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A new method is introduced for studying the propagation of elastic waves in isotropic bodies, based
on the Kirchhoff potentials borrowed from electromagnetism. By means of this method we identify and
characterize the elastic waves generated in a semi-infinite (half-space) body by the action of an external
force localized on, or beneath, the body surface. The method implies coupled integral equations for the
wave amplitudes, which we solve for both cases mentioned above. For a force localized on the body
surface we identify two transverse waves, corresponding to the two polarizations (normal and parallel
to the propagation plane). The longitudinal waves appear as eigenmodes. The waves produced by a force
localized beneath the surface are stationary waves along the normal to the surface. We compute the
surface displacement in both cases and the force exerted on the surface by a force localized beneath. All
these quantities exhibit a characteristic decrease with the distance on the body surface and an oscillatory
behaviour. We discuss briefly some possibilities of extending the present method to include the effect of
the inhomogeneities on the waves propagation.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

As it is well known, the propagation of elastic waves in bodies
with special, restricted geometries has ever enjoyed a great deal of
interest [1–12]. The problem was originally introduced by Rayleigh
[13] and Lamb [14], and underwent various developments during
the time. It exhibits a certain complexity related to difficulties aris-
ing mainly from the lack of an adequate treatment of the boundary
conditions. These difficulties are increased for the problem of de-
termining the waves produced in such elastic bodies by external
forces, either localized on the body surface, or within the bulk, or
extended over certain spatial volumes. Even more interesting, and
more difficult, is the problem of treating the effect of the inhomo-
geneities, either localized or extended, on the wave propagation in
finite elastic bodies. Apart from their practical importance in engi-
neering, such problems are of great relevance for the effect of the
seismic waves on the Earth’s surface [15–20].

The propagation of elastic waves in isotropic solids is governed
by the well-known Navier–Stokes equation [21]. In the absence
of external forces, solving this (homogeneous) equation amounts
to an eigenmodes problem. For bodies with restricted, special ge-
ometries the eigenmodes equation is supplemented with adequate
boundary conditions, which, basically, means the continuity of the
elastic force (given by the stress tensor) at boundaries. For a semi-
infinite body (half-space), for instance, with a free surface the
component of the elastic force normal to the surface must vanish.
In addition, boundary conditions are imposed at infinity, leading,
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for instance, to propagating or surface (Rayleigh) waves. Similar
boundary conditions are employed, for instance, for a layer super-
posed over an elastic half-space, leading to Love’s waves [22]. This
way, we get the eigenmodes (and the corresponding eigenfrequen-
cies), which we may call “free waves”, in the absence of an exter-
nal force. Localized external forces are treated also by considering
sui generis “boundary conditions” at the location of these forces,
in order to account for the discontinuities implied by such forces.
This method, employed extensively by Lamb [14], is traditionally in
use today. We can say that the particular solution obtained for the
Navier–Stokes equation in this way give the “forced waves”, i.e. the
waves generated by the external force. The general solution, con-
sisting of a superposition of “free” and “forced waves”, should then
obey the boundary conditions, related to the particular geometry
of the body. We can see that such an approach is pretty compli-
cate, and its application to problems of practical interest is lim-
ited. Various approximate methods, both analytical and numerical,
have been developed for such problems [23]. The degree of math-
ematical complexity increases significantly for distributed external
forces, or for the presence of inhomogeneities and defects. Conse-
quently, it is not a surprise that little progress has been recorded
in studying these matters from the classical works of Rayleigh [13],
Lamb [14] or Love [22].

