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Abstract. The Ward identities relating the three-point vertex functions to the single-particle 
Green functions as well as the generalised Ward identities between the four- and three-point 
vertex functions are derived analytically for the Tomonaga-Luttinger model by using 
explicitly the boson algebra of the particle-hole operators. 

1. Introduction 

It was recognised long ago that the weakly interacting fermions in one dimension can be 
described in terms of the particle-hole excitations which are present in the neighbour- 
hood of the two Fermi points. Tomonaga (1950) showed that the operators correspond- 
ing to these pair excitations satisfy boson-like commutation relations. The free-fermion 
energy levels near the Fermi points may approximately be taken as linear in the 
wavevector and this linearised kinetic Hamiltonian was shown to be equivalent to a 
bilinear form in the aforementioned boson operators. As the two-particle interaction 
has the same structure it follows that the whole Hamiltonian of the system is bilinear in 
boson operators and its diagonalisation is a straightforward matter. A field-theoretical 
version of this model was given by Luttinger (1963) who introduced two types of fermions 
with linear energy levels and extended the allowable fermion states in the momentum 
space to - CQ for the first type of fermions and to + m for the second one. It was shown 
(Mattis and Lieb 1965) that, due to this infinite filling of the Fermi sea, the Fourier 
components of the fermion-density operators satisfy boson-like commutation relations. 
This is why the Tomonaga-Luttinger model was originally formulated in terms of these 
boson operators. The boson algebra was fully exploited when Luther and Peschel(l974) 
and Mattis (1974) introduced a boson representation for the fermion fields in one 
dimension. Remarkable progress was achieved in studying the Tomonaga-Luttinger 
model by means of the bosonisation technique (see, for example, Solyom 1979, Haldane 
1979,1981). 

An alternative way for treating the Tomonaga-Luttinger model was given by 
Dzyaloshinsky and Larkin (1973). Their method is basedupon the diagrammatic analysis 
of the relevant quantities appearing in the theoretical-perturbation approach, in par- 
ticular the three-point vertex function. The two main features of the Tomonaga-Luttin- 
ger model, namely (i) the conservation of the particle number for the fermions of each 
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type and (ii) the linear energy levels, were used by these authors for deriving diagram- 
matically the Ward identities which relate the three-point vertex functions to the 
single-particle Green functions. These Ward identities were employed to get the 
single-particle Green functions and the effective polarisations of the system. The method 
given by Dzyaloshinsky and Larkin (1973) was extended by Solyom (1978) who derived 
diagrammatically a set of generalised Ward identities which relate the four-point to the 
three-point vertex functions. The method may also be extended to the higher-order 
vertex functions. The generalised Ward identities are very useful for calculating the 
response of the system to an external field. Obviously the diagrammatic method does 
not make use explicitly of the boson-like commutation relations of the particle-hole pair 
operators. It seems, at first sight, that there are two unrelated ways of treating the 
Tomonaga-Luttinger model: bosonisation technique and diagrammatic analysis. How- 
ever the attempts of formalising the diagrammatic method (Fogedby 1976, Bohr 1981) 
revealed, as might be expected, a close relationship between the diagrammatic analysis 
and the associated boson fields. Though interesting enough, this rather abstruse rela- 
tionship has not been fully investigated so far. 

The aim of the present paper is to derive analytically the Ward identities for the 
Tomonaga-Luttinger model by making use explicitly of the properties of the boson 
operators. A basic set of equations of motion is obtained for the density correlation 
functions. These equations incorporate the essential features of the model and they are 
of great use in studying the equations of motion of more complicated three- and four- 
point vertex functions. The Ward identities between the three-point vertex functions 
and the single-particle Green functions are obtained as well as the generalised Ward 
identities relating the four- to three-point vertex functions. The equation-of-motion 
method employed here was suggested by Everts and Schulz (1974) who used it to 
investigate the spectral properties of the single-particle Green functions. The same 
method was used (Apostol 1980, Apostol and BArsan 1981) for deriving the Ward 
identities between the three-point vertex functions and the single-particle Green func- 
tions in an approximate way that does not emphasise the connection with the boson 
features of the problem. 

