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Abstract Unphysical terms in the elastic Hertz potentials are identified, and a regularization procedure is
devised for removing them. The solutions of the equation of elastic motion are given for tensorial forces
(seismic moment forces) and vectorial forces (Stokes problem) concentrated in both space and time.

Although the investigation of the propagation of elastic waves in various complex media and under various
circumstances enjoys a continuous interest [1–10], the interestingmethod of the elasticHertz potentials receives
comparatively less attention. A particular problem arising in using these potentials is presented in this Note.

We consider the equation for the elastic motion [11]

ü − c2t �u − (c2l − c2t )grad · divu = F, (1)

where u is the displacement, cl,t are the velocities of the (longitudinal and transverse) elastic waves and F is
the force (per unit mass); we consider a force concentrated (localized) in both space and time, given by [12]

Fi = mi j T δ(t)∂ jδ(R), (2)

where T is the short duration of the time impulse δ(t) and mi j is the tensor of the seismic moment. We follow
the standard procedure for introducing the Hertz potentials for the solution of this equation [13]. To this end,
we introduce the notation fi = −(1/4π)mi j T ∂ j and write the equation as

ü − c2t �u − (c2l − c2t )grad · divu = −4πδ(t)fδ(R); (3)

then, we write δ(R) = −(1/4π)� 1
R ; the equation becomes

ü − c2t �u − (c2l − c2t )grad · divu = δ(t)�

(
f
1

R

)
; (4)

further on, we use �
(
f 1
R

) = grad · div (
f 1
R

) − curl · curl (f 1
R

)
and get

ü − grad · div
[
c2l u + δ(t)f

1

R

]
+ curl · curl

[
c2t u + δ(t)f

1

R

]
= 0; (5)

we can see that u can be written as

u = grad · divB + curl · curlC = −�C + grad · div(B + C), (6)
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where

B̈ − c2l �B = δ(t)f
1

R
, C̈ − c2t �C = −δ(t)f

1

R
; (7)

the vectors B and C are known in Electromagnetism as the Hertz vectors (potentials) [14–16].
We are led to study the potential equation

�̈ − c2�� = δ(t)
1

R
, (8)

where the vectors B, C are given by f�; c is a generic notation for cl,t . For the tensorial force given in Eq. (2),
we get the potentials B and C by applying the operator fi = −(1/4π)mi j T ∂ j to the scalar potential �; from
Eq. (6) the displacement is given by

ui = − T

4π
mi j∂ j��t − T

4π
m jk∂i∂ j∂k(�l − �t), (9)

where �l,t correspond to cl,t in Eq. (8). For a vectorial force F = fT δ(t)δ(R) (Stokes problem [17]), we get
the potentials B and C by applying the constant vector −(1/4π)T f to �; from Eq. (6) the displacement is
given by

u = − T

4π
f��t − T

4π
grad(fgrad)(�l − �t). (10)

The solution of Eq. (8) is of the form � = χ(R, t)/R, where

χ̈ − c2χ
′′ = δ(t); (11)

we get

� = tθ(t)

R
+ θ(ct − R)

χ(R − ct)

R
, (12)

where χ is an arbitrary function and the factor θ(ct− R) is introduced to satisfy the natural boundary condition
� = 0 for t < 0 (causality condition). The function χ is determined by imposing the boundary condition for
R → 0. It is natural to assume that the time dependence of � is much slower than its spatial dependence, such
that � → 0 for R → 0 and

t

R
+ χ(−ct)

R
= 0 (13)

from Eq. (12). We can see that this condition amounts to assuming that the focal perturbation occurs with a
slower velocity than the wave velocity c (it follows that l < cT , where l is the localization length of the focus,
i.e., the localization length of the function δ(R)). It follows from Eq. (13) that χ(x) = x/c as the leading term;
we get the solution

� = t

R
+ 1

c

(
1 − ct

R

)
θ(ct − R) + const.

