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Abstract

The stability of the iron-hydrocarbon cluster Fe;3(C,H,), is studied within a metallic-bond-type theory. The the-
oretical model for the cluster structure indicates a centered Fe ;-icosahedron with C,H,-radicals arranged symmet-
rically on the icosahedron sides. © 2001 Elsevier Science B.V. All rights reserved.

Recently, an iron-hydrocarbon cluster Fei;
(C,H, )4 has been synthesized by CO, laser pyrolysis
of a gaseous mixture of iron pentacarbonyl and
ethylene in a flow reactor [1]. It seems to be a ‘magic’
cluster with respect to both the number of iron
atomsand C,H,-radicals. In view of the complexity
of such an organo-metallic cluster we adopt a sim-
plified model in order to test its stability and struc-
tural properties. Two hydrogen atoms are lost by
ethylene during the synthesis reaction (in principle,
either one from each carbon, giving thus rise to
acetylene, or both from the same carbon, as corre-
sponding to vinylidene), and the resulting C,H,
radical attaches itself to two iron atoms, like a clasp,
yielding Fe,(C,H,). Very likely, by energetic argu-
ments, the C,H,-radical is acetylenic, and the
Fe,(C,H,)-structure may be viewed as consisting of
two Fe(CH) radicals, denoted by R, which partic-
ipate in the metallic bond of the cluster. Therefore,
the cluster Fe 3(C,H,), may be thought as consist-
ing of 12 radicals R = Fe(CH) and one Fe ion. The
aim of this Letter is to investigate the stability and
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the structural properties of such a cluster model by
means of a recently introduced theory of metallic
bond [2-4]. The structural frame of the cluster is
shown to be a perfect icosahedron, with the Feion at
the centre, in agreement with the same magic
structure obtained for homo-atomic metallic clus-
ters [2-4]; the inter-atomic distances are estimated,
as well as the contribution of the metallic bond to
the binding energy, the vibration spectrum and the
distribution of the electron density.

The metallic binding of large clusters consisting
of heavy atoms (high atomic numbers Z) is treated
within the quasi-classical description, by a varia-
tional approach to the linearized Thomas—Fermi
model (see, for instance, [5] as well as [6]). Such an
approach is a version of the density-functional
theory [7,8], suitable for a slightly inhomogeneous
electron liquid moving in a background of point-
like cations of effective valence z;, where i is the
cation label. This effective valence charge may be
determined from the atomic screening by means of
the Thomas—Fermi theory for atoms; it is given [2-4]
by z* =z(1+ 0.842'/3)e 082" where z is the
nominal valence of the atom. For Fe (Z = 26,z = 2)
we obtain zj,, = 0.57, while for the Fe-ion in the
R-radical introduced above we get z} /2 = 0.28,
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since one of the two valence electrons of this Fe-ion
is taken in the FeCH bond; therefore, we assign this
effective valence zz = 0.28 to the R-radical, as
originating in the Fe-ion in the Fe(CH)-radical.
According to [2] the electron density 7 is related
to the self-consistent potential ¢ through n =
(¢*/4m) @, where ¢ is the Thomas-Fermi screening
wave vector. The energy is expressed in atomic units
e’ /ay = 27.2 eV, where —e is the electron charge,

ay = h*/me* = 0.53 A is the Bohr radius, 7 is
Planck’s constant and m is the electron mass. The
solution of Poisson’s equation is then

N
9= (z/F—rle (1)
i=1

1

1.e. a superposition of screened Coulomb poten-
tials, as expected; N denotes the total number of
atoms in the cluster and r; denote the ionic posi-
tions. The potential energy is given by
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where ¢, is the electron contribution to the self-
consistent potential, ¢;,, = > .z /[r — r;] is the io-
nic contribution to the self-consistent potential,
and ¢ = ¢, + ¢;,,. Noteworthy, the Coulomb re-
pulsion between the ionic cores is included in the
potential energy above (last term in (2)). Making
use of the self-consistent potential ¢ given by (1)
the calculations in (2) are straightforward; they
involve standard two-centre integrals, which may
be performed by means of the usual prolate—
ellipsoidal coordinates [9]. Doing so, one obtains
the potential energy

Epot = — l3Zz*2+ Z

i#j=1

1—2/q\r,

— rj)eqlrfr/] . (3)