2. Polarisations and Ward identities 

The Tomonaga-Luttinger model is described by the Hamiltonian H = Ho + HI, 

Ho = I: PGsalps + s,p I: 4 0  P(al+psalps - 1) - S , P < O  I: pa2pP2ps - s , p r o  I: p(a;pp2p, - l), 
S , P > O  

wherea,ps(u,&) are the destruction (creation) operators of the one-fermion states labelled 
b y j  = 1 , 2  (type of fermions), wavevectorp and the spin index s = i 1; the operators 

pjs(-k) = ~;(k) = 2 aiPjp+/s ( k  + 0 )  
P 
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are the Fourier components of the particle-density operators. The Fermi sea of this 
system is filled withj = 1 particles fromp = - C O  top  = + k ~  and withj = 2 particles from 
p = - k ~  t o p  = +CO, k~ being the Fermi momentum. Due to this infinite filling of the 
Fermi sea, infinite constants have to be subtracted from the kinetic Hamiltonian HO in 
order to get finite values of the kinetic energy. 

The Tomonaga model (Tomonaga 1950) assumes that the interparticle force is 
long-ranged (though not necessarily very weak) and causes momentum transfers much 
smaller than kF. The fermions are forbidden to be scattered across the Fermi sea, from 
states with wavevectors p - + k ~  (or p - - k ~ )  to state with p - kF (or, respectively, 
p - +kF). Consequently, the fermion states are practically separated into two species, 
those with wavevectorsp near +kF (which correspond t o j  = 1 in the Tomonaga-Luttin- 
ger model) and those withp near -kF 0' = 2 ) .  As the low excited states of the system can 
be built up by superposing particle-hole pairs in the neighbourhood of the + - k ~  points 
a bandwidth cut-off ko is introduced in the model, much smaller than k ~ ,  which restricts 
the single-particle states participating in the dynamics of the system within the range 2ko 
around + k ~ ,  + k ~  - ko < p < + k ~  + ko. Under these assumptions Tomonaga (1950) 
showed that the Fourier components pjs( - k )  of the particle-density operators satisfy 
the boson-like commutation relations 

where the upper (lower) sign corresponds t o j  = l(2). The system is confined to a box of 
length equal to unit so thatp, k = 2 m  with n an integer. Tomonaga's original derivation 
does not include the spin but the extension is straightforward. The proof of (2) is based 
upon the evaluation of the matrix elements of the commutator between any two allow- 
able states of the model. The boson-like commutation relations ( 2 )  represent a good 
approximation for the interacting fermion systems whose Fermi sea is not too strongly 
distorted by interaction (see, for example, Apostol 1981, Apostol et a1 1981) and, in 
fact, it is equivalent to the random-phase approximation. Similar boson-like commu- 
tation relations are the starting point of the Sawada model Hamiltonian used in treating 
the three-dimensional electron gas (Sawada 1957, Brout and Carruthers 1963). 

The Tomonaga-Luttinger model as defined above (equation (1)) consists of two 
types of fermions with energy levels kp so that the Fermi sea is infinitely filled with 
particles and the system has no well-defined ground state. Therefore some operators 
might yield infinite values when acting upon the states of the system. Indeed, the direct 
evaluation of the commutator (2) leads, for example, to 

and one may be tempted to replace p + k' in the second sum by p ,  whereby the result 
would be zero. However, this procedure is not allowed since the sums diverge, when 
acting upon the states of the system, and the result might be wrong. In order to deal 
consistently with these objects we have to perform the normal-ordering of the operators, 
as, practically, was done in the kinetic Hamiltonian HO (equation (1)). In fact this point 
was noticed by Mattis and Lieb (1965) who have shown that the solution given by 
Luttinger (1963) to this model is incorrect as he failed to work properly with these 
commutators. One of the ways of dealing with this problem was pointed out by Mattis 
and Lieb (1965). It consists of introducing a particle-hole representation, as is usual in 
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the field-theoretical literature, by defining two new types of fermion operators 

