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Abstract. The Ward identity is derived for the electron-phonon coupling in one dimension 
and the spectrum of elementary excitations is calculated by assuming that the Fermi distri- 
bution is not strongly distorted by the interaction. The electron-phonon vertex is renor- 
malised in the case of the forward scattering and Migdal’s theorem is discussed. A model is 
proposed for the giant Kohn anomaly. The dip in the phonon spectrum is obtained and 
compared with the experimental data for KCP. 

1. Introduction 

Recently there has been considerable interest in the electron-phonon coupling in the 
one-dimensional many-electron systems, especially in connection with the instabilities 
of the nearly one-dimensional conductors toward both dynamic and structural changes 
(for a recent review see, for example, Devreese et a1 1979). 

The chain-like structure of the lattice of these materials confines the motion of the 
electrons to one direction in space and this permits the linearisation of the momentum 
dependence of the free-electron levels within two finite regions centred around kkF, kF 
being the Fermi momentum. The linear spectrum of the single-electron states near 
*kF produces high divergencies in the relevant quantities (logarithmic singularities) and 
this results in an unusual behaviour of the one-dimensional conductors. Most of the 
phenomena generally occurring for all condensed matter systems are strongly enhanced 
in this materials. Therefore, it is important to see to what extent the above-mentioned 
singularities will be reflected in the physical behaviour of the systems. Particularly 
interesting is the giant Kohn anomaly observed in the phonon spectrum near 2kF and 
the associated softening of the phonon modes. This strong distortion of the phonon 
spectrum in one dimension has been investigated by Afanas’ev and Kagan (1963). It 
was shown that this effect originates in a sharp increase in the number of low-energy 
states available for the electron-hole excitation accompanied by the absorption or 
emission of phonons with wavevectors near 2kF. 

The aim of the present paper is to investigate the electron-phonon interaction in the 
one-dimensional many-electron system within the perturbation theoretical approach. 
An electron gas model is proposed having explicitly introduced a band-width cut-off. 
As the low excited states of the system consist of electron-hole pairs in the neighbour- 
hood of the + k ~  points we restrict ourselves to these single-electron states only. Their 

0022-3719/82/153319 + 13 $01.50 @ 1982 The Institute of Physics 3319 



3320 M Apostol and I Baldea 

wavevectors p run within the range +kF - k ,  < p < ?kF + k,, where k,  is the band- 
width cut-off, much smaller than kF. The energy levels of the electron states can be 
linearised as follows: eP = p + U F (  lp I - kF), where pis the Fermi level and UF is the Fermi 
velocity. Two types of electron-phonon interaction processes may take place in this 
model. The first is the forward scattering process, that excites an electron-hole pair near 
+kF by creating or absorbing a virtual phonon of small wavevector. The second is the 
backscattering process in which the electron-hole pair excited across the Fermi sea is 
accompanied by the emission or absorption of a phonon with wavevector near 2kF. 

Our approach relies upon the Ward identity which connects the electron-phonon 
vertex to the electron Green function. This identity is a direct consequence of the linear 
electron spectrum and of the conservation of the number of electrons near + k F .  The 
Ward identity is derived here by means of the equation-of-motion method in a manner 
analogous to that used for the electron-electron interaction (Apostol 1981a). For the 
forward scattering process this is an exact result, extensively used in studying the 
electron-electron interaction in one-dimensional systems (Dzialoshinsky and Larkin 
1973, Everts and Schulz 1974). The Ward identity is generalised here to the back- 
scattering process in the limit of weak coupling, that is when the ground state is not too 
strongly distorted by interaction. The Ward identity is particularly suitable for treating 
our model as it allows us to control at every step the confinement of the electron 
wavevectors to the two regions around +kF. Moreover, it can be used to get a simple, 
physical meaning of the approximations made in working out the complete set of integral 
equations of the perturbation theory. 

