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Abstract. The ”empirical” binding energy −16Z7/3eV of heavy atoms (atomic
number Z � 1) is computed by a linearized version of the Thomas-Fermi model, in-
cluding a Hartree-type correction. The computations are carried out by means of a
variational approach. Exchange energy and corrections to the exchange energy are also
estimated. This is an updated result. It is shown that giant dipole oscillations of the elec-
trons may be induced in heavy atoms by external electromagnetic fields in the range of
moderate X-rays, which, in intense fields, may lead to ionization. There are examined
anharmonicities in the giant dipole oscillations, which lead to frequency shifts and high-
order harmonics. Transitions to excited states and ionization of "peripheral" electrons
are also investigated in the quasi-classical approximation for heavy atoms.

Key words: heavy atoms, Thomas-Fermi theory, giant dipole resonance, ioniza-
tion.

1. INTRODUCTION. THOMAS-FERMI MODEL

The Thomas-Fermi model is based on the quasi-classical description and the
statistical character of the electron single-particle states in heavy atoms, i.e. in atoms
with large atomic numbers Z (Z � 1).[1]-[4] The electrons are assumed to form
an inhomogeneous, dense gas of fermions, slightly perturbed by the nuclear charge
Ze, where −e is the electron charge. The singular character of the nuclear Coulomb
potential Ze/r at the origin is compensated by its relatively small range around the
origin, which is left by the electron screening; this particularity justifies the pertur-
bation character of the Coulomb potential.
Usually, the Fermi wavevector kF is determined by a self-consistent field potential
ϕ, according to

~2k2F /2m−eϕ= 0 , kF = (2me/~2)1/2ϕ1/2 , (1)

where ~ is Planck’s constant and m is the electron mass. Equation (1) expresses the
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energy conservation, with zero total energy for neutral atoms. The electric potential
ϕ is determined by Poisson’s equation

∆ϕ=−4πZeδ(r) + 4πne , (2)

where the electron density is given by n = k3F /3π
2 = (1/3π2)(2me/~2)3/2ϕ3/2, as

for a Fermi gas; equation (2) becomes “the 3/2”-equation, which is solved numeri-
cally with the boundary condition ϕr→ 0 for r→∞ (and ϕ= Ze/r for r→ 0).[5]
The atomic binding energy, as computed by means of this theory,[4, 6, 7] is given by
E '−20.8Z7/3eV, which is the exact result in the limit Z→∞.[8] This means that
convincing arguments have been presented [8] that the Schrodinger equation for Z
electrons in the coulombian field of the neutralizing atomic nucleus gives the ground-
state energy E '−20.8Z7/3eV in the limit Z→∞. Corrections have been brought
to this result, the binding energy being represented as an asymptotic series in powers
of Z−1/3; this series includes, beside the leading term −20.8Z7/3eV, the so-called
“boundary correction” 13.6Z2eV,[9, 10] the exchange contribution−5.98Z5/3eV (or
−7.3Z5/3eV),[11] etc; in addition, the relativistic effects must also be considered for
large Z.
In principle, such an asymptotic series should reproduce satisfactorily the experimen-
tal atomic binding energies; this would be an illustration of the “unreasonable utility
of asymptotic estimates”.[12] In fact, the empirical binding energy of heavy atoms
is well represented by E ' −16Z7/3eV (see, for instance Ref. [9] and references
quoted therein), which differs appreciably from the leading term of the asymptotic
series.
In order to improve the results various computations have been worked out, in-
cluding higher-order corrections to the quasi-classical approximation, self-consistent
Hartree, or Hartree-Fock equations, as well as density-functional models.[13]-[15]
At the same time, the Thomas-Fermi model revealed another drawback: it does not
bind atoms in molecules.[16, 17]
We present here a different approach to the problem, which provides a more direct
access to the E ' −16Z7/3eV-representation of the ”empirical” binding energies
of the atoms, and may throw additional light upon the nature of the Thomas-Fermi
model and the quasi-classical description. The method employed here is a variational
treatment of a linearized version of the Thomas-Fermi model, as based on the quasi-
classical description. In particular, it binds atoms in large clusters.