Again the original formulation does not include the spin label but the extension is 
immediate. Doing so, the infinitely filled Fermi sea of the system becomes equivalent to 
the ground state of the c operators which is completely empty and to the ground state of 
the b operators which is filled from - k ~  to + k ~ .  In the new representation the operators 
~ , ~ ( 3 k )  take the form ( k  > 0) 

These expressions can easily be normal-ordered and, doing so, it is a simple matter to 
get, for example, 

The sums written above have finite values on the states of the system so that we may 
safely shift the summation labels to obtain 

[Pls(-k), pt(-k)] = C 1 = (2n)-'k. 
- k S p < O  

One can derive similarly all the remaining commutation relations (2). The boson-like 
commutation relations are the starting point of the bosonisation technique (Luther and 
Peschell974, Mattis 1974, Haldane 1979,1981). 

Let us define the density response functions (polarisations) 

q,@, t )  = -i(OI Tp,s(-k, t>P;s(-k, 0 )  IO), 

q , f L ( k  t> = - i @  TP,-s(-k, t)pSs(-k, 0 )  IO), (3) 

where k > 0 and the Heisenberg picture is used. Owing to the obvious invariance of the 
Hamiltonian (1) to the reversal of spin the functions I I j , ~ , l , ~ ( k ,  t )  do not depend on the 
spin index s. The diagrams corresponding to these response functions are made of a 
succession of bubbles (see figure 1); a closer examination of these diagrams leads to the 
Dyson equations 

l-Ij,,ii(k) = l-I;(k)[djj, + ~j j , \ l (k)IIJ(k) ] ,  

njj, 1 ( k )  = n,. ( k )  Uj j '  L( k p ; :  ( k )  , (4) 

where II;i(k) are the irreducible polarisations, u,,,II, , ( k )  are the effective interactions and 
k stands for the pair ( k ,  0). The effective interactions appearing in (4) may also be 
analysed in terms of the polarisations; we get, for example, from the Dyson equations 
of the effective interactions (figure l ( c ) )  

U,,II(') = g411 + ~~IF?(~)u,,II(~) + g4Ln?(k)ujlA(k) + g$If(k)?jj , l l(k) + g2Ln;(k)uj,,(k) 



On the vertex function method in the Tomonaga-Luttinger model 

j p + k s  j p :  k s  

j p + k s  j p i k s  

J P 5  JPk 

669 

( 5 )  

(6) 

Figure 1. (a )  Typical diagram of the irreducible polarisation. Full lines represent the particle 
propagator (dressed) and the hatched region includes all the insertions that preserve the 
irreducible character: the diagram cannot be split into two distinct parts by cutting a single 
interaction line. Summation over internal variables ( p , p ' ,  etc) is assumed. 

( b )  Dyson equation for the (total) polarisations IT$'(k) =IT,,,+(k)& + n,, -(k)d,-,, . The 
wavy line represents the effective interaction u$'(k) =ujp(k)& + u,l , ,(k)S,- , , .  

(c) Dyson equation for the effective interaction u$'(k).  The light wavy line represents the 
bare interaction Gj' =g&l,ds,, + g41d,,d-r' + gal&,,,, + g2,%,6,-,, (wheref= l(2) for j = 
2(1)). Summation over j " s "  is implied. 

so that we can obtain the irreducible polarisations if we know the density response 
functions. 

The density response functions can be obtained as follows. Taking the time derivative 
of Illlli(k, t )  and using the equal-time commutators and the equation of motion for 
~ 1 d - k  4 we get 

i(a/at)nllll(k t )  = ( ~ / 2 4 W  + k(1 + g&lSnllll(k> 4 + k g L n l l , ( ~ ,  t )  

+ kgljinZlil(k, t )  + kgi~n211(k, t ) ,  (7) 

where the prime on the coupling constants means the factor ( 2 4 - ' .  On the other hand 
a 

i - at nllll(k, t )  = ( 2 ~ 7 - l  I dw wIIll l(k) e-'wr, (8) 
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so that comparing (7) with (8) we get 

[ ( W l k )  - (1 + gi l l~ ln l l l l (~~ - gLnll ,(k) - giliI72lll(k) - giJ21,(k) = ( 2 4  -?  

