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Abstract. The quasi-classical theory of matter aggregation is briefly re-
viewed and the guiding principles of formation of the atomic clusters are
discussed. The interaction potential of a metallic ion with a semi-infinite
solid exhibiting a free plane surface is derived and atomic clusters deposited
on surfaces are constructed. Binding energies, ground-states, magic geome-
tries, isomers, inter-atomic distances, vibration spectra and monolayers are
thus obtained, and further developments are outlined.

1. Introduction

It is well-known that a large amount of work has been done over the last
two decades on the physical and chemical properties of the atomic clusters.
In this respect the reader is referred to the comprehensive review arti-
cles given in Ref. 1 and Ref. 2. Recently, there is an increasing interest in
atomic clusters, especially in connection with the progress recorded in the
nanosciences. In this context, atomic clusters deposited on surfaces enjoy a
particular attention. They bring together the atomic clusters field and the
surface physics and chemistry. Such clusters can be viewed as a limiting case
of quantum dots of much lower size, which could be called atomic quantum
dots. The main source of interest in such nanostructures originates in their
unusual properties associated with a functionality on an ultra-miniatural
scale. Quantum effects and finite size effects are essential in this respect.
However, in spite of the efforts made toward the physical and chemical char-
acterization of such nano-objects, little progress is still recorded in knowing
their individual, quantitative properties, the amount of knowledge in the
field being rather limited to indirect, macroscopic and phenomenological
aspects.[3, 4] The progress in this direction will be brought very likely by
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an extensive use of refined scanning probe microscopy methods, and other
similar techniques.

On the theoretical side, the main task is to understand and predict
possible physical and chemical properties of such atomic aggregates, either
isolated, or deposited, or with various other environmental constraints, in-
dicate what features might be experimentally testable, and highlight par-
ticular functionalities that may lead to technological applications. In this
respect, the first main question is the cohesion of the atomic clusters. This
is an old problem in quantum chemistry and quantum mechanics, and it
has been successfully solved since long for molecules consisting of a rather
limited number of atoms. However, major difficulties arise for an increas-
ing number of atoms, originating both in the increasing computational
resources required and in the consistency of the conceptual approaches.
A direct extension of the quantum-chemistry methods from molecules to
nanostructures is difficult from a practical standpoint, because of the large
number of degrees of freedom, though impressive efforts have been made
with the so-called ab-initio wavefunction methods.[5] On the other hand,
the very large number of degrees of freedom suggests quasi-classical ap-
proaches, and such methods, or those derived from them, are generically
known as density-functional methods.[6] In both cases certain approxima-
tions are involved, or semi-empirical assumptions, whose validity is seldom
assessed, and adjustments are often made to get an agreement, when possi-
ble, with the experimental data within cca 3 — 5%, an accuracy considered
satisfactory. Such computations may frequently be plagued with lack of
convergence and instabilities in processing the complex iterative schemes,
without ad-hoc control procedures or semi-empirical control parameters.
This state of the art of the computational methods for nanostructures re-
quires a re-examination of the basic theoretical concepts and procedures as
derived from first principles.

In this sense, the quasi-classical description of matter aggregation has
been revisited recently, and a consistent, iterative approach has been de-
vised on this basis for the chemical bond in nanostructures in particular,
in two or three steps.[7, 8, 9, 10] This theory is based on the estimation of
the order of magnitude of various contributions in a hierarchical scheme,
made possible by the quasi-classical description. The approach starts with
electron charges distributed in atomic orbitals of the upper valence shell
which are allowed to be partly delocalized in extended chemical-bond or-
bitals. The delocalized charges participating in the chemical bond are input
parameters, they being self-consistently determined after carrying the iter-
ative scheme through. This step may be circumvented in some simple cases,
where the effective charges can be estimated from the beginning by making
use of the atomic screening theory for heavy atoms for instance. This basic



