as another means of 
characterizing earthquakes and estimating the earthquake's 
effects.
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