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Atoms may bind together according to the quantal structure of their single-
electron energy shells. Electrons in the valence upper shells participate in
the chemical bond, leaving behind a background of positive ions. The hole
density of the ionic background is given, in its most general pair-wise form,
by

ρ(r) =
∑
ia;jb

(
∑
s

β2
sc

s∗
iac

s
jb)χ

∗
ia(r)χjb(r) , (1)

where χia(r) = χa(r − Ri) is the a-th atomic-like orbital of the i-th ion
placed at Ri, csia are the coefficients of the s-th linear combination of atomic-
like orbitals, and βs is the content of the chemical-bond orbital Φs in the
molecular-like orbital ψs; ψs = αsϕs + βsΦs, ϕs =

∑
ia c

s
iaχia, α2

s + β2
s = 1.

Averaging out the β2
s -coefficient in (1), and in virtue of the orthogonality

of the csia-matrix, one gets the ionic density

ρ(r) = β2
∑
ia

|χia(r)|2 ; (2)

hence, the total number of electronic holes of the ionic background is given
by ∫

dr · ρ(r) = β2
∑

i

zi , (3)

where zi is the nominal valence of the i-th atom. One can see that each ion
participate in the chemical bond with an effective valence

z∗i = β2zi , (4)

smaller than the nominal valence zi; and the same is true for each valence
atomic-like orbital ia. The general form (1) of the ionic density may also
be written as

ρ(r) =
∑
ia;jb

αia;jbχ
∗
ia(r)χjb(r) , (5)

221
A. Graja et all. (eds.),

Molecular Low Dimensional and Nanostructured Materials for Advanced Applications, 221-231.

c© 2002 Kluwer Academic Publishers. Printed in the Netherlands.



222

where αia;jb =
∑

s β
2
sc

s∗
iac

s
jb, and, if the overlap may be neglected, one gets

ρ(r) =
∑
ia

αia |χia(r)|2 , (6)

where αia = αia;ia, and the effective charge parameters read now

z∗ia = αia =
∑
s

β2
s |csia|

2 , (7)

and
z∗i =

∑
a

z∗ia . (8)

The chemical-bond orbitals Φs are only fractionally occupied by electrons,
as well as the atomic-like orbitals ϕs. The electrons spend part of time on
atoms, and the remaining part moving in-between the atoms. The coeffi-
cients of partial occupancy are β2, or β2

s , or the effective valence parame-
ters z∗ia above. The atomic-like orbitals ϕs are localized over atomic-scale
lengths, while the chemical-bond orbitals Φs extend to the entire atomic ag-
gregate. The single-electron picture requires both reasonably heavy atoms
and large atomic aggregates, so that the disparity in the scale-lengths be-
tween the atomic-like orbitals and the chemical-bond orbitals be large. This
difference allows the hamiltonian of the atomic nuclei and the electrons to
be separated into an atomic-like part and a collective, or chemical-bond,
part, via the corresponding Hartree-Fock energy functional. The coefficients
csia are determined by the usual approach to the linear combination of
atomic orbitals (which is the standard ab-initio wavefunctions method[1]),
while the coefficients βs are determined by minimizing the interplay be-
tween the atomic and the chemical-bond contributions. The latter provides
both solution and self-consistency.

The approach is based on the Hartree-Fock theory and on Mullikan’s
idea of molecular-like orbitals. The general theory of chemical bond outlined
above is given in Ref.[2].

For metals, i.e. for s-, d- and f -valence electrons, the ionic background
may be approximated by an ensemble of point-like ions; the ionic density
is then given by

ρ(r) =
∑

i

z∗i δ(r−Ri) . (9)

For p-, or sp-elements the directional character of the atomic-like orbitals
brings relevant contributions. The theory reviewed below does not depend
essentially on the form of the ionic density; the directional character of the
ionic cores however requires more extensive numerical computations. The
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effective hamiltonian of the chemical bond for point-like (metallic) ions
reads

H =
∑
α

p2
α/2m− e2

∑
iα

z∗i / |rα −Ri|+

(10)

+
1
2
e2

∑
α 6=β

1/ |rα − rβ |+
1
2
e2

∑
i6=j

z∗i z
∗
j / |Ri −Rj | ,

which includes the kinetic energy of the electrons, the electron-ion Coulomb
attraction, the electron-electron Coulomb repulsion and the ion-ion Cou-
lomb repulsion; m denotes the electron mass and −e is the electron charge.
The problem is to find out the ground-state of the ensemble described by
(10), including the stability of the atomic aggregate with respect to the ionic
positions, and the lowest excited states, i.e. the cohesion, binding, electronic
and ionic properties. Since the ensemble is large, i.e. the number N of ions
is much greater than unity, N � 1, and, accordingly, the corresponding
number of (neutralizing) electrons is also large, the Hartree-Fock equations
turn out to be the appropriate starting point. The Hartree-Fock energy
functional for (10) must be written in terms of the βsΦs-wavefunctions.
However, the nature of solutions does not depend on the fractional occu-
pancy, so that the Hartree-Fock equations may be written as