aspect of the theory is discussed in Ref. 9 and Ref. 10. The first step in carry-
ing out this computational scheme is the identification of the Hartree term
as bringing the main contribution, providing the Thomas-Fermi equations
are linearized via a variational parameter related to the electron density. In
some simplifying cases, such a variational parameter turns out to play the
role of an effective screening wavevector. This procedure, fully based on the
consistent quasi-classical description, may ensure cohesion; it was probably
suggested for the first time by Schwinger.[11, 12] At this level of computa-
tions, the main role is played by the self-consistent potential, and, making
use of it, one may estimate the structures of the atomic aggregates, i.e. the
atom positions and the geometric forms of the nanostructures, compute
the binding energy, vibration spectra, stability with respect to the number
of atoms, i.e. the magic clusters forms and numbers, both for the ground-
state and the isomers (i.e. clusters whose atoms occupy slightly different
positions with respect to each other, and which differ by a small amount
of energy in comparison with the ground-state energy). This is already a
lot of information which might be tested experimentally. The second step
is to compute the so-called quantum corrections by solving Schrodinger’s
equation for the electron energy levels and wavefunctions, with the self-
consistent potential derived in the previous step. The exchange contribution
to the Hartree-Fock equations is included in this step. It may be remarked
that the exchange term plays in this scheme of computation the role of
a quantum correction. Indeed, this is based on its well-known properties
of "rigidity” and "non-locality”, emphasized probably for the first time by
Slater.[13] The quantum corrections lead to the electronic single-particle
properties which account for various clusters spectroscopies. Such quantum
corrections include the effect of the abrupt variations of the electronic wave-
functions near the ionic cores (including the self-consistent determination of
the fractional charges participating in the bond), and their contribution is
estimated|[7, 9] to cca 17%. At this level, one may also employ the exchange
integrals for computing spin-dependent properties, like, for instance, the
magnetism of the nanostructures. Similarly, we may estimate now the re-
sponse of the nanostructures to various external perturbations, including
electric polarizability, diamagnetic susceptibility, transport properties, etc.
The next iterative step would bring a second-order correction of the order
of 0.17 x 17% = 3%, which is estimated as being comparable to the lifetime
effects of the quasiparticles. As such effects originate in the Hartree-Fock
type of single-particle decomposition of the wavefunction, there is no point
in going further on with the accuracy of the computations, unless genuine
many-particle wavefunctions are used. However, this is a task which may
be left aside for the time being. It is worth noting that this level of accu-
racy predicted by the present theory coincides with the level of accuracy
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accepted as being satisfactory on semi-empirical grounds by the current
computational methods. It is also worth noting here that this computa-
tional scheme described briefly above is valid for large values of the cluster
size N (N being the number of atoms in the cluster), as it is based on
a quasi-classical description. This is precisely the range of the nanostruc-
tures, involving a number of atoms from N ~ 10 — 20 up to very large
numbers. On the other hand, it differs from the methods currently used for
bulk solids, as the latter employ essentially the translational symmetry of
the crystals.

The above program of computation is being carried out at this mo-
ment to a rather limited extent, namely up to the first step in the scheme
described above. This gives us results concerning cohesion, structure and
related information about nanostructures within an accuracy of cca 17%, as
said above. The usefulness of pursuing such a theoretical approach resides
in that it is consistently derived from first principles, provides a conver-
gent simple iterative scheme with only two, or three, steps, it is free of any
semi-empirical or ad-hoc assumptions or adjustments, and produces mean-
ingful results already in the first step with rather limited computational
resources; these results may be used as input data for getting more refined
results in the next step. In addition, the computations are restricted at this
moment to homo-atomic nanostructures consisting of some simple metallic
ions with a model point-like charge distribution. The latter is a simplifying
model assumption which does not affect qualitatively the results. The study
of more realistic atomic-like orbitals is underway.

The present theory has been tested on computing the binding energy,
quantum corrections included, of heavy atoms, which have been used as one
of the benchmarks of the present approach. Similarly, the bulk metals have
been tackled in the continuum approximation, reproducing in a highly satis-
factory manner the cohesion energy, sound velocity, electron-phonon inter-
action, plasmons and the whole spectrum of results concerning the normal
liquid theory for electronic quasi-particles. The emerging overall picture is
that of a model metal consisting of screened ionic cores weakly interacting
through a two-body potential, very similar to a Wigner metal.[14, 15, 16]
Ionization potentials for atomic clusters, as well as electric polarizability
and diamagnetic susceptibility have also been computed in a satisfactory
agreement with the experimental data. All this information can be found
in Ref. 9.