2. LINEARIZED THOMAS-FERMI MODEL [18]

According to the prescriptions of the quasi-classical approximation, equation
(1) is valid as long as the potential ϕ varies slowly in space; consequently, the Fermi
wavevector kF has also a slow spatial variation, so one may linearize equation (1) by
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3 Giant dipole oscillations and ionization of heavy atoms 839

substituting 2kFkF for k2F , where kF is viewed as a variational parameter, assumed
to be constant in space, the whole spatial dependence being transferred upon the new
variable kF ; this substitution is justified for those spatial regions where kF and kF are
comparable in magnitude, and one can see easily that this is so for a moderate range
of intermediate distances; it is precisely this range over which the most part of the
electrons are localized in heavy atoms, so that one may expect to get a reasonable de-
scription by employing this linearization procedure. Alternatively, we may consider
the interaction as a small perturbation and write equation (1) as ~2

mkF δkF −eδϕ= 0 ;
here we replace kF by kF , δkF by kF and δϕ by ϕ. As remarked before, it is worth
noting that although the Coulomb potential is singular at the origin, it extends over a
small region around the origin, due to the screening, which makes its effects suitable
to be treated as a small perturbation. On the other side, the original dependence of
the electron density on the 3/2-power of the potential ϕ, n∼ ϕ3/2 ∼ 1/r3/2, overes-
timates the density in the zone of the abrupt variation of the potential ϕ, i.e. near the
nucleus, where the potential goes like ϕ ∼ Ze/r, in comparison with the linearized
version n∼ ϕ∼ 1/r, which is contrary to the requirements of the quasi-classical ap-
proximation. We get kF = (me/~2kF )ϕ for the linearized version of equation (1). A
similar linearization for the electron density n = k3F /3π

2→ n = k
2
FkF /π

2 leads to
n= (mekF /π

2~2)ϕ= (q2/4πe)ϕ, where the Thomas-Fermi screening wavevector q
has been introduced through q2 = 4me2kF /π~2 = 4kF /πaH (here aH = ~2/me2 '
0.53Å is the Bohr radius). Now, Poisson’s equation (2) has the well-known solution
ϕ = (Ze/r)e−qr, i.e. the screened Coulomb potential, as expected. One can see
that this potential falls abruptly to zero at large distance, where the quasi-classical
description does not apply (as the wavelengths increase indefinitely there), varies
slowly over intermediate distances, as expected, and has an abrupt variation over
short distances, i.e. near the atomic nucleus; in the small region around the nucleus
the computations will be corrected, as required by the quantum behaviour of the elec-
trons in this region. For the moment, however, we proceed further on, by computing
the total energy.
By using the same linearization procedure the kinetic energyEkin = V ~2k5F /10π2m
of the electron gas enclosed in a volume V is replaced by

Ekin = (~2k4F /2π2m)

∫
dr ·kF =

πea3H
128

q6
∫
dr ·ϕ , (3)

which yields Ekin = π2a3HZe
2q4/32. The potential energy is given by

Epot =
∫
dr(ρeϕ− 1

2ρeϕe) = 1
2

∫
dr(ρeϕ+ρeϕc) =

=− e
2

∫
drn(ϕ+ϕc) =− q2

8π

∫
dr(ϕ2 +ϕϕc) ,

(4)

where ρe = −en is the density of the electronic charge, ϕe = ϕ−ϕc is the electric
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potential produced by the electrons, and ϕc = Ze/r is the Coulomb potential of
the atomic nucleus. The computations are straightforward, and one obtains Epot =
−3Z2e2q/4. Therefore, the total energy reads

E = Ekin+Epot =
π2a3H

32
Ze2q4− 3

4
Z2e2q , (5)

which reaches the minimum value

E =−9 ·61/3

16π2/3
Z7/3 e

2

aH
=−0.42Z7/3 e

2

aH
=−11.4Z7/3eV (6)

for the optimal value

q = (6/π2)1/3
Z1/3

aH
= 0.85

Z1/3

aH
(7)

of the variational parameter q; we note the occurrence of the atomic unit for energy
e2/aH ' 27.2eV (another useful formula isE =−(9/16)Z2e2q, where q is given by
equation (7)). (It is worth noting that the potential computed by solving numerically
the 3/2-equation goes, approximately, like ϕ ' (Ze/r)e−2qr for r ' 0, where q
is given by equation (7) (see, for instance, Ref. [5]); that means that it is more
abrupt near the nucleus than the potential given by the linearized version, which
is a consequence of the overstimation of the electron density in the vicinity of the
nucleus. This leads to an enhanced binding energy (−20.8Z7/3eV)). One can see that
the radial density of electrons ∼ r2n, as given by n = (q2/4πe)ϕ, has a maximum
value for R∼ 1/q ∼ Z−1/3aH , which may be taken as the “radius” of the electronic
charge (while the ”radius” of the atom is of the order of aH ); thus, one can see again
that the quasi-classical description for large Z is justified; indeed, the quasi-classical
description holds for distances longer than the radius aH/Z of the first Bohr orbit and
shorter than the Bohr radius aH , and the electronic ”radius” R ∼ Z−1/3aH is such
that the inequalities aH/Z�R∼ aH/Z1/3� aH are satisfied for large Z; the most
part of the electrons are localized around R, which justifies the statistical character
of the Thomas-Fermi model for large Z. The linearization of the basic equations of
the quasi-classical description, together with the variational approach, as well as the
approximate character of the quasi-classical description in general, which alters the
distinction between the exact kinetic and potential energies, lead to the breakdown of
the virial theorem; indeed, one can check easily that Ekin =−(1/4)Epot, instead of
Ekin =−(1/2)Epot, as required by the virial theorem; this is not a major drawback,
as it is well-known that approximate calculations may give wrong values for both the
“kinetic” and “potential” energies and still the total energy be quite close to the exact
one;[19] this is due to the variational treatment employed here.
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5 Giant dipole oscillations and ionization of heavy atoms 841