The polarisation and the normal modes are calculated both for the forward and 
backward scattering processes assuming that the interaction does not distort appreciably 
the Fermi sea. The Ward identity is used to renormalise the electron-phonon vertex 
and to check the validity of Migdal's theorem in the case of the forward scattering. It is 
shown that, unlike the three-dimensional case, the electron dressing is O(mlM), m and 
M being the electronic and ionic mass, respectively. The electrons may be considered to 
a good approximation as undressed in comparison with the phonons. Particular attention 
is paid to the phonon modes of wavevectors near 2 k ~ .  The giant dip of the Kohn anomaly 
is obtained within our model and compared with the experimental data for KCP. It is 
shown that the band-width cut-off k, plays an essential role in describing this strong 
distortion of the phonon spectrum. We should remark that similar calculations have 
been attempted by Horovitz et a1 (1974). As they were interested only in the drastic 
effects, they used an unrealistic model in which the cut-off parameter does not appear. 
This is why their results cannot be compared with the experiments. Our calculations, 
made for the case of KCP, are in agreement with the experimental data. 

The paper is organised as follows. The Ward identity is derived in 9 2 .  The forward 
scattering process and the Migdal theorem are discussed in 0 3.  In 9 4 the backscattering 
process is analysed and the dip is obtained in the phonon spectrum of KCP. The 
conclusions are given in 0 5 .  

2. Ward identity for the electron-phonon coupling in one dimension 

Let us assume a one-dimensional electron-phonon system described by the Frohlich 
type Hamiltonian 

H = E ~ C ~ C , ,  + m46,'6, + g (w#2) "76, + 6 T4) cP++4cP, (1) 
P 4 P.4 
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where cp(c,') and bq(64+) are electron and phonon destruction (creation) operators, 
respectively, ep is the free electron energy, 0, = c \ q /  is the bare phonon frequency (c 
being the unrenormalised sound velocity) and g is the bare electron-phonon coupling 
constant. The spin index will be omitted throughout, but the spin contribution (a factor 
2) will be considered in counting the single-electron states. 

We define the three-point vertex function 

K(x1, x2, x3) = ( m ( x l )  - (n(x1))I V + ( X 2 )  W(x3))h (2) 
where (. . .) means average over the Heisenberg ground state, Tis the time ordering 
operator, x denotes the space-time coordinate pair ( x ,  t ) ,  q ( x )  is the electron field 
operator written in the plane wave representation, ~ ( x )  = X p  cp exp(ipx) and 
n(x)  = V ' ( x )  V ( x )  is the electron density operator. All the operators in (2) are written 
in the Heisenberg picture. Due to the space-time invariance of the system this function 
depends only on two arguments. Choosing x2 - X I  and x3 - x2 as independent variables, 
the three-point vertex function can be Fourier transformed as 

K(x2 - x1, x3 - x2) = ( 2 ~ ) - ~  dp dq K b ,  q)  e x p b  * (x3 - x2)I exp[iq * (x2 -XI ) ] ,  

K b ,  q) = I: 1 d(t2 - tl) d(t3 - t2) (T([c;Lfl) cpl  -Xtl) 
P I  

- (Cp:(tl) cpl - q ( N  Cp+-q@2) c p ( t 3 ) ) )  

x exp[iw(tz - td  exp[i4t3 - t 2 ) 1 ,  (3) 
where p = (p, E ) ,  q = (4, w) and the scalar product is taken as usually p x = px - a, 
q x = qx - ut, The Fourier transform K(p,  q) can be expressed by the connected 
diagrams drawn in figure 1. The reducible diagrams in this figure (that can be split into 
two distinct parts by cutting a single phonon line) are given by 

Kredb, q) = g-'Gb) G b  - 4) rb, q) D(q) n(q), 

Kirredb, 4) = g-'Gb) G b  - 4) rb, a). 