It has also been shown that several results obtained within this the-
ory are in good agreement both with experimental data, where available,
and with theoretical results derived by means of different approaches. For
instance, we get stable, icosahedral structures in agreement with both the-
oretical and experimental results for isolated clusters like (iron) Fejs, or



(palladium) Pdy3, or (barium) Bays, including inter-atomic distances, bind-
ing energies and vibration spectra. A similar agreement was obtained for
the iron core of the more complex iron-hydrocarbon cluster Fei3(CaHs)g.
These results are reported in Ref. 7 and Ref. 8, and are discussed briefly
in the next section. It has also been shown that the present theory leads,
within certain approximations, to a deformed-harmonic oscillator potential
of the Clemenger-Nilson type, which is extensively employed in assessing
magic numbers of atomic clusters (see, for instance, Ref. 9). In addition,
we derive here the work function for some metals in good agreement with
previous computations and experimental data (see Section 3). All this gives
support to our computational scheme.

In the present paper we report upon new results concerning metallic
clusters deposited on surfaces. We establish the effective potential of a free
surface in the continuum approximation, in perfect agreement with the ex-
perimental data concerning the work function, and employ it for construct-
ing metallic clusters deposited on such surfaces. We report upon structural
data of such clusters, their geometrical forms, cohesion energy, stability,
isomers, magic numbers, and indicate also the way such clusters may dif-
fuse into the bulk. The calculations concerning the electronic structure and
the effect of the surface upon the electronic structure of isolated clusters
are underway. The results presented here are reliable as they are derived
from first principles, are approximate within an accuracy which we know,
as discussed above, can be refined quantitatively within the next step of
the theory, and offer structures that may be tested experimentally, most
directly by scanning probe microscopy.

2. Self-consistent potential

Solid atomic aggregates occur through delocalization of the electrons in
the upper valence shells. The chemical bond originates in a superposition
of atomic-like orbitals and extended orbitals that vary slowly in space.
Such a picture is amenable to a quasi-classical description of the Hartree-
Fock equations. An atomic aggregate looks like an ensemble of electrons
spinning around and the ionic cores left behind.[7] The ionic cores have
effective charges 2}, where ¢ is the label of the ion. These charges are dis-
tributed radially-symmetric, as for s-orbitals, or directionally, as for p, d, f-
orbitals; several electrons in d- and f-orbitals may approximately be viewed
as radially-symmetric. In addition, such atomic-orbital charges with spher-
ical symmetry may also be approximated for the beginning by point-like
distributions. Most of the metallic ions fall in this class of s-, or approxi-
mately spherical d, f-orbitals. The effective charges may be estimated for
atoms sufficiently heavy by making use of the atomic screening theory. For



instance, effective charges are z* = 0.44 for Na (sodium) and z* = 0.57
for Fe (iron).[7, 8, 9, 10] The point-like charge distribution has a limited
validity for s-orbitals, or for those d- and f-orbitals with several electrons,
which may be approximately viewed as radially symmetric. In addition, the
model assumption of a d-type distribution in the ionic core allows simple
calculations, and does not affect qualitatively the results. The approxima-
tions involved are comparable with those derived from the general theory
as discussed in Introduction.[7, 8, 9, 10]

Under the circumstances given above, within the quasi-classical descrip-
tion, the electrons in an atomic aggregate move in a self-consistent Hartree
potential

N *
— _ % —qr—Ry|

o) =3 e , (1)
where N is the number of ions, R; denote their positions and ¢ is a screening
wavevector to be determined variationally. The derivation of this potential
is fully discussed in Refs. 7-10. The well-know atomic units are used here,
namely the Bohr radius ayg = 7’12/me2 = 0.53A and twice the rydberg
e?/ay = 27.2eV. According to the general theory,[7, 8, 9, 10] the self-
consistency implies the electron density n being dependent on the potential
© by n = (¢?/47)¢p, so that we obtain the potential energy