We present here a new method for studying the wave propa-
gation in isotropic elastic bodies with a finite (or partially finite)
structure, based on the Kirchhoff potentials of the wave equa-
tion with sources, borrowed from electromagnetism. The novelty
of our method consists in viewing the compression term in the
Navier–Stokes equation as a source term. We apply this method
to determine the elastic waves produced in a semi-infinite (half-
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space) body by external forces localized either on the body surface
or beneath it. For the force localized on the surface we determine
two transverse waves propagating in the body, and a longitudi-
nal one which appears as an eigenmode. For the force localized
beneath the body surface the elastic waves are stationary waves
along the direction perpendicular to the body surface. We com-
pute the surface displacement in both cases as well as the force
exerted on the surface by a force localized beneath the surface. All
these quantities exhibit a characteristic decrease and an oscillatory
behaviour along the in-plane distance on the body surface. In both
cases, the present method leads to coupled integral equations for
the wave amplitudes, which we solve. By means of the method
presented here we generalize one of Lamb’s problem (force local-
ized on the surface) [14] and get new results for a point-like force
localized under the surface. The generalization consists in treating
a general distribution of forces with a general orientation acting on
the surface. To the author knowledge, for a force localized beneath
the surface the results presented here are new. Finally, we give a
brief discussion of how the present method can be extended to in-
clude the effect of the inhomogeneities on the wave propagation
in elastic bodies with finite geometries.

The elastic waves in isotropic bodies are governed by the equa-
tion of motion (Navier–Stokes equation) [21]

ρü = μ�u + (λ + μ)grad ·div u + ρf, (1)

where ρ is the density, u is the displacement field, μ and λ are
the Lame coefficients and f is an external force per unit mass. By
a Fourier transform of the form

u(R, t) =
∑

K

∫
dω u(K,ω)eiKR−iωt (2)

and a similar one for the force f, Eq. (1) becomes(−ρω2 + μK 2)u = −(λ + μ)(Ku)K + ρf, (3)

where we dropped out the arguments K, ω for simplicity. In
Eqs. (2) and (3), as well as in all subsequent cases, the juxtaposi-
tion of two bold-faced vectors (like KR, Ku, etc.) means the scalar
product. Eq. (3) can easily be solved. Its solutions are given by

u = − (v2
l − v2

t )(Kf)

(ω2 − v2
t K 2)(ω2 − v2

l K 2)
K − f

ω2 − v2
t K 2

, (4)

where

vt =
√

μ

ρ
, vl =

√
λ + 2μ

ρ
(5)

are the velocities of the transverse and, respectively, longitudi-
nal waves. We can see from Eq. (4) that for a longitudinal force
f = f K/K the displacement field is longitudinal and has the eigen-
frequencies ω = vl K , while for a transverse force, Kf = 0, the field
is transverse and has the eigenfrequencies ω = vt K . As it is well
known, the Lame coefficients can be expressed by the Young mod-
ulus E and the Poisson ratio σ ,

λ = Eσ

(1 + σ)(1 − 2σ)
, μ = E

2(1 + σ)
, (6)

and, for reasons of stability, E > 0 and −1 < σ < 1/2 (actually, for
usual bodies, 0 < σ < 1/2). In particular, the ratio

q = v2
l

v2
t

− 1 = λ

μ
+ 1 = 1

1 − 2σ
(7)

satisfies the inequality q > 1/3 (actually q > 1) [21]. In general, the
solution of the homogeneous equation (1) (“free waves”) must be
added to the particular solution given by Eq. (4) (“forced waves”).

Making use of these notations we write Eq. (1) as

1

v2
t

ü − �u = q · grad · div u + f

v2
t

, (8)

where we can recognize the wave equation with sources q · grad ·
div u and f/v2

t . As it is well known, its solution is given by the
retarded (Kirchhhoff) potential

u(R, t) = q

4π

∫
dR′ grad · div u(R′, t − |R − R′|/vt)

|R − R′|
+ 1

4π v2
t

∫
dR′ f(R′, t − |R − R′|/vt)

|R − R′| . (9)

Indeed, making use of the Fourier transform given by Eq. (2) and
using also the well-known integral∫

dR
1

R
eiKR+iωR/vt = − 4π v2

t

ω2 − v2
t K 2

(10)

we get easily the solution given by Eqs. (3) and (4). We apply
here this method of Kirchhoff potential, inspired from the the-
ory of electromagnetism [24], to the elastic waves generated in a
semi-infinite body by forces localized either on the body surface
or beneath it.