(4) 

( 5 )  

whereas the irreducible diagrams have the analytic expression 

In (4) and ( 5 )  G(p) and D(q) are the electron and phonon Green functions, respectively, 
n(q) is the irreducible polarisation and T(p, q)  is the three-legged vertex function. This 

i n )  ibi 

Figure 1. Irreducible (a) and reducible (b )  diagrams of the three-point vertex function 
K @ ,  4). The hatched triangle represents the three-legged vertex function r@, 4). 
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vertex function represents all the connected irreducible diagrams with three external 
legs. Taking the derivative of (2) and (3) with respect to the first time argument, using 
the Heisenberg equation of motion for the operator n(x l ) ,  and comparing the results we 
get 

(w - Ep1 + Epl - 4 )  j- d(t2 - t l )  do3 - t 2 )  ( m C p : ( t l )  cp1 -q(tl) 
P1 

- (Cp:(tl) Cp1 -q(h)>I  Cp+-q(b) cp(t3))) 

x exp[io(tz - t d ]  exp[i<t3 - t 2 )1  

= G(p - 4) - G(p). (6)  
One can easily find that the analytic expression of the reducible diagrams associated 
with the averaged operator product in (6)  is given by 

(T{[C;l(fl) cp1 -q(fl)  - (Cll(t l)  Cpl -q(tl))] c:-q(t2) Cp(f3) ))red 

= -ig‘ J dt’ dt‘Do(q, t’ - f‘) (Tflcil(tl) cpl -4(t1) 

- (Cp:(tl) CPl -q(tl))IPq(t‘)}) 

(T{[p-q( t ’ )  - (P-q(t’))]  Ci -q( t2)  Cp(t3)})irred, (7) 
where &(q) =o$(a? - 4 + id)-’ is the free phonon Green function and pq is the 
Fourier transform of the electron density operator. Let us introduce the electron-density 
correlation function 

N(x’ - x )  = -i(T{[n(x) - (n(x) ) ]  n (x ’ ) ) )  

= (2n)-’ 1 dq N ( q )  exp[iq * (x’  - x ) ] .  (8) 
In the same way as for the three-point vertex function we obtain the following equation 
of motion for this function: 

x p4(t’)})  exp[iw(t’ - t ) ]  = 0. (9 )  

Using this result and (7) one can easily see that the reducible diagrams do not contribute 
to (6) ,  which can now be written as 

c (0 - Ep1 + &pl - 4 )  J d(t2 - 4 )  do3 - t2) m [ C p : ( t l )  CPl - q ( t l )  
PI  

- (C;l(tl) c p ~  - q ( t l ) ) ]  C i - q ( t 2 )  Cp(t3)))irred 

x exp[io(tz - td]  exp[i@3 - t2)1 

= G(p - 4) - GO). (10) 
The forward scattering processes involve electron-hole pairs in the neighbourhood 

of the k k ~  points associated with phonons of small wavevectors 141 < 2k,. These pro- 
cesses are described by two vertex functionsT‘?(p, q )  corresponding t o p , p  - q - + k ~  
andp, p - q - - kF, respectively. Restricting ourselves to the single-electron states with 
wavevectors near f kF it results thatpl in (10) is also near f k ~ .  Under these assumptions 
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we may use the linear form of the electron energy E~ = p + u~((p1  - k ~ ) ,  so that 
o - cP, + - becomes o T UFq. Using (10) and the analytic expression of the irredu- 
cible diagrams given by ( 5 )  we obtain the Ward identity for the forward scattering 

where the upper (lower) sign refers to the forward scattering processes near + k ~ (  - k ~ ) .  
It is worth noting that this is an exact result which is still valid in the limit q + 0 in the 
three-dimensional case (Engelsberg and Schrieffer 1963). A straightforward diagram- 
matic analysis shows that the Ward identity (11) leads to the exact cancellation of all the 
diagrams which contain loops with more than two electron lines. The cancellation of 
these diagrams among themselves (non-Tomonaga diagrams) has been checked by 
Engelsberg and Varga (1964) to high orders of the perturbation theory. The back- 
scattering processes are described by two vertex functions rb,(p, q) corresponding to 
p - + k ~ ,  q - + 2kF andp  - - k ~ ,  q - -2kF, respectively. Assuming that the ground 
state is only slightly modified by interaction we may average in (10) over the non- 
interacting ground state of the system. Using again the linear form of the electron energy 
one obtains the backscattering Ward identity 