3 &, 1Y
Eput = —ZQZZ; + 5 Z Q(Ri]') (2)
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of the interacting electrons and ions (electron-electron and ion-ion Coulomb
repulsions included), where

2
qR;;

O(Ryj) = — Je 41t (3)

are effective interaction (pseudo-) potentials between ions separated by dis-
tance R;; = |R; — R;|. The derivation of the potential energy given by
(2) can be found in Refs. 7-10. It is worth emphasizing that the effec-
tive potentials (3) are spherically symmetric, as expected from a point-like
charge distribution in the ionic cores, and are pairwise potentials. In gen-
eral, many-body contributions to effective ionic potentials, like three- or
four-body terms, are difficult to be rigorously justified from first principles,
on one hand; on the other hand, in those cases where their derivation is
proved, their contribution to the cohesion turns out to be small. In the
present theory, the effect of such ”correlations effects” is actually taken
into account implicitly by the self-consistency of the theory. Indeed, the
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screening wavevector ¢, which is determined variationally, depends on the
ions positions, more precisely on the inter-ionic distances R;;. This is a
weak dependence arising from the interacting terms in the potential energy
(2), so that we may write the screening wavevector as ¢ = gy + dq(R; ),
where ¢y includes only the main contribution to the potential energy as
expressed by the first term in (2) (this is the ionic self-energy). On the
other hand, we may expand the potential (3) in powers of dg, which leads
to many-body contributions to the pairwise potential (3), written this time
with the screening wavevector gy. As one can see, such a formal series ex-
pansion is a perturbational scheme, where the higher-body terms bring
a small contribution, and the main two-body term (first-order term) is in
fact less accurate than the closed formula (3). Another source of many-body
contribution resides in the effective charges z;, and their environment de-
pendence. Such dependence is included in the self-consistent determination
of the effective charges, as discussed in Introduction, and the effect of such
dependence is of the order of the quantum corrections, as the latter account
for the short-scale variations. However, in some cases, like Na and Fe, cho-
sen here for illustrating the theory, the effective charges are satisfactorily
estimated from the atomic screening theory, and, consequently such ef-
fects are already included. The potential energy given by (2) is minimized
with respect to R; (actually gR;) in order to find the ionic equilibrium
positions; this way, we determine the geometric forms of the atomic ag-
gregates, both for their ground-states and isomers. Thereafter, the kinetic
energy Ey;, = (2772/640)¢* 3, #f is added, and the quasi-classical energy
E,; = Ein + Epy is minimized with respect to the screening wavevector
g; finally the exchange energy E., = —(9/32)¢? Y_; 2] is included to obtain
the binding energy F = E; + E.;. As one can see the exchange interaction
is taken into account at this level of computations.

This theoretical approach has been applied to homo-atomic metallic
clusters, where geometric magic numbers have been obtained, together
with binding energies, inter-atomic distances and vibration spectra (up to
N ~ 160).[7] Leaving aside the small contribution of the interacting part in
the potential energy at equilibrium, the screening wavevector reads approx-

imately ¢ ~ 0.772*""* in this case, and the average inter-atomic distance
may be estimated as a = R;; ~ 2.73/g; all the same, the binding energy is
given by E = —N(0.432*7/340.172*%/3). Similarly, the theory has been used
to estimate other, more complex structures, as, for instance, the equilib-
rium Fe-core structure of the iron-hydrocarbon Fe;3(CoHs)g-cluster.[8] We
emphasize that icosahedral structures of Fe clusters, as Fe;3 for instance,
are currently reported in the literature, both experimental and theoreti-
cal, and our quantitative results agree satisfactorily with these data, where