(p2/2m)Φs − e2
∑

i z
∗
i / |r−Ri| · Φs + e2

∫
dr′ · n(r′)/ |r− r′| · Φs

−e2
∫
dr′ · n(r′, r)/ |r− r′| · Φs(r′) = εΦs ,

(11)

where the electron density is given by

n(r) =
∑
s

|Φs(r)|2 (12)

and the two-point electron ”density”

n(r, r′) =
∑
s

Φ∗
s(r)Φs(r′) (13)

is introduced. The external field of the ions can be seen in (11), as well as
both the Hartree and the exchange interactions. Equations (11) can also
be written in a more convenient form

(p2/2m)Φs − eϕ · Φs + εex(Φs) = εΦs , (14)

by introducing the Hartree field

ϕ = e
∑

i

z∗i / |r−Ri| − e

∫
dr′ · n(r′)/

∣∣r− r′
∣∣ (15)
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and the exchange energy

εex(Φs) = −e2
∫
dr′ · n(r′, r)/

∣∣r− r′
∣∣ · Φs(r′) =

(16)

= −e2
∫
dr′ · 1/

∣∣r− r′
∣∣ ·∑

s′

Φ∗
s′(r′)Φs′(r) · Φs(r′) .

As usually, the spins are parallel in the exchange energy, and s may equal
s′. One may proceeds now to solving the Hartree-Fock equations.

The first remark is that the exchange energy (16) admits plane waves as
eigenfunctions for Φs. On changing the wavefunctions Φs both the exchange
energy (16) and the electron density (12) change, and in this sense the ex-
change energy is a ”functional of density”. But the exchange energy does
not change on changing locally the upper limit of the summation over s′

in (16), i.e. on changing the ”local” electron density, due to the non-local
character of the exchange energy; indeed, one can not modify the upper
limit of the summation over s′ for a given r without doing the same at
r′. In this sense, the exchange energy is not a functional of density, but
it remains a functional of ”concentration”. This ”rigidity” property of the
exchange energy under local variations of the electron density is the second
remark made upon the behaviour of the exchange energy. Since, due to
the ”rigidity” of the exchange energy, one may change locally the electron
density, in a slow manner, such as to preserve the plane waves over as large
a spatial extent as possible, without changing the exchange energy; doing
so, one can screen off the long tail of the bare Coulomb potential of the
electron-ion interaction in the self-consistent Hartree field ϕ given by (15).
The local density of electrons behaves, in this respect, as a free parameter
for the exchange energy. Under this circumstance, the self-consistent po-
tential ϕ is almost rendered to a constant over large spatial regions, such
that the Hartree-Fock equations (14) admit indeed plane waves as eigen-
functions, to the first approximation. The self-consistent potential ϕ is left
with abrupt variations over small distances around the ions, whose contri-
butions are treated in the next step. This is the quasi-classical description
of the solutions of the Hartree-Fock equations, and the basis of the picture
of the slightly inhomogeneous electron liquid for the chemical bond theory.

One may proceed now to give a few more mathematical details about the
quasi-classical description of the slightly inhomogeneous electron liquid. For
(quasi-) plane waves the kinetic energy, the electron-ion interaction and the
electron Hartree interaction in the Hartree-Fock energy functional of the
hamiltonian (10) are functionals of density; while the electron exchange
interaction stays ”rigid” under the variation of the electron density. The
vanishing of the first-order variation of the energy functional under varia-



225

tions of the electron density, as for equilibrium, leads to the quasi-classical
equation of motion

h̄2k2
F /2m− eϕ = 0 , (17)

where kF = pF /h̄ is the local Fermi wavevector, pF is the correspond-
ing Fermi momentum, and h̄ is Planck’s constant; this equation is also the
equilibrium equation for a vanishing local chemical potential, as for a neu-
tral atomic aggregate. On the other hand, the Hartree field given by (15)
satisfies Poisson’s equation