3. QUANTUM CORRECTION

According to equation (1) and the Thomas-Fermi model, the electronic states
are described by quasi-plane waves everywhere in space, their wavevector depending
weakly on position; they correspond to the electron motion in a slowly-varying po-
tential, vanishing at large distances; the screened Coulomb potential ϕ is consistent
with this assumption, except for short distances where it has a sudden variation; the
electron single-particle energies must therefore be corrected for this additional po-
tential energy, corresponding to the electron motion close to the atomic nucleus; the
correction is carried out to the first order of the perturbation theory, by estimating the
average of the potential energy −eϕ over plane waves confined to a small spherical
region of radius R around the nucleus; the radius R must be regarded as a variational
parameter, and the correction to the energy will be minimized with respect to R;
doing so, we obtain an additional energy

−e
v

∫
v
dr ·ϕ=−3Ze2q · 1

x3
(1−e−x−xe−x) , (8)

to each electron state, where v = 4πR3/3 and x = qR; the total change in energy
∆E is obtained by multiplying the above result by the total number of electrons in
the volume v, which is given by

∫
v dr ·n; (the error made by counting twice the in-

teracting part of this energy (Koopmans’ factor 1/2) is Z2e2q(1+e−2x−2e−x)/4'
0.07Z2e2q, and it can be neglected at this level of accuracy); one obtains

∆E =−3Z2e2q · 1

x3
(1−e−x−xe−x)2 =

16

3
E · 1

x3
(1−e−x−xe−x)2 ; (9)

this is a contribution to the total energy of the electrons, and it must be minimized
with respect to the parameter R, or, equivalently, x, as noted above; the function of
x in equation (9) has a maximum value 0.073 for x ' 0.75, which corresponds to
R' Z−1/3aH , i.e. close to the electronic “radius”, and yields

∆E = 0.39E =−4.44Z7/3eV ; (10)

therefore, the total energy is obtained as

E =−11.4Z7/3eV−4.44Z7/3eV =−15.84Z7/3eV , (11)

which agrees well with the “empirical” binding energy E ' −16Z7/3eV. Since the
values derived here for the variational and the electronic ”radii” are close to each
other one may say that the computations are consistent; one can see also that ∆E
amounts to cca 28% of the binding energy E, so that one may indeed regard ∆E
as a correction to this energy; higher-order perturbation theory calculations modify
the electronic (quasi-) plane waves, and the single-particle energies, according to the
quantum behaviour; however, according to the perturbation theory, the main contri-
bution to the total energy given above is not affected significantly. It is worth noting
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that the quantum correction given above vanishes in the limitZ→∞, as the electrons
approach the quasi-classical limit; in addition, the main contribution −11.4Z7/3eV
to the total energy derived above is in error in the limit Z →∞, as the linearization
procedure is not valid anymore in this limit; indeed, the linearization holds as long as
the Fermi wavevector kF varies slowly in space; a measure of the departure from this
behaviour is given by the extent to which the variational parameter q= 0.85Z1/3/aH
given by equation (7) differs from the parameter q = (8Z/π2)1/3/aH ' 0.9Z1/3/aH
obtained from q2 = 4me2kF /π~2 = 4kF /πaH , where the average kF is computed
by using the electron density n(r) = (q2/4πe)ϕ(r) = (q2Z/4π)e−qr/r derived here;
as one can see, the difference in the q-values is ∼ 5%, which implies a similar de-
crease in the total energy from −15.84Z7/3eV to −16.64Z7/3eV; this value has the
tendency to be more negative (towards the exact value−20.8Z7/3eV) for large Z, as
it ought to be. For finite values of Z the error in energy produced by the lineariza-
tion procedure is nearly compensated by the variational treatment of the quantum
correction ∆E. This may explain the rather surprising proximity of the energy E
given by equation (11) to the experimental atomic binding energy. In this regard, one
may say that the present linearized Thomas-Fermi approach is more appropriate for
an intermediate range of Z-values, as corresponding to the ”actual” atoms. The ex-
change energy must be added to the result given above by equation (11), and one can
check that it brings a ∼ 4% -correction at most, for Z = 20. As it can be seen easily,
the ∆E-correction computed here in equation (10) corresponds to the Hartree con-
tribution to the linearized Thomas-Fermi model; a similar correction to the exchange
energy can also be obtained; though very small, we give it here since such correc-
tions have previously been discussed to a rather large extent, in the framework of the
atomic theory;[11, 20] on the other hand, the computation of such exchange correc-
tions helps to further enlighten the virtues of the linearized Thomas-Fermi model.