available.[1, 2, 17, 18] For instance, we obtain ~ —5.3eV a cohesion energy



per atom for Fei3, which agrees well with —5.2eV reported in Ref. 19 by
using density-functional methods, and a similar agreement holds also for
inter-ionic distances (of cca 24; see also Refs. 20-22). The iron-hydrocarbon
cluster Fe;3(CoHs)6 has been synthesized experimentally,[23] and the struc-
ture derived theoretically in Ref. 8 agrees well with the experimental data,
including atomic positions in the Fejs-core, inter-atomic distances, core
contribution to the binding energy, stability and vibration spectra. Such an
agreement is also reported in Ref. 24, with regard to the vibration spec-
trum as computed by means of the density-functional methods. We may
also note here that structures, magic numbers and binding energies have
recently been reported for Pd (palladium) clusters up to N = 20 in close
agreement with the values obtained by us (2}, = 0.40, cohesion energy per
atom ~ —2.5eV for N = 20), by using a theoretical model of an embedded-
atom potential.[25] Including more realistic atomic-like charge distribution
(instead of the point-like distribution) we expect to get greater inter-atomic
distances, but the cohesion energy and other relevant results will not change
drastically.

The above theoretical description is to be developed along two direc-
tions at least. First, the directional character of the atomic-like orbitals
(as well as their radial dependence) must be included in order to obtain,
for instance, p- or sp-orbitals atomic aggregates (as well as directional d-
and f-orbitals aggregates). Secondly, the quantum corrections must be in-
cluded in the quasi-classical treatment, in order to get a more accurate
knowledge of the electronic single-particle properties, like energy levels (or
bands), ionization potential, chemical affinity, optical properties, polariz-
ability, magnetic properties, etc. An error of cca 17% is estimated without
quantum corrections, while including them may lead to an accuracy of up
to cca 3%, at most, as discussed in Introduction.[7, 8, 9, 10] Various hetero-
atomic aggregates could then be studied with more confidence.

Until then, the present theory can be employed to get a description
of metallic surfaces or interfaces, or metallic clusters deposited on such
surfaces, or atomic aggregates with various others geometric constraints.

3. Metallic Surface

The summation over ions in (1) can be restricted to half a space, as for
a semi-infinite solid with a free plane surface perpendicular to, say, the
z-direction at £ = 0. Such a surface is shown in Fig. 1. In the continuum
approximation we obtain the self-consistent potential

p(z) = B (1 —5e) , 2 <0 ,

(4)
2nz* —qx

cp(w):q2a3e , x>0,




where z* is the average effective charge and a denotes the average inter-
atomic distance.

Figure 1. A free plane surface of a semi-infinite solid

When compared to the bulk contribution ¢ = 472*/¢?a® one can see
that a dipolar potential d¢ occurs at the surface, which gives rise to a spill
over of the electrons and a surface charge double layer. The electron density
n = (¢%/47)¢p is shown in Fig. 2, and the total charge density is plotted in
Fig. 3 vs z.

The work function of the solid as computed from (4) is ¢, as expected.
The interaction energy —(1/2) [ dz - dpdn associated with the electronic
double layer (per unit area) is —72*2/2¢%a®, and it acts like an additional
uncertainty in the quasi-particle energy giving rise to boundary (finite-
size) lifetime; it also leads to a weak relaxation of the ionic positions at the
surface.

It is worth noting that the surface potential (4) and the correspond-
ing surface charge distribution has been suggested long time ago on semi-
empirical grounds[26] (see also Ref. 27), and used for computing work func-
tion of metals. The screening wavevector given in Ref. 26 and Ref. 27 for
Na is 1.27A corresponding to a work function 2.9eV as compared with the
experimental 2.4eV. We obtain a screening wavevector ¢ = 1.17A from our
theory (¢ = 0.772*1/ 3), leading to a 2.7eV work function, which is closer to
the experimental value. A similar agreement holds also for other metals.

On the other hand, the potential energy can be estimated from (2) and
(3) for a semi-infinite solid; in the continuum approximation we obtain

*2

3 .o mZ
Epot = _Zqz N + 2q3a6

where A is the area of the cross-section; therefore, the potential energy (5)
includes a surface contribution (72*2/2¢3a%) A, beside the bulk contribution

A, ()
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given by the first term (the interacting part vanishes in the bulk continuum
limit); the surface tension of the solid is o = (72*2/2¢3a%), and it agrees
with the double layer energy given above.

metal S

Figure 2. Electron density at the surface
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Figure 3. Charge distribution at the surface by-layer

Similarly, we can estimate the interaction potential between a semi-
infinite solid and an ion with an effective charge z; placed at distance z
from the surface; indeed, making use of (2) and (3), we obtain

* %
Epot = Ls — Zqzad - Mwe_qm ) (6)
where E is the potential energy of the solid as given by (5); the second term
in (6) is the self-energy of the added atom and the third term represents the
interaction potential of the atom with the semi-infinite solid; it is shown in
Fig. 4.