2. Force localized on the surface

We consider a semi-infinite isotropic elastic body extending
over the region z > 0 and assume a localized force

f(R, t) = a
∑

k

∫
dω f(k,ω)eikr−iωtδ(z) (11)

acting on the body plane surface z = 0, where a is a characteristic
length, R = (r, z) and k is the in-plane wavevector. This is a gener-
alization of one of Lamb’s problems [14]. The generalization con-
sists in assuming a general distribution of the force acting on the
surface and a general orientation of the force. The length a, much
smaller than the relevant distances and wavelengths, is introduced
on the one hand for reasons of dimensionality and, on the other,
in order to have a representation for the thickness of the surface.
Eq. (11) is the standard form for a Fourier transform of a function
(force) of position R = (r, z) and time t with respect to the in-
plane position r and time t . The dependence of the z-coordinate is
maintained in the form of a Dirac delta function δ(z) (an “impulse”
force). In this respect the “function” defined by Eq. (11) is in fact
a distribution. It is “local”, in the sense that along the z-coordinate
the force is localized over a small distance a, where it has the
value 1/a, and is zero outside that region.

We represent the displacement field as

u = (v, u3)θ(z), (12)

where v is the in-plane component (parallel to the surface),
u3 is the transverse component (perpendicular to the surface) and
θ(z) = 0 for z < 0, θ(z) = 1 for z > 0 is the step function. The di-
vergence occurring in Eq. (9) can then be written as

div u =
(

div v + ∂u3

∂z

)
θ(z) + u3(0)δ(z), (13)

where we can see the occurrence of specific surface contributions
associated with u3(0) = u3(z = 0). We use a Fourier transform of
the form

v(r, z; t) =
∑

k

∫
dω v(k,ω; z)eikr−iωt, (14)
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and a similar one for u3(r, z; t). Usually, we leave aside the argu-
ments k, ω, while preserving explicitly the z-dependence of the
functions v(k,ω; z) and u3(k,ω; z). We compute grad · div u ac-
cording to Eqs. (13) and (14) and introduce it, together with the
force given by Eq. (11), in Eq. (9). The intervening integrals reduce
to the known integral [25]

∞∫
|z|

dx J0
(
k
√

x2 − z2
)
eiωx/vt = i

κ
eiκ |z|, (15)

where

κ =
√

ω2

v2
t

− k2. (16)

In addition, we introduce the convenient notations v1 = vk/k,
v2 = vk⊥/k and similar ones for f1,2, where k⊥ is a vector perpen-
dicular to k, kk⊥ = 0, and of the same magnitude k. Then, Eq. (9)
reduces to

v2 = iaf2

2v2
t κ

eiκz (17)

and to a set of two coupled integral equations which read

v1 = − iqk2

2κ

∫
0

dz′ v1
(
z′)eiκ |z−z′| − qk

2κ

∂

∂z

∫
0

dz′ u3
(
z′)eiκ |z−z′|

+ iaf1

2v2
t κ

eiκz (18)

and

u3 = − qk

2κ

∂

∂z

∫
0

dz′ v1
(
z′)eiκ |z−z′| + iq

2κ

∂2

∂z2

∫
0

dz′ u3
(
z′)eiκ |z−z′|

+ iaf3

2v2
t κ

eiκz. (19)

In deriving these equations it is worth noting the non-invertibility
of the derivatives and the integrals, according to the identity

∂

∂z

∫
0

dz′ f
(
z′) ∂

∂z′ eiκ |z−z′| = κ2
∫
0

dz′ f
(
z′)eiκ |z−z′| − 2iκ f (z)

(20)

for any function f (z), z > 0; it is due to the discontinuity in the
derivative of the function eiκ |z−z′| for z = z′ . From Eqs. (18) and
(19) we get easily

u3 = − i

k

∂v1

∂z
− ia(κ f1 − kf3)

2v2
t κk

eiκz. (21)

Eq. (17) gives the transverse wave v2 (for κ real) propagat-
ing with the velocity vt , according to Eq. (16). Its polarization is
normal to the plane of propagation (the plane determined by the
vectors k and κ ). This wave is usually known as the s-wave in the
theory of electromagnetism (from the German word “senkrecht”
which means “perpendicular”). From Eq. (16) we can see that the
s-wave becomes singular for κ = 0, i.e. for in-plane propagation, as
expected for waves generated by such localized forces.