-giLnllll(k) + [ ( W / k )  - (1 + gill)lnll,(k) - giJ211/(k) - gillnZll(k) = 0, 

gillnllll(k) + gl,nll,(k) + [(dk) + (1 + gkll)ln2lll(k) + gk,nzl,(k) = 0, 

gl,nllll(k) + gip-I11,(k) + gk,ntlIl(k) + [ ( W / k )  + (1 + gkI)]n2lL(k) = 0. 

(9a> 
Similarly we obtain three more equations 

(9b) 
The remaining polarisations n2211,~(k), I71211 , (k )  obey that system of equations which is 
obtained from (sa, b)  by changing k into - k .  Introducing the quantities 

n ;w = l-I,,fll(k) * n,, - ( k )  U;,,, = 1 + gkl? gk, P, U = gill * g;- (10) 
where the upper (lower) sign correspond to p(u), the system (9a, b)  reads 

(dk - u;,o)@i'(k) - Pp,612pi'(k) = (2n)-', 

Pp,onfi"(k) + (o/k + u:,U)ngi'(k) = 0 (11) 
whose solution is 

I$i"(k, W )  = 1~;2"(-k, 0 )  = (2n)-lk(0 + ~Op,,,k)(d - 

rIfiU(k, 0 )  = ngJk, 0 )  = -(21d)-lk2pp .(0* - U $  uk')-l, 

,,IC'> -1, 

(12) 
where U;,,, =U::,, - pi,,,. One can see that the charge-density degrees of freedom are 
decoupled from the spin-density ones and the equations (12) are the well-known polar- 
isations of the Tomonaga-Luttinger model (see, for example, Solyom 1979). The system 
of equations (9a, b )  is a direct consequence of the continuity equations of the p,,(Tk) 
operators. Using the results (12) we get from (6) the irreducible polarisations 

nT(k, W )  = n;(-k, W )  = (2n)-'k(0 - / k - 1  (13) 
which will be of great use further below. 

We pass now to the Ward identities which relate the three-point vertex functions to 
the single-particle Green functions. In order to get them we define the three-point vertex 
functions 

T,, ldp, k ;  t3 - f Z ,  t l  - t2 )  = (0 ITp,,(-kl,tl)a;p+kXt2)a,pXt3) 10) 

TI, - ( p ,  k ;  l3  - t 2 ,  t i  - f2) = (OITp,-X-k, li)a;p+~df2)a,~dt3) 10) (14) 
whose Fourier transforms are given by 

T,,,lI,l(P, k ;  l3  - f2, t l  - t 2 )  = ( 2 4  -2  j d.5 dw T,,,ll, I( p ,  k )  

x exp[--ie(t3 - tz)] exp[-iw(t1 - t2)] 

p and k denoting the pairs ( p ,  E) and ( k ,  w), respectively. The diagrammatic represen- 
tation of these vertex functions is very simple (see figure 2): their diagrams contain a 
particle line starting at f2 with momentum p + k and ending at t3 with p ;  an interaction 
line carrying momentum k is connected with this diagram at t1, An examination of these 
three-legged diagrams reveals the existence of a subset of reducible diagrams, that is 
diagrams which can be split into two distinct parts by cutting a single interaction line. 
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Figure 2. ( a )  Diagrammatic representation of the irreducible three-point vertex function 

( b )  Dyson equation for the (total) three-point vertex function Ti/ ( p ,  k) .  Summation 
Tifr'(p, k) =T$iI(p, k)& + T$,(p,  k)6,-,,. 

over j"s" is implied. 