This interaction potential exhibits a potential barrier just beneath the
surface, and has an attractive part above; the latter is responsible of ad-
sorbing additional atoms on the surface, and of stabilizing deposited atomic
clusters.
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Figure 4. Interaction potential between an atom and a semi-infinite solid

Now it is easy to write down the potential energy of an ensemble of N
atoms of effective charges z; deposited on the surface; it reads

3 X o 1 N rt & v —a|Xi]
Epot =Es—2q) 22+ > ®(Ry) — —5 Dz Xee W1 (7)
a3 2455 907 3

where the potentials ®(R;;) are given by (3) and X; is the z-coordinate
of R;. It is worth noting that the screening wavevector ¢ is the one cor-
responding to the solid, as the latter prevails upon the deposited cluster
in the thermodynamic limit. In this respect the deposited clusters differ
from the isolated clusters, which have their own screening wavevector as it
results from the minimization of their quasi-classical energy. The binding
energy of a deposited cluster is given by F = E; + E,;, where the quasi-
classical energy is B, = (277%/640)¢* 3, 2f + Epot — Es, and the exchange
energy is given by Ee, = —(9/32)¢? ¥, #; the potential energy given by
(7) is minimized with respect to the ionic positions R;. It is worth noting
that an interaction energy

2t & olX
Eint = —— Z 2} X 1l (8)
@ i=
can be defined from (7), between the deposited cluster and the solid, which
may serve as a measure of the energy needed to separate the cluster off
the surface (the difference in the cluster energy must be added, arising
from its own screening wavevector corresponding to the cluster relaxation).
One can also notice that the interaction energy (8) for the halves of a solid
compensates exactly the surface energies of the two faces, as given by (5). If
two distinct solids are put in contact there is a diffusion of one into another
across the interface, according to the tunneling through the interaction
potentials given by (8). Finally, we note that the continuum approximation
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Figure 5. Ground-state abundance spectrum and magic clusters deposited on surfaces

is not necessary, and we can treat the cluster deposition by preserving the
discrete summations over fixed ionic positions in solid; we have adopted
the continuum approximation here for the sake of the simplicity; the errors
introduced on this occasion refer to the few atomic layers in the vicinity of
the surface, and of course to the matching problem of the lattice constants.

4. Clusters Deposited on Surface

The main problem of depositing atomic clusters on a surface is the mini-
mization of the potential energy (7) with respect to the ionic positions R;
(in fact with respect to gR;).

Initially, we give positions R; randomly distributed in space and let the
ions move step by step along the forces until a local equilibrium is reached
(corresponding to forces less than 10~%eV/A); this equilibrium is checked
by computing the corresponding vibration spectra. For each number N of
atoms the procedure is repeated for a few hundreds times, in order to get
the ground-state and the isomers; the latter are clusters higher in energy
with slightly different ionic positions. This procedure has been applied to
Fe-clusters (z* = 0.57) deposited on Na-surface (z* = 0.44) up to N = 100.
The original ionic positions are randomly distributed in space both below
and above the surface of the solid; we find that equilibrium positions are
reached mostly above the surface, as for deposited clusters. The binding
energies F(N) have been computed for the ground-state of these clusters as
indicated before, and abundance spectra D = In(I1%,/In;+1Iny—1) = E(N +
1) + E(N — 1) — 2E(N) have been obtained, where Iy is Boltzmann’s
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Figure 6. Magic clusters deposited on a surface

statistical weight.