4. EXCHANGE ENERGY

As it is well known the exchange energy of a homogeneous gas of electrons is
given byEex =−(e2/4π3)V k4F ; according to the linearization procedure this energy
is written as

Eex =− e
2

π3
k
3
F

∫
dr ·kF , (12)

and making use of the results obtained above, in particular n = k
2
FkF /π

2 and n =
(q2/4πe)ϕ and the variational parameter q derived in equation (7), one obtainsEex =
−18.12Z5/3eV. The correction to this exchange energy originates in the abrupt vari-
ation of the electronic density near the atomic nucleus; to the first-order of the per-
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7 Giant dipole oscillations and ionization of heavy atoms 843

turbation theory it may be written as

∆Eex =− e2

(2π)6

∫
v
dr

∫
dr′
∫
F
dkdk′ ·e−iQρ 1

ρ
, (13)

where Q = k− k′, ρ = r− r′, v is the spherical volume of radius R around the
nucleus, and F denotes the Fermi sea; in contrast to the Hartree correction given
by eqution (9), the integration over r′ is extended over the whole space, as a conse-
quence of the non-local character of the exhange energy. The calculations in equation
(13) proceeds in the usual manner; first, we pass from the integration over r′ to the
integration over ρ; the result of this integration is 4π/Q2− (4π/3)r(3R+ 2r) + ...;
one may neglect the small contribution of the second term, and retain the main term
4π/Q2; next, we perform the k,k′-integrations, which lead to

∆Eex =− e2

4π3

∫
v
dr ·k4F ; (14)

according to the linearization procedure equation (14) may also be written as

∆Eex =− e
2

π3
k
3
F

∫
v
dr ·kF ; (15)

one gets straightforwardly ∆Eex = (1− e−x− xe−x)Eex, where Eex is given by
equation (12) and x = qR; for the electronic “radius” x ' 1 one obtains ∆Eex '
0.27Eex, while for the variational ”radius” x' 0.85 derived above one obtains ∆Eex'
0.21Eex; it follows that the exchange energy changes by a factor which lies some-
where between 1.21 and 1.27; it agrees well with similar exchange corrections de-
rived in Ref. [11] (which indicates a factor 1.22). It is customary to refer such a factor
in the exchange energy, denoted by α, to the value 2/3, which corresponds to the ho-
mogenous electron gas, i.e. to Eex in the present calculations (and which is known
as the Kohn-Sham value [21, 22]); this is the α-factor in Slater’s Xα-method (and
in density-functional calculations);[20] according to the present results the value of
the α-factor runs between α' (2/3) ·1.21' 0.8 and α' (2/3) ·1.27' 0.85; more
accurate density-functional computations [20],[23, 24] of atomic and molecular or-
bitals recommend α ' 0.69− 0.75, which are in good agreement with the present
results (the terms neglected in the above ρ-integration diminish to some extent the
value of the α-factor); while Slater’s original value [25] is α= 1.

5. GIANT DIPOLE OSCILLATIONS

The electrons may move as a whole with respect to the nucleus under the action
of an external electric field; for an oscillating external field the electrons may perform
giant dipole oscillations. During such small oscillations the equilibrium is preserved,
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such as Rq = const; consequently, the small displacement u = δR is related to the
change δq in the screening wavevector q by u= (1/q2)δq. It follows that the change
in the energy arises solely from the change in the kinetic energy, given in equation
(5); we get

δE = δEkin =
27

4π2
Z3e2

a3H
u2 ; (16)

this energy corresponds to a frequency ω0 given by δE = 1
2Mω2

0u
2, whereM =Zm

is the mass of all the electrons; we get the frequency

ω0 =

(
27

2π2

)1/2 Ze√
ma3H

' 4.5Z×1016s−1 ; (17)

it corresponds to an energy ~ω0 ' 28ZeV , which is in the range of moderate X-
rays. The wavelength λ0 = 2πc/ω0 ' 4.2

Z × 10−6cm is still much longer than the
dimension of the atom (c = 3× 1010cm/s is the speed of light). This is consistent
with our adiabatic hypothesis that during oscillations the equilibrium is preserved
(e= 4.8×10−10statcoulomb, m= 10−27g, ~ = 10−27erg ·s).