The geometric form of the cluster is obtained by
minimizing this potential energy with respect to
the dimensionless parameters x; = gr;. The posi-
tion coordinates r; in (3) correspond to one Fe-ion
and to the 12 Fe-ions in the R-radicals; they rep-
resent the coordinates of those points where the
charges participating in the metallic bond are lo-
calized. By minimizing the potential energy given
by (3) we obtain for our cluster a perfect, in-
scriptible icosahedron with one Fe at the center
and 12 R-radicals at the vertices, whose faces are
all equal equilateral triangles; the side length is
xr_r = 2.63, and the radius of the circumscribed
sphere is xg. g = 2.50. The minimization of the
potential energy given by (3) with respect to the
position parameters X; is carried out by the usual
gradient method. One Fe-ion with effective charge
zg. = 0.57 and 12 R-ions with effective charge
zx = 0.28 are randomly distributed in space, and
their positions are allowed to move in successive
steps along the forces computed from (3). The
potential energy given by (3) indicates effective
inter-atomic potentials

.. oy
¢[j = —EquZj(l — Z/qu'j)e 4‘17 (4)

where 7;; = [r; —r;|. The equilibrium is reached,
and the minimization process stops, for forces less
than 10~* eV/A. The equilibrium means either the
ground-state or isomers, and the stability of the
geometric forms obtained by this way is further
tested by computing the vibration spectra. This
method has been applied to a large variety of
homo-atomic metallic clusters (N < 80), and geo-
metric magic forms and magic numbers have
thereby been identified [2-4]. In particular, the
centered icosahedron of 13 atoms has been ob-
tained as an outstanding magic homo-atomic
cluster, characterized by both a high stability and a
high symmetry.

Beside the position parameters x; (or r; = X;/q),
the theory contains another variational parameter,
which is the Thomas—Fermi screening wave vector
q. This parameter is derived from the minimum
value of the quasi-classical energy Eq = Eyin + Epot,
where the kinetic energy is given by Ey, =
(2772 /640)g* SV 1.7 and Ep is given by (3). One
obtains ¢ = 1.01 A  for the icosahedral ground-
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state determined above for our cluster; it follows
that the inter-atomic distances are rrr =
xrr/q=2.60 A for the side length, and
rreR = Xrer/q = 2.47 A for the icosahedron ra-
dius. The total energy E = E, + E is obtained by
adding the exchange contribution E, = —(9/32)
q* Zf’: , Z; to the quasi-classical energy. It is shown
in [2] that the total energy E obtained in this way
coincides in fact with the cluster binding energy
within the quasi-classical description. The quasi-
classical description of the metallic cohesion has
been tested on various homo-atomic clusters [2-4].
One gets, for instance, [2-4] a perfect, centered i-
cosahedron for the cluster Feys, with quite a stable
ground-state of energy £ = —68.9 ¢V and a radial
inter-atomic distance » ~ 2 A, in agreement with
other calculations, based on density-functional
approaches (see, for instance, [10]). In addition,
N = 13 is an outstanding geometric magic number
in the sequence [2-4] N =6,11,13,15,19,23,26,
29,34,45,53,57,61 of homo-atomic metallic clus-
ters. It is also shown in [2] that, within the quasi-
classical description and for point-like ionic cores,
these magic numbers do not depend on the effective
valence z* (in a physically reasonable range like, for
instance, 0 < z* < 3), or the atomic species.

The above theory has been applied to the R ,Fe
cluster, according to the discussion made above,
and the results are assigned to the iron-hydro-
carbon cluster Fe;3(C,H,),. By minimizing the
potential energy given by (3) one obtains the per-
fect, centered icosahedron shown in Fig. 1, where
the C,H, radicals are located on the icosahedron
sides in a highly symmetric manner; the symmetry
of the C,H,-radicals distribution and the magic
number 13 suggests that the corresponding
Fe3(C;H,), cluster may itself be a magic cluster
with respect to the variation of both the Fe- and
the C,H,-content, in agreement with the experi-
mental mass-spectrum [1]. The structure shown in
Fig. 1 coincides with the structure proposed in [1]
as being the most probable structure, according to
its high symmetry (symmetry group T}); however,
a distinct structure shown in Fig. 2, of lower
symmetry, may also be accepted as a possible
structure, within the present calculations. The
difference in energy between the two structures
arises solely from the interaction between the C;H,
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Fig. 1. Fe;3(C,H,), with Feys in the icosahedron vertices and
(CH,)4 on sides (symmetry group Tp).
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Fig. 2. Another possible structure of Fe;;(C,H,), of lower
symmetry; compare with Fig. 1.
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radicals, and in order to minimize the energy these
radicals must be arranged in the highest symmetric
form given in Fig. 1. Indeed, the six C,H, radicals
in Fig. 1 form a perfect octahedron, which is an-
other magic structure obtained for homo-atomic
metallic clusters within this theory [2-4]. Conse-
quently, with respect to the distribution of the
C,H,; radicals, one may consider this structure as
being the most probable structure for the ground-
state of the cluster Fe;3(C,H,),, while the structure
shown in Fig. 2 is an isomer. In both cases, the
radial inter-atomic distance of the Fej3(CoHy)g i-
cosahedron is 2.47 A, and the ‘binding energy’ is
~—19.92 eV; noteworthy, this is only the metallic
contribution to the total binding energy of the
cluster, and the binding energy involved by the
reaction 2 Fe + C,H, — Fey(C,H,) must be ad-
ded (as well as the dissociation energy implied by
forming up the (C,H,)-radical); however, the
evaluation of the latter is beyond the range of
applicability of the present model. It is also note-
worthy that the above results do not change
qualitatively for reasonable changes in the effective
valence charges zj,, and z.