Such an abundance spectrum D is shown in Fig. 5; these spectra depend
weakly on the nature of the clusters and of the substrate. Magic clusters
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deposited on surface are to be noted in Fig. 5, as, for instance, those corre-
sponding to N = 7,14,19,23,75,77,85,88, 94...; they acquire highly sym-
metric forms, as shown in Fig. 6. The rather structureless island between
N = 23 and N = 75 is intriguing in Fig. 5. As a general rule, for small
values of N the atoms are adsorbed on the surface as a monolayer, forming
up more-or-less regular polygons. On increasing the number of atoms, they
distribute themselves both horizontally and vertically, giving rise to multi-
layer structures, with various, intricate geometries, and sometimes beautiful
symmetries, as those corresponding for instance to N = 23,77, 94.

-4.8
— 3D-clusters
-4.9 - - - - 2D-clusters
S 50 |
S
£
Z
o 51 F
.52 -
g b+ )
0 10 20 30 40 50 60 70 80 90 100

Figure 7. Ground-state energy per atom for Fe-clusters (3D, solid line) deposited on
Na-surface vs number of atoms, as compared with monolayer cluster energy (2D, dashed
line)

It is worth noting that their binding energies are higher in comparison
with their monolayer (two-dimensional) versions (which are isomers), i.e.
growing up vertically helps stabilizing the clusters; such a comparison is
shown in Fig. 7. In general, there is a competition between the two direc-
tions of growth, horizontal and vertical, and it is difficult to predict which
would prevail for a given number of atoms.

Bound states can also be obtained for clusters deposited on surfaces
with parts pervading beneath the surface, as shown in Fig. 8. Indeed, the
first two pictures in Fig. 8 shown a 50-atoms cluster diffusing into solid,
while the last picture in Fig. 8 exhibits a 100-atoms cluster developing an
interface with the solid. These states are isomeric, and, in some cases, atoms
may escape into the solid where they acquire free positions, 7.e. they are no
more bound to the cluster. Similar formations can be obtained for a large



15

Figure 8. A 50-atoms cluster diffusing into solid (first two pictures), a 100-atoms one
developing an interface with the solid (last picture)

variety of situations, including both geometric constraints, like a deposition
surface, and dynamic constraints, like applying external forces.[3, 28]

As regards the comparison of the present structural results with ex-
perimental data concerning homo-metallic clusters deposited on surfaces,
or incipiently diffusing into metals just beneath the surface, we are not
aware of distinct, clear-cut experimental results yet, amenable to such a
comparison. Direct observations have been reported to our knowledge for
Si (silicon) and Ga (gallium) clusters deposited on Si-surfaces by electron
scanning microscopy, indicating the existence of stable, abundant struc-
tures and corresponding magic numbers. It is relevant in this context the
following excerpt from Ref. 28:

” Although speculations about the existence of magic clusters on sur-
faces were raised in a paper in 1992, which was based on a study of the
Pt/Pt(111) surface using He scattering,[29] no SCM (surface magic clusters,
our note) were found in the later scanning tunneling microscopy (STM)
study of this surface.[30] The first demonstration of such clusters exhibit-
ing enhanced stability and abundance had to wait for several years until
SCM were directly observed on the v/3 x v/3R30°-reconstructed Ga/Si(111)
surface.[31, 32] Soon after this work, Si islands with magic numbers of unit
cells on the Si(111) 7 x 7 surface were reported.[33] This was then followed
by the observation of a type of Si magic cluster on Si(111).[34]”

The study of Si, or Ga clusters, and others alike, requires the inclusion
of the directional character of the atomic-like orbitals. Such an investigation
is underway.

5. Concluding Remarks

In conclusion, we may say that interaction potentials can be identified in
the quasi-classical description of atomic aggregation, between atoms and
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semi-infinite solids, which allow to analyze the deposition of the atomic
clusters on surfaces. At the present level of computations the geometric
forms of deposited metallic clusters are obtained, as well as binding energies,
inter-atomic distances and vibration spectra. Magic clusters are identified,
deposited on surfaces, exhibiting, in general, high symmetries, both hori-
zontally and vertically. Increasing the number of atoms they may intrude
beneath the surface, giving thus the possibility of building up interfaces,
and contacts, between two solids. Further investigations are pursued into
extending the theory to directional chemical bonds and electronic single-
particle properties, and to increase the degree of accuracy of the results.
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