= 1

c

[
θ(ct − R) + ct

R
θ(R − ct)

]
+ const., (14)

where const. = −1/c; up to this constant, this is precisely the (retarded) Kirchhoff solution

� = 1

4πc2

∫
dR

′ δ(t −
∣∣∣R − R

′∣∣∣ /c)∣∣R − R′∣∣ R ′ = 1

4πc2

∫
dr

δ(t − r/c)

r |R − r| . (15)

Indeed, the integral in Eq. (15) gives the θ -functions in Eq. (14).
The potential � given by Eq. (14) satisfies the homogeneous equation �̈ − c2�� = 0, except for ct = R,

where the solution is not determined (the functions θ are not determined for R = ct). It follows that we
should disregard contributions to � for R �= ct and determine the solution in the vicinity of R = ct by other
means; this is a regularization (calibration) procedure. It is known that the potentials have not a direct physical
relevance; in particular, for mi j = mδi j the solution of Eq. (1) is u = grad	, where

	 = Tm

4πc2l

∫
dR

′ δ(t −
∣∣∣R − R

′ ∣∣∣ /cl)∣∣R − R′ ∣∣ δ(R
′
) = Tm

4πcl

δ(R − clt)

R
, (16)
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while Eqs. (9) and (14) give u = − Tm
4π grad��l, i.e., 	 = − Tm

4π ��l,

	 = −Tm

4π
��l = Tm

2πcl

δ(R − clt)

R
; (17)

we can see that these two expressions given by Eqs. (16) and (17) differ by a factor 1/2.
Since second-order derivatives are relevant (Eqs. (9), (10)), we apply the calibration procedure to expres-

sions like

c∂i∂ j� = −δi j

R
(1 − ct/R)δ + xi x j

R3 (1 − 3ct/R)δ

− xi x j
R2 (1 − ct/R)δ

′ − ctδi j
R3 θ + 3ctxi x j

R5
θ (18)

(where we omit the argument R − ct); hence,

c�� = − 2

R
δ − (1 − ct/R)δ

′
. (19)

If we apply the Laplacian to Eq. (8), we get

∂2

∂t2
�� − c2�(��) = −4πδ(t)δ(R), (20)

whence, with the Kirchhoff solution (Green function),

�� = −δ(R − ct)

cR
. (21)

Comparing Eq. (19) against (21), we can see that the δ
′
-contributions should be neglected in Eq. (18), as well

as the θ -functions, and a factor 1/2 should be inserted; we get the calibrated expression

c∂i∂ j� = − δi j
2R (1 − ct/R)δ + xi x j

2R3 (1 − 3ct/R)δ; (22)

by construction, it is unique. Making use of Eqs. (9) and (22), we get immediately the displacement
u = un f + u f f , where the near-field displacement is

un fi = −Tmi j x j
4πctR3 δ(R − ctt)

+ T

8πR3

(
m j j xi + 4mi j x j − 9m jkxi x j xk

R2

) [
1

cl
δ(R − clt) − 1

ct
δ(R − ctt)

]
(23)

and the far-field displacement is

u f f
i = Tmi j x j

4πctR2 δ
′
(R − ctt) + Tm jk xi x j xk

4πR4

[
1
cl

δ
′
(R − clt) − 1

ct
δ

′
(R − ctt)

]
. (24)

These are spherical-shell waves. Similarly, using Eqs. (10) and (22) we get the solution

u = T f
4πctR

δ(R − ctt) + TR(Rf)
4πR3

[
1

cl
δ(R − clt) − 1

ct
δ(R − ctt)

]
(25)

for the Stokes problem.
In conclusion, wemay say that spurious (unphysical) contributionsmay appear in theHertz potentials of the

equation of the elastic waves with forces concentrated in both time and space; these terms have the appearance
of static or quasi-static contributions which are solutions of the homogeneous equation (θ -functions). We
cannot simply dismiss them, because their discontinuous nature (for R = cl,tt) contributes to the genuine
solution, which is singular. Consequently, a regularization (calibration) procedure is needed, which should
recover the known solution for isotropic force sources. This regularization procedure is worked out in this
paper; by construction, it is unique.
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The investigation reported in this Note was motivated by solving the equation of the elastic waves with
point tensorial forces concentrated in time (seismic moment force), and the related Stokes problem, by direct
integration of the equations of the elastic Hertz potentials. It should be emphasized that the tensorial force is a
generalization of the Stokes problem. Both problems are relevant for the seismic waves. Although unphysical
terms are known to occur in potentials, the occurrence of spurious terms rather came as a surprise. Using the
regularization (calibration) procedure, the solutions are derived here for both the more general point tensorial
forces and the vectorial forces (Stokes problem) concentrated in time. The identification of the unphysical
terms, the regularization procedure for removing them and the solutions for the concentrated forces as given
in this Note may be viewed as elements of novelty.
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