The vibration spectrum of the R, Fe cluster can
be estimated by assuming a Fe(CH) mass for the
R radical; this is a qualitative approximation to
the low- and middle-frequency range of the spec-
trum of the Fe;3(C,H,),. The vibration spectrum
obtained this way is given in Fig. 3, and one can
see indeed that it agrees qualitatively with other
density-functional calculations of the vibration
spectra for Fe-based icosahedra [11]. Beside pro-
viding an additional test to the stability of the i-
cosahedral structure obtained herein, the
agreement of the vibration spectrum given in
Fig. 3 with the vibration spectrum obtained in [11]
may be viewed as another indication for the con-
sistency of the present theoretical model.

In a more general treatment the quasi-classical
description of the slightly inhomogeneous elec-
tron liquid may be employed for getting the
equilibrium form, the inter-atomic distances, the
binding energy, and other physical and chemical
properties, including the quantum properties of
the single-particle electron states, of a cluster
consisting of 13 Fe atoms, 12 C atoms and 12 H
atoms. However, in contrast to the R,Fe-metallic
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Fig. 3. Vibration spectrum for Fe;;(C,H,), as estimated from
the present theory.

model employed here, the calculations imply non-
central potentials, as derived from the directional
character of the atomic-like orbitals of the C-at-
oms. Instead of an effective point-like charge
there appears several effective charge parameters
in such a case, and the atomic-screening theory is
not appropriate anymore for estimating them. A
more general discussion of the theory of the
slightly inhomogeneous electron liquid and its
relevance for the chemical bond is given in
[12,13].

Finally, one may note that similar calculations
can be carried out for other inclusions in (or ad-
ditions to) metallic clusters, like, for instance,
hydrogenated- or oxygenated-iron clusters [11,14].
In addition, the single-clectron quantum states can
be obtained by solving the Schrodinger equation
for the self-consistent potential ¢ given by (1).
Quantum corrections can thus be calculated to the
quasi-classical description, as arising from the
short-scale length variations of the self-consistent
potential and the electron density. An overall es-
timate of these corrections indicates a 17%-con-
tribution to the relevant quantities [2-4,12,13].
Subsequent iterations required for ensuring the
self-consistency have to be checked against the
effects of the finite lifetime of the single-electron
states, in order to ensure the relevancy of the cal-
culations. For large, highly symmetric clusters, or
for statistical ensembles of cluster isomers, where
the long-wavelength behavior is dominant, the
well-known (quadrupole-) deformed potential [15]
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Fig. 4. Electron-density in Fe;3(C,H,), at various z-distances
with respect to the middle plane.

can be derived from (1), as the first relevant ap-
proximation; as usually, it may serve to deter-
mining the ‘electronic’ magic numbers of such
clusters. The lowest-energy electronic-excitation
spectrum, including the cluster chemical potential,
as well as various cluster response functions related
to the electronic properties, are left for a forth-
coming investigation. We limit ourselves to note
here that, by making use of the self-consistent
potential ¢ given by (1), the electron density
n = (q*/4n)e is plotted in Fig. 4 at various dis-
tances from the middle plane in the Fe;3(C,H,),
cluster. One can see in Fig. 4 the accumulation of
the electron density on Fe-ions, as well as its slow
spatial variation over the inter-ionic regions, in
agreement with the quasi-classical prescriptions of
the present theoretical approach.

In conclusion, beside its relevant results, it is
also worth noting the limitations of the present
model. First, the extension of the theory to include
the directional character of the atomic-like orbitals
of the C-atoms would allow the treatment of the
cohesion and the structural properties of the
Fe,(C,H,)-ligands. Noteworthy, the point-like
model employed here for the charges of the ionic
cores needs also to be extended, such as to include
the spatial dependence of the charge distribution
of these ionic cores. Secondly, the quantum cor-
rections must also be included, as discussed above;
though such corrections affect only to a relatively
little extent the main qualitative features derived
here, they will serve to getting a complete overall
picture of atomic clusters of such complexity.
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