We remark that this result could be obtained from (10) by assuming that the back- 
scattering interaction involves only one momentum transfer near +2kF or -2kF (which 
means the random phase approximation). In this case the momentum conservation in 
the irreducible diagrams shown in figure 1 leads to p1 = p in (10). It appears that our 
assumption used for deriving (12) amounts to the random phase approximation. This is 
a well-known result in the theory of the one-dimensional many-fermion systems (Gut- 
freund and Schick 1968, Apostol et a1 1981). 

3. Forward scattering and Migdal's theorem 

The irreducible polarisation is given by 

I-I(q) = -2ig(24-2 I dPGOG@ - drb, 4). (13) 

Using the Ward identity for the forward scattering (11) and integrating over energy we 
get 

where np' is the momentum distribution of the electrons near +kF. As the number of 
electrons is conserved by interaction the integral in (14) calculated with the step momen- 
tumdistributiondoes not differ from that calculatedwith the realmomentum distribution 
corresponding to the interacting system. Making use of the band-width cut-off k, one 
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obtains the irreducible polarisation 

We remark that the same form of the irreducible polarisation would be obtained from 
(13) by using the free-electron Green function and the bare electron-phonon vertex 
To = g. The Ward identity enables us to replace this questionable approximation by a 
weaker and more reasonable condition, that of the weak coupling. The phonon Green 
function D(q) and the electron-density correlation function N(q)  are given by 

DO(4 D‘(q) = .t(,)Nf(q) = [Dew - nf(q>l-’ 

(16) =(”-$): 2 g t U F  2 2A(q))-1. 
nd- UFq 

The poles of this function provide us with the dispersion relaton of the normal modes 

(17) S2: = h{w; + u2Fq2 ?[(U: - U F ~  2 2 2  ) + 8A~~*3(q)]~’~}, 

where the dimensionless electron-phonon coupling constant A =  nu^ has been intro- 
duced and the lifetime effects have been neglected. If we assume, as usual U F  S c, (17) 
yields 

Qq = oq[l - 2U(q)/q*]”*, (18a) 

The excitations given by (18a) are dressed phonons. For 141 < k, the effect of the 
electron-phonon interaction is a renormalisation of the sound velocity, while for 
k, < 191 < 2k, the momentum dependence is somewhat distorted, the square root in 
(Ma) being q-dependent. As regards the excitation described by (186) they are 
electron-hole pair excitations. Since the sound velocity is proportional to the adiabatic 
parameter (m/M)’/* one can see from (186) that there is no dressing for the electron- 
hole pair excitations up to the order of mlM. 

We pass now to the study of the Migdal theorem (Migdall958) in the one-dimensional 
system. As is well known, in the three-dimensional case this theorem states that the 
electron-phonon vertex may be taken of the form r = g[ 1 + O(m/M)’/2] if UF % c. In the 
opposite limit, uF c, the vertex corrections are non-negligible and were calculated by 
Engelsberg and Schrieffer (1963). The first-order correction to the vertex function is 
given by 

TI@, q )  = ig2(2n)-’ J dp’Do(p‘)Gdp - p’)GoO, - p’  - q).  (19) 

The difference between our one-dimensional evaluation and Migdal’s three-dimensional 
one consists in the limitation of the momentum integrations. In the present case all the 
electronic momenta must be restricted within the ranges? kF - k, < p < -+ k~ +k,  while 
in the three-dimensional case the integrations over momenta are restricted by the Debye 
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- E - p - vF(p - kF) 