We pass now to the system of coupled equations (18) and
(19), and the relationship given by Eq. (21). We introduce u3 from
Eq. (21) into Eq. (18) and get

(1 + q)v1 = − iqω2

2v2
t κ

∫
0

dz′ v1
(
z′)eiκ |z−z′|

+ iaq

4v2
t κ

2
(κ f1 − kf3)

∂

∂z

∫
0

dz′ eiκz′
eiκ |z−z′|

+ 1

2

[
iaf1

v2
t κ

+ qv1(0)

]
eiκz. (22)

This equation can easily be solved by taking the second derivative
with respect to z and using the non-invertibility equation (20). We
get

∂2 v1

∂z2
+ κ ′2 v1 = − iaq

2v2
t (1 + q)

(κ f1 − kf3)eiκz, (23)

where

κ ′ =
√

ω2

v2
l

− k2. (24)

For a longitudinal force κ f1 −kf3 = 0 we obtain from Eq. (23) lon-
gitudinal waves propagating with wavevector κ ′ (for κ ′ real) and
with the velocity vl . For a general force, Eq. (23) has the particular
solution

v1 = ia

2ω2
(κ f1 − kf3)eiκz (25)

and

u3 = − iak

2ω2κ
(κ f1 − kf3)eiκz. (26)

We can see that v1 and u3 given above correspond to a trans-
verse wave, kv1 + κu3 = 0, whose polarization lies in the plane of
propagation. This is called the p-wave, where p stands for “par-
allel”. We can see also that v1 is a continuous function, while u3
may exhibit the same singularity as v2 does for κ = 0.

Since we are mainly interested in the effects produced by a
localized force acting on the surface we restrict ourselves to the
particular solution to the displacement as given here by Eqs. (17),
(25) and (26) (“forced waves”). For a point-like force acting on the
surface for instance this particular solution gives the force exerted
on the surface, which is compensated by the force brought about
by the solution of the homogeneous equation (“free waves”), such
as to get a vanishing total force, in accordance with the “free sur-
face” condition, as incorporated in Eq. (1).

3. Surface displacement

The displacement of the surface z = 0 can be computed by us-
ing the inverse Fourier transforms of v1,2(K) and u3(K) given by
Eqs. (17), (25) and (26), where K = (k, κ). As usually, we leave
aside for the moment the argument ω in these expressions. It is

worth noting that κ =
√

ω2/v2
t − k2 is not an independent vari-

able. First, we consider a δ-type force localized on the surface,
f(R) = ab2fδ(r)δ(z), where g is a constant vector and b is a char-
acteristic localization length on the surface. This is one of Lamb’s
problems [14], with the difference that the force has here a gen-
eral orientation. The Fourier components f(K) = ab2f of this force
do not depend on K (but they may have an ω-dependence). We
choose an in-plane reference frame with one axis oriented along
the in-plane radius r (radial axis r) and another perpendicular
to the former (tangential axis t). We denote by α the angle be-
tween the force vector f and radius r. Then, the force vector can be
written as f = ( f cosα, f sinα, f v), where f denotes the in-plane
(horizontal) force and f v denotes the vertical force. Similarly, we
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denote by ϕ the angle between the in-plane wavevector k and
radius r, such that k = k(cosϕ, sinϕ) and k⊥ = k(− sinϕ, cosϕ).
Then, the force projections f1,2,3 entering Eqs. (17), (25) and (26)
can be written as

f1 = b2 f cos(α − ϕ), f2 = b2 f sin(α − ϕ),

f3 = b2 f v . (27)

It is worth noting that on changing k → −k, i.e. ϕ → π + ϕ , the
quantities f1,2 change sign, as they should do; similarly, f3, be-
ing the projection of the force along the wavevector component κ ,
must change sign under the reversal of the direction of this com-
ponent, κ → −κ . Making use of the above notations and of v(K) =
v1k/k + v2k⊥/k we can obtain immediately the radial and tangen-
tial components of the displacement, vr(K) and vt(K), respectively.
However, it is worth noting that for a real displacement the Fourier
transforms must satisfy the symmetry relationship v∗(−K) = v(K),
and, similarly, u∗