The first of these equations can be written as 
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whence, making use of the irreducible polarisations (13) and removing the external legs 
by Tf,Tl(p, k) = G,(p)G,(p + k)T , (p ,  k ) ,  we obtain the Ward identities 

T , ( P ,  k )  = [G;'(P + k)  - G,'(p)Y(w 7 k ) ,  (18) 
the upper (lower) sign corresponding t o j  = l(2). The remaining irreducible parts of the 
three-point vertex functions, T f f , ( p ,  k), T f f ~ , ~ ( p ,  k ) ,  j # j ' ,  are all equal to zero, so that 
the Dyson equations (15a,  b )  have a much simpler form. The vanishing of these irred- 
ucible contributions is but another form of a statement previously made by Dzyalosh- 
insky and Larkin (1973) according to which the diagrams containing loops with more 
than two fermion lines do not contribute to the single-particle Green functions. It is 
noteworthy here that (18) is satisfied by the lowest-order contributions of T,ll(p, k )  
calculated from the definition (14). This agreement is based upon the identity 

G?(P) - G?(P + k)  = (ut k)G?(p)G;(p + k) ,  (19) 

where GP( p )  = [ E  T p ? io' sgn(p)]-' is the free Green function of the j-fermions. 

3. Generalised Ward identities 

The response of the Tomonaga-Luttinger model to various external fields may be 
invesigated by means of more complicated three-point vertex functions containing 
operators which couple to these external fields. Such operators correspond to the spin 
flip 

u,s(k) = C aG-Pjp+b (20) 
P 

changing of the type of particles 

rjs(k) = C aGPjp +/a 
P 

and to the combination 

n,,(k) = aG-sajp+h 
P 

which changes both the spin and the type of particles ('j = l(2) for j = 2(1)). The 
corresponding three-point vertex functions are 

T,Xp ,  k ;  f 3  - t 2 ,  f l  - t 2 )  = (0 I TqXk tl)a; +kXt2)alp - 4 t 3 )  lo) 
q p ,  k ;  t 3  - t 2 ,  f l  - t 2 )  = (0 I Tt,s(k, fl)a.$tkXtSa,pXb) 10) 

T;'(p,  k ;  t 3  - 12, t l  - (2) = (0 I TJqXk, tl)aip+dt2)a,p - 4 f 3 )  10). (23) 

Their diagrammatic structure is similar to that of the functions T,y, 1. (see figure 2) except 
for the absence of the reducible contributions. Unfortunately these vertex functions 
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cannot be related to the single-particle Green functions through simple Ward identities. 
However S6lyom (1978) showed that there exist generalised Ward identities connecting 
the vertex functions (23) to four-point vertex functions. Let us introduce the four-point 
vertex functions 

whose diagrammatic representation (see figure 3) leads to the following Dyson 

s 

ks 
I /  

( b i  

Figure 3. (a)  Diagrammatic representation of the irreducible four-point vertex function 
L P  ( p ,  k 4) = L , ; ~ ( ( P ,  k, 4)& + L,;"'_(P, k ,  4)&, . 

( b )  Dyson equation for LT'. Similar diagrammatic representations are valid also for the 
functions Lgms' 
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where ,U = 0, t o r  x, p ,  k, 4 stand for the pairs @, el), ( k ,  U) and ( q ,  E ) ,  respectively and 
L$b, ( p ,  k, 4 )  denote the contribution of the irreducible diagrams. The Dyson equations 
(25) have the same structure as those corresponding to the three-point vertex functions 
(see equations (15a, b ) ) .  The Fourier transforms of the four-point vertex functions are 
defined by 

Li - ( p ,  k ,  q ;  t ,  - t3, t 2  - t3, tl - f4) = ( 2 4  -3  I del dw d&L,( I -(P, k 4 )  

The generalised Ward identities can be derived by means of a technique entirely anal- 
ogous with that used in the preceding section. Let us take the derivative of 
LPll(p, k ,  q ;  t4 - r3 ,  r2 - t3, tl - t 4 )  with respect to the first time argument; using the 
equation of motion for p l S ( - q ,  t l )  and the equal-time commutators we get 

i - L i ' , ( p , k , q ; t ,  -t3,f2 - f3 , t l  

x exp[-k1(t4 - t3)] exp[-iw(t2 - t3)] exp[-ie(tl - t4)]. (26) 

a 
= s(t l- t3) TP(p - q , k ; t 4 - r l , t 2 - t S  

at1 

- @, - t2) TiYp - q ,  k + q;  t4 - t3, t l  - t3) 