(UF + cI2 

& -  p -  uF@ - kF) - 

3325 

&-p+cC@-kF)  
E - p + C(p - kF - k,) - U F ~ ,  

1 )  (20) 
E -  p -  c@ - 4 -  kF+ kc) + UFkc 

momentum cut-off. Performing the integration in (19) we get 

- kF + k,  + p  - 2 q  - kF+ k ,  
OF - c q )  = 

for kF - kc < (p I < kF + kc, whence 
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Singularities in (22) appear only for (i) I E - pI > U&, and (ii) E - p = *c (  Ip 1 - kF). As 
long as we are interested in those values of E which are in the range p - U&, < E < p + 
uFkc singularities of type (i) are not important. For the non-interacting system E - p = 
U F (  Ip 1 - k~). Assuming that the interaction does not change appreciably these energies 

it results that singularities of type (ii) are also unimportant in the limiting cases U F  B c or 
uF Q c. Under these circumstances one may say that CO@) is O(m/M)”*. From (23) 
CO( k k ~ ,  p)  = 0; therefore, we can conclude that, unlike the three-dimensional case, the 
forward scattering does not shift the Fermi level within the lowest-order approximation 
of Z(p). Moreover, as it results from (23), there is no electron dressing in the order 
(m/M)”.  This result is consistent with that given by (18b). 

Making use of the lowest-order expression of the electron self-energy, the Ward 
identity (11) reads 

As ZO(p) is O(m/M)l12 and the singular denominator is ineffective we conclude that the 
renormalised vertex function given by (24) may be taken of the form rf, =g[l + 
O(m/M)”2], in agreement with the Migdal theorem. 

4. Backscattering and Kohn anomaly 

Introducing the Ward identity for the backscattering processes (12) into (13) we obtain, 
as in the forward scattering case, the irreducible polarisation 

where the + (-) sign refers to p - + k ~  ( - k ~ )  and momentum transfer 2 k ~  + q 
(-2kF - 4). The phonon Green function and the electron-density correlation function 
with momentum transfer 2kF(q = 0) possess the same type of singularities as the four- 
point vertex function does in the case of electron-electron interaction within the log- 
arithmic approximation (S6lyom 1979). The effect of these singularities on the phonon 
spectrum around 2kF will be discussed below. 

The normal modes for the backscattering interaction are given by 

where WO has been taken for the bare phonon frequency at wavevectors near 2kF, 
WO = ~ k ~ + ~ .  We are interested only in those solutions of (26) which correspond to 
dressed phonons. As it can be seen from (26) the phonon frequency becomes imaginary 
at wavevectors in the range ? 2 k ~  - q S M  < 2 2kF +q < ? 2 k ~  +qSM, where qSM = 
2k,(l < k,. This soft mode, arising in the phonon spectrum, points out an 
instability of the system against the backscattering interaction. This instability is similar 
to that occurring in the one-dimensional electron system with attractive backscattering 
interaction (Apostol1981b). The softening of the phonon modes is an indication of the 
breaking down of the perturbation theoretical approach. This is why we are prevented 
from discussing the Migdal theorem for the backscattering interaction within this approx- 
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imation. Our aim here is to discuss the dispersion relation of the longitudinal acoustical 
phonons near the 2 k ~  anomaly observed in KCP (K2Pt(CN)4Br0.3 * 3.2D20).  