3(−K) = u3(K). The displacement, as function of
position and time, should be a real-valued function. If we look at
the Fourier transform given by Eq. (14), and solutions given by
Eqs. (17), (25) and (26), and take therein the complex conjugation,
we can see that we get a real-valued function only by reversing
the sign of the wavevector K and of frequency ω. This leads to the
symmetry property discussed here. Taking into account the change
of sign of the force components f1,2,3 under this operation, we
can see that the quantities κ and k in Eqs. (17), (25) and (26)
must bear the factor sgn(π − ϕ). We can write down the Fourier
components of the displacement as

vr(k) =
[

iab2

2ω2
κ f cos(α − ϕ) cosϕ

− iab2 f

2v2
t κ

sin(α − ϕ) sinϕ

]
sgn(π − ϕ)

− iab2

2ω2
kf v cosϕ,

vt(k) =
[

iab2

2ω2
κ f cos(α − ϕ) sinϕ

+ iab2 f

2v2
t κ

sin(α − ϕ) cosϕ

]
sgn(π − ϕ)

− iab2

2ω2
kf v sinϕ,

u3(k) = − iab2

2ω2
kf cos(α − ϕ) + iab2k2

2ω2κ
f v sgn(π − ϕ) (28)

(for z = 0). Now we can take the inverse Fourier transforms of
these quantities. It is easy to see that the integrals over angle ϕ
which contain factors sin2 ϕ and cos2 ϕ are vanishing. For the ra-
dial component we are left with

vr(r) = − iab2 f

2(2π)2ω2
sinα

ω/vt∫
0

dk
k3

κ

2π∫
0

dϕ sgn(π − ϕ)

× sinϕ cosϕeikr cosϕ

− iab2 f v

2(2π)2ω2

ω/vt∫
0

dk k2

2π∫
0

dϕ cosϕeikr cosϕ. (29)

The integrals in Eq. (29) can be performed straightforwardly, by
making use of the properties of the Bessel functions [25,26]. We
get

vr(r) = − ab2

4π v2
t r

( f sinα + f v)

[
J0

(
ωr

vt

)
− 2vt

ωr
J1

(
ωr

vt

)]
, (30)

where J0,1 are Bessel functions of the first kind and zeroth and,
respectively, first order. In the limit ωr/vt � 1 we get

vr(r) ∼ωr/vt�1 − ab2

ω1/2
( f sinα + f v)

1

(2π vtr)3/2
cos

(
ωr

vt
− π

4

)
.

(31)

We can see that the radial component of the surface displace-
ment attains its maximum value along a direction perpendicular to
the direction of the force (α = π/2), as expected for a transverse
wave generated by such a localized force. It has a characteristic os-
cillatory behaviour with the in-plane distance and goes like r−3/2

for long distances. The temporal Fourier transform of the spectrum
given by Eq. (31) for f and f v independent of ω (related to Fres-
nel integrals) exhibits a characteristic oscillatory wave front of the
form ∼ (r − vtt)−1/2, as expected. Such qualitative characteristics
of the solution to this problem are similar with those indicated
long time ago by Lamb [14] (see also Ref. [12]).

Similar calculations can be done for the tangential component
vt(r) and the vertical component u3(r). The result for vt(r) can be
obtained from Eqs. (30) and (31) by putting formally f v = 0 and
replacing sinα by cosα. The vertical component can be obtained
from Eqs. (30) and (31) by replacing sinα by 1 and putting f v = 0.