As it is well known, an oscillating dipole radiates energy; consequently, a
damping force acts upon the dipole, given by Fd = 2Q2v̈/3c3, where Q = −Ze
is the charge of all the electrons and v is the velocity of the dipole; for the external
frequency ω close to the eigenfrequency ω0, we may put v̈ = ω2

0v and write

Fd =
2Z2e2

3c3
ω2
0v =Mγu̇ , (18)

where

γ =
2Ze2

3mc3
ω2
0 (19)

is a damping coefficient. We note that γ � ω0, since 2Ze2/3mc2 � c/ω0, where
e2/mc2 = r0 ' 2.8×10−13cm is the classical electromagnetic radius of the electron
(c= 3×1010cm/s). The quality ratio (natural breadth of the spectroscopic line) is

γ

ω0
=

4πZr0
3λ0

' 2.8Z2×10−7 . (20)

Putting together all this information we can write the equation of motion for the
electrons

Mü+Mω2
0u+Mγu̇=QE cosωt , (21)

or
mü+mω2

0u+mγu̇=−eE cosωt , (22)
where E is the external electric field. We do not include the effects of the magnetic
field since the ratio v/c is very small, as we can see easily by comparing the kinetic
energy with Mc2. Since the wavelength is much longer than the dimension of the
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9 Giant dipole oscillations and ionization of heavy atoms 845

atom (quasi-stationary regime) we should include the effect of the internal (polariza-
tion) field; we do not, since this field is valid only for macroscopic bodies (or bodies
with a definite surface). The (particular) solution of equation (22) is

u= acosωt+ bsinωt , (23)

where

a=
eE

m

ω2−ω2
0

(ω2−ω2
0)2 +ω2γ2

, b=−eE
m

ωγ

(ω2−ω2
0)2 +ω2γ2

. (24)

We can see that the electrons perform giant dipole oscillations with character-
istic frequency (eigenfrequency) ω0. From the energy conservation in equation (22)
we get the power loss

P =mγu̇2 =
e2E2

2m

γω2

(ω2−ω2
0)2 +ω2γ2

, (25)

which, at resonance, becomes Pres = e2E2/2mγ. Making use of equations (17) and
(20), for moderate fields E = 1/300statvolt/cm (100V/m) we get a power loss

Pres =
1

Z3
×10−7erg/s ; (26)

it corresponds to a transition rate

R= Pres/~ω0 '
2

Z4
×103s−1 , (27)

where R represents the number of elementary acts of oscillation per unit time. The
formula given by equation (25) is valid for one electron; for the atom we must multi-
ply equation (25) byZ. The transition rate remains unchanged, because each electron
is an oscillator which absorbs (and emits) an energy quanta ~ω (~ω0).

The linearized Thomas-Fermi model allows the estimation of a motion involv-
ing only 1� δZ <Z electrons, the rest of Z−δZ electrons together with the atomic
nucleus being considered as an inert core with charge δZ · e. The characteristic fre-
quency given by equation (17) becomes (δZ/Z)ω0 and the damping coefficient is
(2e2δZ/3mc3)ω

′2
0 .

6. ANHARMONICITIES AND IONIZATION

It is worth estimating the amplitude of oscillations, which, at resonance, is
given by

|b0|=
eE

mω0γ
=

8

Z4
×10−10Ecm , (28)

from equations (17), (20) and (23). For an extended range of field intensities this
amplitude is much smaller than the characteristic distances in atom, for instance,
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the Bohr radius. Consequently, the harmonic approximation is justified. Higher-
order corrections to the harmonic approximation are obtained by including higher-
order terms in the kinetic energy given in equation (5) and using the relationship
(q+ δq)(R+ u) = 1 (δq = −q2u/(1 + +qu), which corresponds to the adiabatic
perturbation, valid as long as the oscillation frequency is much smaller than the fre-
quency of the quantum one-particle state. We get a potential energy

U =
1

2
Mω2

0u
2

(
1− 8

3
qu+

31

6
q2u2 + ...

)
, q= (6/π2)1/3Z1/3/aH = 0.85Z1/3/aH ,

(29)
which contains anharmonic terms. As it is well known, the corresponding non-linear
(free) oscillations imply higher-order harmonics (with frequencies 2ω0, 3ω0, etc),
displacements of the equilibrium position and shifts in the original frequency ω0,
which may be computed either by successive approximations or by the self-consistent
harmonic-oscillator approximation. In particular, the frequency shifts are worth not-
ing, since they determine abrupt changes in the oscillation amplitude near resonance
(ω ' ω0); due to the combined frequencies phenomenon, the ω0-resonance may be
excited by other frequencies, or other resonances may be excited.[26]

Since δq = −q2u/(1 + qu), for large oscillation amplitudes (u→∞) we get
the energy U∞ = 9Z2e2q/16 (with q = 0.85Z1/3/aH ); this energy cancels out ex-
actly the binding energy given by equation (6), as expected, setting the electrons
free (the quantum energy correction is vanishing in this limit). Therefore, in order
to have complete ionization (hyper-ionization, dissociation) we should compare the
amplitude given by equation (28) with the Bohr radius; we get