It is well known that previous x-ray diffuse-scattering experiments (Comks et a1 
1973a, b) performed at room temperature on KCP revealed the existence of a super- 
structure of period 6dll(dll= 2.89A is the Pt-Pt distance along the chain) which corre- 
sponds to the 2 k ~  scattering ( k ~  = 0.85 X 2n/c, c = 2dil is the lattice constant along the 
chain direction). Unfortunately, this type of experiment could not resolve whether the 
2kF scattering was elastic or inelastic, i.e., whether the distortion results from a Peierls 
instability (static distortion) or a giant Kohn anomaly (dynamic distortion). Electrical 
conductivity (see, for example, Shchegolev 1972), thermopower (Kuse and Zeller 1972) 
and nuclear magnetic resonance (Niedoba 1979) measurements show that below 100 K 
a static Peierls distortion is responsible for the band semiconductor behaviour of KCP. 
Lynn et a1 (1975) claimed that at all temperatures below 300K the Pt-Pt distances are 
subject to a 2 k ~  sinusoidal distortion along the chain caused by the electronic charge- 
density wave (CDW). The correlation length along the chain is more than 100 dil, whereas 
the different chains are weakly correlated, at least at temperatures above 100K, as 
described by a transverse correlation length of 6 A  (the interchain distance is about 
9.87A). On the other hand, Kuse and Zeller (1971) measured the optical reflectivity of 
KCP at high temperatures for light polarised parallel to the chains and found a reflectivity 
which is characteristic of a metal. Moreover, the neutron inelastic experiments carried 
out by Renker et a1 (1973, 1974) showed that in addition to the elastic scattering a 
contribution from a giant Kohn anomaly is always present at room temperature in the 
2kF scattering, and the transition to a three-dimensional long-range order perpendicular 
to the Pt chains is never accomplished. Combs et a1 (1975) concluded that only at high 
temperatures the phonon spectrum is strongly distorted whereas a low temperature the 
Kohn anomaly has almost vanished. A resonance was found by these authors at approx- 
imately 2.5 meV which was interpreted by them as a low-lying optical mode. From these 
experimental data one arrives at the picture of KCP as being a one-dimensional con- 
ductor which exhibits a giant Kohn anomaly at room temperature and a Peierls insulator 
at low temperatures. A static 2kF distortion along the chains is probably present at all 
temperatures, strongly fluctuating at high temperature and more distinct and correlated 
in the direction perpendicular to the chains below 100K. A microscopic theory was 
attempted by Rice and Strassler (1973) which shows explicitly how the giant Kohn 
anomaly can be the precursor of the Peierls distortion with decreasing temperature. 

This overall picture of KCP was further specified by Carneiro et a1(1976), who 
investigated the lattice dynamics by inelastic neutron scattering experiments. We shall 
summarise here the results of these authors. The lattice dynamics of KCP is strongly 
anisotropic-the phonons propagating along the c* direction having much higher fre- 
quencies than those propagating in the basal plane of the Brillouin zone. The dispersion 
relations have been measured for the longitudinal acoustical phonons propagating with 
wavevectors (0, 0, c) (A branch) and (a, 1, c) (V branch), c being the component parallel 
to the c* axis. A giant Kohn anomaly has been found at all temperatures between 20 K 
and 240 K for 5 = 0.3c* which corresponds to the 2 k ~  scattering. The inelastic scattering 
intensities are found to vary slowly with the wavevector component perpendicular to 
the chains and do not reflect the build-up of the transverse correlations at lower tem- 
peratures. The temperature dependence was found to be rather small, indicating that 
the phonon-phonon interaction is not very important. A longitudinal optic phonon has 
been measured at 6 meV in agreement with the Raman scattering data reported by 
Steigmeier et a1 (1975). A maximum in the 2kF scattering was found at all temperatures 
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below 160 K with an energy of 2.5 meV. This value agrees fairly well with that of 1.9 meV 
obtained by Bruesch et a1 (1975) from IR reflectivity measurements. The inelastic scat- 
tering is separated in energy from the elastic scattering at lower temperatures. The 
apparent disappearance of this phonon gap at higher temperatures is ascribed to phonon 
lifetime effects, so that the phonon frequency does not condense to zero at any temper- 
ature. The scattering at the 2 k ~  anomaly does not present any wavevector extension 
below 4.5 meV, in contrast to the results obtained by Comks et aZ(l975). The excitations 
responsible for this scattering are at all temperatures connected with the regular 
phonons, whose frequency is 00 = 8 meV in the neighbourhood of the 2 k ~  anomaly. 
Carneiro et al (1976) used a simple model for the dispersion relation of the distorted 
phonons in the vicinity of 2kF to analyse the neutron scattering intensities below OM = 
4.25 meV. Their model has a linear part which is cut off by a flat part of frequency e. 
In the (q ,  w )  plane the linear part decreases from the point ( q M ,  OM) to the point (qr ,  
w). These parameters vary slowly with temperature. Their values, deduced from the 
data given by Carneiro et af (1976), are given in table 1. As was emphasised by these 
authors the excitations measured in the 2 k ~  anomaly cannot be consistently analysed 
within the framework of the CDW model (Lee et a1 1974). Whereas the high-lying optical 
mode of 6 meV can be associated with the amplitude mode of the CDW the attempt to 
associate the low-lying mode of 2.5 meV with the phason excitations of the CDW leads to 
inconsistent results. In connection with this we should emphasise that the transition to 
a well-defined distorted Peierls state, as it is predicted by the mean-field theory of the 