Next, we consider an in-plane localized pressure pb2δ(r). The
Fourier components of the force are given by f1 = (−ib2 p/ρ)k,
f2 = f3 = 0 and the Fourier components of the displacement are

v1(k) = ab2 p

2ρω2
κk(cosϕ, sinϕ) sgn(π − ϕ),

u3(k) = − ab2 p

2ρω2
k2. (32)

The inverse Fourier transforms of these displacements give vr(r) =
0 and

vt(r) = ab2 pω

16πρv3
t r

[
J1

(
ωr

vt

)
+ J3

(
ωr

vt

)]
,

u3(r) = − ab2 pω

4πρv3
t r

[
J1

(
ωr

vt

)
− 2vt

ωr
J2

(
ωr

vt

)]
. (33)

The leading term (∼ r−3/2) in vt is vanishing in the limit
ωr/vt � 1, while u3 behaves like

u3(r) ∼ωr/vt�1 −ab2 p

ρvt

ω1/2

(2π vrr)3/2
cos

(
ωr

vt
− 3π

4

)
. (34)

The vertical component of the surface displacement has a wave
front of the form ∼ (r − vtt)−3/2.

Additional surface displacements (including the longitudinal
one) occur from the contribution of the “free waves”. They do not
change the asymptotic r-dependence, but introduce an additional
directional character.

4. Force localized beneath the surface

We consider a force

f(R, t) = a3f(t)δ(R − R0) (35)

localized at depth d beneath the plane surface z = 0 of a semi-
infinite elastic body extending to the region z < 0, such as R0 =
(0,0,−d). The characteristic length a is much smaller than the rel-
evant distances. The propagating spherical waves produced by this
point-like force in an infinite body are well known [17]. We derive
here the waves produced by such a source in a semi-infinite body.
We use again a displacement field
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u = (v, u3)θ(−z), (36)

Fourier transforms of the form given by Eq. (14) and the reference
frame defined by the in-plane vectors k, k⊥ such that v1 = vk/k,
v2 = vk⊥/k, and similarly for f. The force term in Eq. (9), which
we denote by F, can easily be evaluated. Its Fourier transform is
given by

F = − a3f

2v2
t κ

sinκ |z + d|, (37)

where κ2 = ω2/v2
t − k2 > 0 (we limit ourselves to the propagating

waves). From Eq. (9) we get straightforwardly

v2 = F2 = − a3 f2

2v2
t κ

sinκ |z + d| (38)

and the set of coupled integral equations

v1 = − iqk2

2κ

0∫
dz′ v1

(
z′)eiκ |z−z′|

− qk

2κ

∂

∂z

0∫
dz′ u3

(
z′)eiκ |z−z′| + F1,

u3 = − qk

2κ

∂

∂z

0∫
dz′ v1

(
z′)eiκ |z−z′|

+ iq

2κ

∂2

∂z2

0∫
dz′ u3

(
z′)eiκ |z−z′| + F3. (39)

These equations imply the relationship

u3 = − i

k

∂v1

∂z
− i

k

∂ F1

∂z
− F3. (40)

Introducing u3 from this equation into the first equation (39)
and performing the integrations by parts, we get a single integral
equation

(1 + q)v1 = − iqω2

2v2
t κ

0∫
dz′ v1

(
z′)eiκ |z−z′| + q

2
v1(0)e−iκz

+ (1 − q)F1 − iqκ

2

0∫
dz′ F1

(
z′)eiκ |z−z′|

+ q

2
F1(0)e−iκz + qk

2κ

∂

∂z

0∫
dz′ F3

(
z′)eiκ |z−z′|. (41)

Taking the second derivative with respect to z in this equation we
find

∂2 v1

∂z2
+ κ ′2 v1 = q

1 + q

(
κ2 F1 + ik

∂ F3

∂z

)
, (42)

where κ ′ 2 = ω2/v2
l − k2. Now, it is easy to get the solution for v1.

It is given by

v1 = a3

2ω2

[
κ f1 sinκ |z + d| + ikf3 sgn(z + d) cosκ(z + d)

]
(43)

and, by Eqs. (37) and (40),

u3 = a3k

2ω2κ

[
kf3 sinκ |z + d| + iκ f1 sgn(z + d) cosκ(z + d)

]
. (44)

We can see that all these solutions v1,2, u3 are stationary waves
along the direction perpendicular to the surface, as generated by
the stationary oscillating force given by Eq. (37). In addition, they

are continuous functions for κ → 0, though v2 and u3 may in-
crease indefinitely, v2(κ → 0), u3(κ → 0) ∼ |z + d|; this increase
indicates the transition to the damped regime. It is also worth not-
ing the discontinuity at z = −d.