E > 7Z4 ; (30)

this is a high field, for (X-ray) frequency ω0. (High-intensity fields are generated
in short laser pulses; for instance, for intensity I = 1015w/cm2 we get an elec-
tric field E = 106statvolt/cm (E '

√
I/c)); this is an ”atomic field”, of the or-

der of the electron field in atoms; it may generate ionization and high-order har-
monics. For intensities 1019w/cm2 (curent intensities) the field is of the order
108statvolt/cm, where relativistic and non-linear effects apear; for ultrahigh inten-
sities 1021w/cm2 the field is 109statvolt/cm, where multi-photon processes appear,
the structure of the quantum vacuum may also occur, as well as particle production
(the Schwinger field, which indicates a limit of quantum electrodyamics calculations,
is 1013statvolt/cm). All these fields are optical fields (energy ' 1eV , frequency
' 1015s−1, wavelength ' 10−4cm = 1µm); typically, the pulse duration is 50fs
(1fs = 10−15s) and the pulse dimension is d ' 15µm; for intensity 1021w/cm2

the power is P ' 1pw (1p = 1015).). For the motion of a fraction δZ of electrons
(1� δZ <Z) we have ω0 = 4.5δZ×1016s−1 and γ/ω0 = 2.8(δZ)2×10−7. We can
see that ω0 may lie now in the ultraviolet range. ~ω0 can be viewed as an ionization

(c) 2015 RRP 67(No. 3) 837–853 - v.1.1a*2015.8.27



11 Giant dipole oscillations and ionization of heavy atoms 847

energy; for δZ = 1 we get ~ω0 = 30eV , which is higher than the (first) ionization po-
tential of the elements (an average of 6eV ); we note that the extrapolation to δZ = 1
is not permissible. The critical electric field for partial ionization is given by

E > 7(δZ)4 , (31)

which is much smaller than the field for total ionization given by equation (30).

7. QUASI-CLASSICAL APPROXIMATION

As it is well known, the equation of motion for an operator O reads Ȯ =
i
~ [H,O], or Ȯmn = i

~(Em−En)Omn = iωmnOmn, whereH is the Hamiltonian,En,
Em are the energies of the states n and, respectively, m and ωmn = (Em−En)/~
is the frequency of transition between the states n and m. In the quasi-classical ap-
proximation the quantum states are sufficiently dense to approximate the frequency
ωmn by ωmn '−s(∂Em/∂m)m =−ωs, where n=m+ s and En depends slightly
on n in the vicinity of m; this amounts to a quasi-classical motion which implies
a mechanical action much greater than ~. Similarly, for a set of quantum states
sufficiently dense the matrix elements Omn = Om,m+s depends slightly on s for
small s, and vanishes rapidly for greater s, so that we may write Omn = Om,m+s '
Os; in fact, Os is the temporal Fourier transform of O, corresponding to the fre-
quency ωs; (the average of O with the wavefunction ψ =

∑
n cnϕne

−iωnt is O =∑
mn c

∗
mcnOmne

iωmnt =
∑

ms c
∗
mcm+sOm,m+se

−iωst, which is approximateleyO'∑
m |cm|

2∑
sOse

−iωst '
∑

sOse
−iωst; Os(t) = Ose

−iωst is the time-dependent
operator in the quasi-classical equation of motion (32)); we may drop out the la-
bel s of the Os, and we may add an external force, as represented by a Hamilto-
nian h, in general time-dependemt; the equation of motion becomes Ȯ = −iωsO+
(∂Ocl/∂t)cl;h, where the last term means the time derivative of the classical coun-
terpart Ocl of O, as given by h, according to the classical motion. With O = O(1) +
iO(2), we get Ȯ(1) = ωsO

(2) + (∂Ocl/∂t)cl;h, Ȯ(2) = −ωsO(1) (since the classi-
cal quantity (∂Ocl/∂t)cl;h is real); we get Ö(1) +ω2

sO
(1) = (∂/∂t)(∂Ocl/∂t)cl;h;

here, we may identify O(1) with the time-dependent part of the classical quantity
Ocl, and leave aside the labels (similarly for O(2)); (the general solution for O(1)

from the homogeneous version of equation (32) is O(1) = Acos(ωst+ δ), where A
is amplitude and δ is a phase, both undetermined; from Ȯ(2) = −ωsO(1), we get
O(2) =−Asin(ωst+δ), andO=O(1)+ iO(2) =Ae−i(ωst+δ), as expected; the latter
(∼ e−iωst, or eiωst) is the quantum version (in the quasi-classical approximation),
while the fomer (∼ cosωst, or sinωst) is the classical version of the same quantity);
we get

Ö+ω2
sO = (∂/∂t)(∂Ocl/∂t)cl;h = f ; (32)
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this is the equation of motion of a classical harmonic oscillator subjected to the action
of a classical force f ; (the force f should contain only c-numbers (if necessary, they
can be determined by comparing the absorbed power computed both classically and
quantum-mechanically); its eigenfrequency ωs is the quantum transition frequency
ωmn in the quasi-classical approximation. Since the approximation is valid for a
wavepacket, we may also introduce a lifetime γ−1 given by a damping term γȮ in
equation (32).