Table 1. Values of the parameters q M ,  q T ,  WI derived from the data given by Carneiro et a1 
(1976) (00 = 8 mev.  OM = 4.25 meV, U F  = 11 X 10’ m S - ’ ,  k F  = 0.93 A-’) and k,A obtained 
from (30). 

T qu q T  w k c  

(K) (lo-’ A-’) A-’) (mev) (10-~A-l )  A 

40 2.2 1 2.62 25 0.22 
60 2.26 1 2.58 10 0.32 
80 3.12 1.5 2.65 15 0.31 

100 4.6 2.5 2.71 35 0.25 
120 5.1 3 2.84 30 0.27 
140 7.17 5 2.96 102 0.20 
160 7.86 5.5 3.16 140 0.19 

CDW model, is never fully accomplished (Bruesch et a1 1975). Consequently, it seems 
more apropriate to describe the excitations with wavevectors near 2kF as being distorted 
phonons of a giant Kohn anomaly. This is the task we assume in the remainder of this 
paper. As the frequency of the longitudinal acoustical phonons is weakly dependent on 
the transverse component of the wavevector we expect our strictly one-dimensional 
model to work satisfactorily well. 

The irreducible polarisation can be calculated straightforwardly at finite tempera- 
ture, so that the frequency of the dressed phonons is given by 
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where 6 = uFkdkBT. The soft mode is present below a critical temperature To which is 
obtained from (27) by requiring the phonon frequency be zero at 2kF(q = 0): 

There always exists a critical temperature TO which satisfies (28) for any A. For 
(which means A less than unity) we get 

S 1 

kBTo =1.13U~k, (29) 

A condition similar to (29) has been discussed by Berlinsky (1979). However in the 
present approach we allow for an explicit dependence of the cut-off parameter k,, much 
smaller than the Fermi momentum. The presence of this parameter ensures the existence 
of the renormalised phonons down to lower temperatures. It will be shown that it is the 
same parameter which also governs the width of the anomalous dip at the frequency of 
the regular phonons. It appears that the parameter k, is an essential ingredient of our 
theory of the Kohn anomaly. Numerical calculations show that the integral in the RHS 
of (27) does not in practice depend on S2+, for small values of Qq/uFkc. Therefore we may 
neglect this quantity in the denominator of the integrand of (27). In order to fit the curves 
given by Carneiro et al(1976) we impose our Q, given by (27) to pass through the points 
of coordinates (0, oy) and (qM, OM). These requirements read 

6(1-/%4) &' sinh x 
A (l -3) = I, 7 cosh b& + coshx 

where & = qM/2k,. Dividing these equations to one another we obtain an expression 
independent of A which provides us with the condition for k,. Taking the values for oy, 

and q~ from table 1 and using UF = 11 X lo5 m s-l and 00 = 8 meV we are able to 

0 1  2 3 4 s  
qi10-'%-') 

0 - 2  
qi10-%-'1 

Figure2. PhononfrequencyQ,givenby (27) (full curve) and byCarneiroetal(l976) (broken 
curve) around 2 k ~  (9 = 0) at T = 80 K and 160 K. The parameters are given in table 1. 