+ q(1 + g~l)LPll~(p, k ,  4 ;  t 4  - f3 ,  t 2  - t3, t l  - t4) 

+ qgLLP1,(p, k ,  4 ;  t 4  - t 3 ,  t 2  - t 3 ,  t l  - t4) 

+ qgi L2411(p, k ,  4 ;  f 4  - t3, t 2  - t3, t l  - f4) 

+ qgLL%L(p ,  k ,  4 ;  t 4  - t3, t 2  - t3, tl - t4) 

and its Fourier transform 

[dq) - (1 + gi) ]  Li; ( p ,  k, 4 )  -gLLP1,(p, k, 4)  -gilL24ll(P, k, 4) -g;-L24-(P,  k, 4) 

(27) = q - l [ W p  - 4, k )  - T i 0  - 4 ,  k + 41, 
which has the same structure as (16). Using the Dyson equation (25) and the basic system 
of equations (9a,  b )  we obtain from (27) 

L!\(P, k ,  4 )  ( W ) - ' ( q )  = 2nq-"p - 4,  k) - TiYP - 4, k + 4)1, 

that is 

Lpirl(P, k, 4 )  = [ T i 0  - 4 ,  k )  - T?(P - 4 ,  k + 4)1/(& - q ) ,  (28) 
which is the generalised Ward identity. Similarly we get other three identities, so that 
we may write 

L$(P, k ,  4 )  = [TXP - 4 ,  k )  - T,XP - 4 ,  k + q ) / ( E  T q ) ,  

L Z ( P >  k ,  4 )  = [TP(P - 4 ,  k + 4 )  - TXP, Tq) .  (29a) 
the upper (lower) corresponding to j = l(2);  the remaining irreducible vertex functions 
are equal to zero, L,jlr- ( p ,  k ,  4 )  = 0. By using a similar technique it can be shown that 
the remaining vertex functions satisfy the following generalised Ward identities: 

G # P ?  k 4) = [T,E(P - 4, k )  - T X P  - 4, k + Q)I/(E Tq) ,  

L,;f'(P, k ,  4 )  = [TYP - 4 ,  k + 4 )  - T;(P> k)ll(E 7 4 )  

Lly-(P> k ,  4 )  = 0 
(296) 
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and 

LX(P,  k ,  4 )  = [ q P  - 4, k) - Tf(P - 4 ,  k + 4 ) 1 i ( E  T q ) ,  

L;TL:(P, k ,  4 )  = [T;”(P - 4 ,  k + 4 )  - q p ,  V I N E  q ) ,  

LJYP, k ,  4 )  = L;l(P, k ,  4 )  = 0. 

(29c) 

We should remark that Lf4, -( p ,  k, 4 )  include the two external legs of single-particle 
Green functions. The generalised Ward identities (29b, c )  have been derived diagram- 
matically by Solyom (1978). The method given here for obtaining these identities allows 
us to derive Ward identities between even more complicated vertex functions of higher 
orders, 

4. Conclusion 

The Ward identities relating the three-point vertex functions to the single-particle Green 
functions as well as the generalised Ward identities between the four- and three-point 
vertex functions have been derived analytically by means of the equation of motion 
method for the Tomonaga-Luttinger model. These Ward identities were previously 
obtained diagrammatically within the framework of the perturbation-theoretical 
approach without making use explicitly of the boson operators in terms of which the 
Tomonaga-Luttinger model is usually formulated. The method used in the present 
paper relies upon the algebra of these operators and allows us to see the role played in 
the physics of the system by the two underlying features of the model: the linear fermion 
spectrum and the conservation of the particle number for the fermions of each type. The 
two apparently distinct methods (bosonisation and diagrammatic analysis), both suc- 
cessfully used in studying the Tomonaga-Luttinger model, are thereby linked together. 
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