The ”peripheral” electrons in atom, i.e. the electrons with high quantum num-
bers (and high energy) in the mean-field atomic potential, which may be subjected to
ionization by the action of an (optical) electromagnetic field, satisfy the conditions
for the quasi-classical approximation in heavy atoms; under the action of the Hamil-
tonian h = eEucosωt, force f = −eE cosωt, where E is the electric field and u is
the displacement, the equation of motion of such an electron is

ü+ω2
0u+γu̇=− e

m
E cosωt , (33)

where ω0 (= ωs) is the ionization frequency (excited states are described similarly).
The amplitude at resonance is given by |b0| = eE/mω0γ (equation (28)), where
the damping coefficient is γ = 2r0ω

2
0/3c = 6× 10−24ω2

0 (equation (19)). We take
ω0 = 1016s−1 (~ω0 = 6eV , average ionization potential) and get |b0| = 10−7Ecm;
compared with the Bohr radius, it leads to a critical field of ionization E > 5×
10−2statvolt/cm (' 1500V/m). For higher fields we may have multiple-quanta
transitions; they correspond to larger displacements for an oscillator, when the har-
monic approximation does not hold anymore. The mean-field potential U which
gives ω2

0 = (1/m)(∂2U/∂u2)0 may contribute now higher-order terms like ∼ u3,
∼ u4, which leads to anharmonicities in the classical equation of motion (33).

8. CONCLUSION

In conclusion, one may say that the variational treatment of the linearized
Thomas-Fermi model provides a consistent quasi-classical description for the atomic
binding energies in the range of realistic values of atomic numbers Z (heavy atoms),
provided the quantum corrections (Hartree-type contributions) are properly included.
(This might be expected since the ”boundary effect” included in the asymptotic se-
ries originates in the quantum corrections too (see, for instance, Refs. [9] and [10],
and discussion therein)). Making use of the Thomas-Fermi model it was shown here
that giant dipole oscillations may be induced in heavy atoms by external electromag-
netic fields in the moderate X-ray range, which may lead to the ionization in intense
fields. Frequency shifts and higher-order harmonics can be produced by anharmonic-
ities in the dipole oscillations. Quasi-classical equation of motion for ”peripheral”
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electrons was also derived (a harmonic-oscillator equation), which can be used for
investigating transitions to excited states or ionization in heavy atoms.

APPENDIX

A. EXCHANGE ENERGY

The exchange energy of a set of electrons which interact through the Coulomb
potential (the Fock term) is given by

Eex =− e2

2V 2

∫
drdr

′ ∑
kk′ (↑↑)

ϕ∗
k′ (r

′
)ϕk(r

′
)

|r−r′ |
ϕ∗k(r)ϕk′ (r) , (34)

where−e is the electron charge, V is the volume enclosing the set of electrons, ϕk(r)
are the single-particle wavefunctions and the summation includes parallel spins; the
summation over k, k

′
is performed over the Fermi sea. For plane waves ϕk(r) = eikr

we get

Eex =−e
2

V

∑
kk′

∫
dr
eiqr

r
, (35)

where q = k−k
′
. The Fourier transform of the Coulomb potential is

∫
dreiqr/r =

4π/q2, so the exchange energy becomes

Eex =− 2e2

(2π)5
V

∫
dkdk

′ 1

q2
. (36)

We introduce the new variables q = k−k
′

and p = k+k
′
/2; it is easy to see that

the integration over p extends over the intersection of two Fermi seas separated by
q, 0 < q < 2kF , where kF is the Fremi wavevector. This intersection consists of
two equal spherical sectors, subtended by the angle θ0 given by cosθ0 = q/2kF . The
volume of a spherical sector is

v =

∫
πk2F sin2 θ ·kFdθ sinθ =

2π

3
k3F (1− 3

2
cosθ0 +

1

2
cos3 θ0) . (37)

We get the exchange energy

Eex =− 8e2

3(2π)3
V k3F

∫ 2kF

0
dq

(
1− 3

2

q

2kF
+

1

2

q3

(2kF )3

)
=− e2

4π3
V k4F . (38)