C l S F  
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calculate numerically the values of the parameter k, at various temperatures. Having 
known k, we can easily derived the value of the coupling constant A from (30). These 
values of k, and A are given in table 1. The phonon frequency Qq given by (27) is plotted 
versus q in figure 2 (full curve) at T = 80 K and 160 K together with the curves given by 
Carneiro et a1 (1976) (broken curves). One can see from table 1 that the values of the 
parameter k, are much smaller than the Fermi momentum kF = 0.93 A-‘, Introducing 
the values of A and k,  in (29) we get an upper limit for To of 0.6 K,  a value much lower 
than any temperature at which we performed the calculations. This proves the consist- 
ency of our calculations. 

One can see from figure 2 that our dispersion relation Qq satisfactorily reproduces 
the curves given by Carneiro et a1 (1976) except for the flat bottom. This flat bottom is 
due to a finite lifetime of the phonons and we expect that our model might account for 
it when the lifetime effects would be included. 

Recently, Nielsen and Carneiro (1980) obtained for the electron-phonon coupling 
constant A the value of 0.3, within the framework of the mean-field theory of the CDW 
model?. One can see from table 1 that our values for A are in good agreement with this 
value at temperatures between 120 K and 60 K, except for the value 0.25 corresponding 
to T = 100 K. A more detailed investigation would be required at this point, in order to 
take into account the structural changes undergone by the system around this temper- 
ature. We expect the CDW model to be valid in this intermediate range of temperature 
(120 K-60 K) since the large fluctuations from the high-temperature region begin to be 
progressively correlated by the interchain interaction with decreasing temperature. The 
disagreement between A = 0.2 at high temperaturesobtained by us and A = 0.3predicted 
by the mean-field theory of the Peierls transition originates in the presence of the large 
fluctuations and the pseudo-gap (Bruesch et a1 1975) which are neglected in the mean- 
field theory of the CDW. At lower temperatures ( T s  40K) the pinning of the CDW 
becomes more effective and we expect again the mean-field theory of the CDW to be 
inappropriate for the real situation. In this temperature region our model should also be 
improved to take into account the effects of the impurities which might cause the pinning 
of the CDW. At all temperatures our model should be corrected for the 2kF distortion of 
the lattice by allowing a variation of the overlap integral with the ion-ion distance along 
the chain (BjeliS er a1 1974). This leads to the investigation of the interplay between the 
elastic and inelastic components in the neutron scattering, as was attempted by Dieterich 
(1975) by using the dynamic structure factor. A direct comparison of this type of 
calculation with the intensity contours given by Carneiro et a1 (1976) for the neutron 
inelastic scattering in the 2 k ~  anomaly of KCP would be most desirable. 

5. Conclusions 

We have studied the one-dimensional electron-phonon coupling within the perturbation 
theoretical approach. The Ward identity has been derived for the forward scattering 
and generalised to the backscattering by assuming that the interaction does not distort 
appreciably the Fermi sea (weak-coupling limit). In the case of the forward scattering 
it has been shown that the corrections to the zeroth-order value of the electron-phonon 
vertex are O(mlM)”’in agreement with the Migdal theorem. A model has been proposed 

t This value seems to be more reliable than other estimates, such as 1 = 0.192 (Carneiro et a1 1979) and 1 = 
0.214.24 (see, for example, Berlinsky 1979), all of these being derived from approximate equations of the 
CDW theory. 
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for the backscattering interaction having explicitly introduced the cut-off parameter k,. 
It has been shown that this parameter can be related in a simple way to the Kohn anomaly 
observed in the phonon spectrum around 2 k ~ .  The strong distortion near 2kF reported 
by Carneiro er a1 (1976) for the longitudinal acoustical phonons in KCP has been fitted 
by our theoretical calculations and the electron-phonon coupling constant has been 
derived. We found good agreement of our values for A with those predicted by the CDW 
model. 
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