5. Surface displacement caused by a force localized beneath
the surface

We take the inverse in-plane spatial Fourier transforms of
Eqs. (38), (43) and (44) for z = 0, using the same frame oriented
along the radial, tangential and vertical directions. In this refer-
ence frame the force is given by ( f cosα, f sinα, f3) and the in-
plane wavevector is k(cosϕ, sinϕ). The in-plane displacement in
this reference frame is obtained by v = v1k/k + v2k⊥/k, where
k⊥ = k(− sinϕ, cosϕ). The integrals with respect to angle ϕ in the
Fourier transforms imply the Bessel functions J0,1. The surface dis-
placement can be written as

vr(r) = a3 f

4πω2

(
I1 − 1

r
I2

)
cosα − a3 f

4π v2
t r

I3 cosα − a3 f3

4πω2
I4,

vt(r) = a3 f

4πω2r
I2 sinα − a3 f

4π v2
t

(
I5 − 1

r
I3

)
sinα,

u3(r) = a3 f3

4πω2
I6 − a3 f

4πω2
I4 cosα, (45)

where

I1 =
ω/vt∫
0

dk κk sinκd · J0(kr), I2 =
ω/vt∫
0

dk κ sinκd · J1(kr),

I3 =
ω/vt∫
0

dk
1

κ
sinκd · J1(kr), I4 =

ω/vt∫
0

dk k2 cosκd · J1(kr),

I5 =
ω/vt∫
0

dk
k

κ
sinκd · J0(kr), I6 =

ω/vt∫
0

dk
k3

κ
sinκd · J0(kr).

(46)

We estimate these integrals in the fast oscillating limit ωr/vt ,

ωd/vt � 1. In this case, the main contribution comes from k ∼ 0
and extends over a range �k ∼ 1/r for r � d or �k ∼ 1/d for
d � r. The leading contributions for r � d are given by

vr(r) ∼ a3 f

ωvtr2
cosα, vt(r) ∼ a3 f

ωvtr2
sinα,

u3(r) ∼ a3 f

ω2r3
cosα, (47)

where oscillating factors of the form sinωd/vt , cosωd/vt are left
aside. We can see the directional character of the surface displace-
ment (through angle α) and the vertical component (u3) which is
much smaller (by a factor ωr/vt ) than the horizontal components.
It is also worth noting that the leading contribution to the verti-
cal displacement is caused by the in-plane force f , and, in general,
the vertical component of the force brings a smaller contribution.

Let us assume now a force derived from a localized pressure p.
The force components are then given by f1 = ipk/ρ , f2 = 0 and
f3 = (−ipκ/ρ)eiκd . In computing the Fourier transforms of the
surface displacement we must take care now of the symmetry re-
lations v∗(−K) = v(K) and u∗

3(−K) = u3(K). We get

vr(r) = a3 p

4πω2ρ

ω/vt∫
0

dk κk2 sinκd(1 − cosκd) J1(kr),
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vt(r) = a3 p

2π2ω2ρr

ω/vt∫
0

dk κk cos2 κd sin(kr),

u3(r) = a3 p

4πω2ρ

ω/vt∫
0

dk k3(sin2 κd + cosκd
)

J0(kr). (48)

In the same limit ωd/vt , ωr/vt , r/d � 1 the leading contributions
to the above displacements are given by

vr(r), vt(r) ∼ a3 p

ωvtρr3
, u3(r) ∼ a3 p

ω2ρr4
. (49)

We can see that the displacements produced by pressure fall off
faster with distance than the corresponding displacements caused
by a force (Eq. (47)).