It is usual to introduce the inter-particle separation rs through n= k3F /3π
2 = 1/(4πr3s/3),

i.e. kF rs = (9π/4)1/3; the exchange energy per electron is written as

Eex/N =− e2

2aH

2

3π2

(
9π

4

)4/3 1

rs
=−0.916

rs
ry , (39)
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where N is the number of electrons, rs is measured in Bohr radii (aH = ~2/me2 =
0.53Å) and the energy is measured in rydbergs (1ry= e2/2aH = 13.6eV ). Similarly,
the kinetic energy leads to Ekin/N = 2.21/r2sry (next-order contributions to the
perturbation series, which give the correlation energy, are 0.062lnrs−0.094).[27]

B. KOOPMANS’ FACTOR

We may have an estimation of the effect of the Koopman’s factor 1/2 by com-
paring the energy correction

∆E =

∫
v
drρeϕ=−Z2e2q2

∫ R

0
dre−2qr =−1

2
Z2e2q(1−e−2qR) (40)

with

∆E
′
=

∫
v
dr(ρeϕ−

1

2
ρeϕe) =

1

2

∫
v
drρe(ϕ+ϕc) , (41)

where ρe =−en is the electron charge density, n is the electron density, ϕe = ϕ−ϕc
is the electron potential and ϕc =Ze/r is the potential of the nucleus (core potential).
We get

∆E
′
=−1

4
Z2e2q(3−e−2qR−2e−qR) (42)

and

∆E−∆E
′
=

1

4
Z2e2q(1 +e−2qR−2e−qR) , (43)

which is indeed very small (' 0.07Z2e2q ) for qR= 0.75.
In fact, Koopmans’ factor does not appear in the energy correction given by

equations (8) and (9) since the potential ϕ is mainly determined by electrons lying
away from the nucleus, while the quantum correction implies electrons placed close
to the nucleus; or, in other words, the quantum correction, which implies the strong
variation of the potential ϕ, i.e. an appreciable deviation from the quasi-classical
approximation, is determined mainly by the nucleus.

C. QUANTUM AND CLASSICAL TRANSITIONS

The quantum transition amplitude from state n to state k, energies Ek and,
respectively, En, under the action of a perturbation V (t) = V cosωt, in the first order
of the perturbation theory, is given by

i~ċk = Vkn(t)eiωknt , (44)

or

ckn =− i

2~

∫ t

−∞
dt

′
Vkn

[
ei(ω+ωkn)t+αt+ei(−ω+ωkn)t+αt

]
, (45)
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where ωkn = (Ek−En)/~ the interaction is introduced adiabaticaly (α→ 0+); we
retain only transitions with ω > 0, and get

ck =
Vkn
2~

ei(−ω+ωkn)t+αt

ω−ωkn+ iα
. (46)

The transition rate (number of transitions per unit time) is given by

R=
∂ |ck|2

∂t
=
|Vkn|2

2~2
α

(ω−ωkn)2 +α2
→ π |Vkn|2

2~2
δ(ω−ωkn) . (47)

For a dipolar interaction V = eEu (−dE, where d is the electric dipole moment) we
get

R=
e2E2 |ukn|2

2~2
α

(ω−ω0)2 +α2
, (48)

or, for ωkn = ω0 (”quantum” oscillations), k = 1, n= 0, u10 =
√
~/2mω0,

R=
e2E2

4m~ω0

α

(ω−ω0)2 +α2
' e2E2

2m~ω0

2αω2

(ω2−ω2
0)2 + 4ω2α2

, (49)

which coincides with equations (25) and (27) for classical oscillations (“classical
transitions”) for ω ' ω0 and 2α= γ.

It may appear disagreeable that the same result is obtained for “quantum transi-
tions”, i.e. transitions from the ground-state to the first excited state of the oscillator,
and the “classical transitions”, i.e. oscillations of the classical oscillator. The expla-
nation resides in the fact that the classical harmonic oscillator is restricted to small
oscillations, which correspond in fact to quantum motion, while the quantum oscil-
lator allows also large displacements, which may trespass the harmonic-oscillations
criterion of small displacement (the matrix elements of the displacement x for a har-
monic oscillator with frequency ω, mass m are xn,n−1 =

√
n~/2mω). In this con-

text, the quasi-classical approximation gives only the small variation of the quantum
transitions.

D. DIPOLAR RADIATION

It is worth comparing the radiated intensity to the power loss. The radiation
intensity (energy per unit time) is given by

I =
2e2

3c3
ü2 =

1

3
E2r20c

ω4

(ω2−ω2
0)2 +ω2γ2

(50)

for a dipole −eu. Making use of the power loss given by equation (25),

P =
e2E2

2m

γω2

(ω2−ω2
0)2 +ω2γ2

, (51)
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we get I/P = 2r0ω
2/3cγ. For ω = ω0, making use of equation (19) (with Z = 1),

we get I = P . The result does not depend on Z, such that it holds also for atom.
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