6. Force exerted on the surface

We are interested now in the force exerted on the surface z = 0
by the elastic waves produced beneath the surface. As it is well
known, the force exerted by a displacement field u per unit area of
a surface with unit normal n is given (in our notations) by ρ f s

i =
σiknk , where σik = λullδik + 2μuik is the stress tensor and uik =
(1/2)(∂ui/∂xk + ∂uk/∂xi) is the strain tensor. Using the reference
frame defined by k, k⊥ and κ we get

f s
1(k,ω) = a3 v2

t κ

ω2
[κ f1 cosκd − ikf3 sinκd],

f s
2(k,ω) = −a3 f2 cosκd,

f s
3(k,ω) = a3 v2

t k

ω2
[kf3 cosκd − iκ f1 sinκd]. (50)

We note that the dilatation vanishes, v11 + v22 + u33 = 0 (this
property holds also for the force localized on the body surface).

We compute the inverse Fourier transforms of these forces with
respect to the wavevector k according to the procedure described
above for the surface displacements. The asymptotic expressions
(ωd/vt ,ωr/vt , r/d � 1) are given by

f s
r (r) ∼ a3 f

r2
cosα, f s

t (r) ∼ a3 f

r2
sinα,

f s
3(r) ∼ a3 f vt

ωr3
cosα; (51)

they are similar with the surface displacements given by Eq. (47),
except for an additional factor ω.

Similarly, we can compute the force exerted on the surface by
elastic waves produced by a point-like force localized on the sur-
face. The results are similar with the corresponding displacements.
For instance, the asymptotic expression for the radial component
of such a force is given by

f 2
r (r) ∼ωr/vt�1 − ab2

4πr
(ω/vtr)1/2 f cosα cos

(
ωr

vt
− 3π

4

)
, (52)

which is similar with Eq. (31). In the same manner, we can com-
pute the force exerted on the surface by a localized pressure.

7. Conclusions

In conclusion, we may say that we have introduced here a
new method of studying the propagation of the elastic waves
in isotropic bodies, based on the Kirchhoff potentials for wave
equation with sources, borrowed from the theory of electromag-
netism. The novelty consists in viewing the compression term in

the Navier–Stokes equation as a source term for the wave equa-
tion. The method implies coupled integral equations for the waves
amplitudes, which we have solved. Making use of this method we
have determined the waves produced in an elastic semi-infinite
body by an external force localized either on the body surface
or beneath the surface at some distance d. In the latter case the
waves are stationary along the direction perpendicular to the body
surface. We have also computed the surface displacements pro-
duced by these forces as well as the force exerted on the surface
as caused by a force localized beneath. We have estimated these
quantities in the fast oscillating regime (ωd/vt,ωr/vt � 1, where
ω denotes the frequency and vt is the velocity of the transverse
waves) and for in-plane distances r much longer than the depth d.
These quantities exhibit a characteristic decrease along the in-
plane distance on the body surface and a characteristic oscillatory
behaviour. We have limited ourselves to particular solutions pro-
duced by localized force-sources, as we were mainly interested
in the effects produced by such forces in a semi-infinite elastic
body. By making use of this method we have generalized one of
Lamb’s problem (force localized on the surface of the body) and
obtained new results for a point-like force localized beneath the
body surface. Various other results can be obtained by means of
this method, for various other geometries and force distributions.

The present approach can be extended to determine the waves
propagating in elastic bodies with special, finite geometry, either as
eigenmodes or caused by some external forces (both localized or
extended). More interesting, we can extend the present approach
to include the effect of various inhomogeneities placed in elastic
bodies, as caused by local variations in the body density or elastic
constants.

This latter point deserves a brief comment here. Indeed, sup-
pose for instance that a small irregularity δρ occurs in the density
ρ in Eq. (1). The corresponding term δρü can be transferred into
the rhs of Eq. (8) and can be treated as a “wave source”. It will
bring an additional contribution to the “potential” given by Eq. (9),
which allows one to compute the changes brought by this inho-
mogeneity both in the eigenmodes and the elastic response of the
body. Obviously, a similar treatment can be applied to inhomo-
geneities occurring in the elastic coefficients λ and μ, both on the
body surface or in the bulk. Some results in this direction will be
reported in a forthcoming publication.
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