∆ϕ = −4πe
∑

i

z∗i δ(r−Ri) + 4πen , (18)

where the electron density is given by

n = k3
F /3π

2 , (19)

as for (quasi-) plane waves. Substituting kF from (17) into (19) one obtains
n ∼ ϕ3/2 and the 3/2-Thomas-Fermi model for the self-consistent field ϕ.
However, both the quasi-classical equation of motion (17) and the electron
density (19) are not valid anymore in the vicinity of the ionic cores where
the variations of the field ϕ are large; consequently, using them in this con-
text of large errors in the ionic boundary conditions would introduce large
errors in the overall behaviour of the self-consistent potential ϕ over large
distances. The 3/2-Thomas-Fermi model is valid in the asymptotic limit of
infinite charges, where the electrons are localized on the ionic cores; this
is the ”quasi-classical approximation”, which, however, leads to the ”no-
binding theorem” for such hypothetical atomic aggregates, as expected. On
the contrary, since the self-consistent potential ϕ and the electron density
vary slowly over large distances, according to the quasi-classical descrip-
tion, one must linearize both the Fermi energy h̄2k2

F /2m → h̄2kFkF /2m
in (17) and the electron density n = k3

F /3π
2 → k

2
FkF /3π2 in (19), where

the parameter kF , to be determined variationally, is constant in space, and
the entire spatial dependence is transferred upon the new Fermi wavevector
kF . This linearized Thomas-Fermi theory corresponds to the quasi-classical
description of the slightly inhomogeneous electron liquid, where the ionic ef-
fective charges z∗i are small, the number N of ions is large, and the cohesion
is realized over large distances in comparison with the small regions around
the ionic cores where one encounters abrupt variations; giving thereby a
statute of quantal corrections to the contributions brought about by these
abrupt variations over short-scale lengths. In this respect the theory is close
to Schwinger’s remarks upon the chemical bond.[3] The theory applies also
to heavy individual atoms, where, quantal corrections included, it repro-
duces the empirical binding energy ∼ −16Z7/3eV, where Z � 1 is the
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(finite) atomic number.[4] Making use of the linearization procedure given
above the electron density can be written as n = (q2/4π)ϕ, where q is the
Thomas-Fermi screening wavevector given by q2 = (8/3π)kF , and Poisson’s
equation (18) becomes a linear equation,

∆ϕ = −4π
∑

i

z∗i δ(r−Ri) + q2ϕ ; (20)

whose solution
ϕ =

∑
i

z∗i
|r−Ri|

e−q|r−Ri| (21)

is a superposition of screened Coulomb potentials, as expected. Bohr ra-
dius aH = h̄2/me2 = 0.53Å and the atomic unit e2/aH = 27.2eV are
used for lengths and, respectively, for energy. The Thomas-Fermi screening
wavevector is determined variationally, as discussed above.

The ”potential” energy, i.e. the sum of the electron-ion attraction, the
Hartree electron-electron repulsion and the ion-ion repulsion, is given by

Epot =
∫
dr · (−ϕn+

1
2
ϕen) +

1
2

∫
dr · ϕionρ =

= −1
2

∫
dr · (ϕ+ ϕion)n+

1
2

∫
dr · ϕionρ = (22)

= − q
2

8π

∫
dr · (ϕ+ ϕion)ϕ+

1
2

∫
dr · ϕionρ ,

according to the Hartree-Fock energy functional for the hamiltonian (10),
where ϕe is the electron contribution to the self-consistent field ϕ,

ϕion =
∑

i

z∗i / |r−Ri| (23)

is the ionic contribution to the self-consistent ϕ, ϕ = ϕe +ϕion, and ρ is the
ionic density given by (9); it is worth noting the Koopmans’ 1/2-factor in
the potential energy above. Using the potential given by (21) one obtains

Epot = −q
4
[3

∑
i

z∗2i +
∑
i6=j

z∗i z
∗
j (1− 2/qrij)e−qrij ] , (24)

where rij = |Ri −Rj | is the inter-atomic distance. The above equation tells
that ionic cores have a ”self-energy” corresponding to the first term in (24),
and interact slightly through effective potentials[5]

Φij = −1
2
qz∗i z

∗
j (1− 2/qrij)e−qrij ; (25)
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this resembles closely Wigner’s ”metal” picture. The minimum values of the
potential energy (24) with respect to the ionic positions Ri, or, equivalently,
with respect to the dimensionless position parameters xi = qRi, give the
equilibrium geometric forms of the atomic aggregate; they include both the
ground-state form and the isomers. It is easy to see that the equilibrium
average inter-atomic distance is a ' rij ' c/q, where c ' 2.73. Ground-
state magic numbers N = 6, 11, 13, 15, 19, 23, 26, 29, 34, 45, 53, 57, 61, etc,
and magic geometric forms have been obtained thereby for homo-atomic
metallic clusters, which are independent of the effective charge z∗ = z∗i , i.e.
independent of the nature of the chemical species (for point-like ions).[5]
The corresponding ground-state value of the potential energy can be written
as Epot = −Bq,where the effective atomic interaction contributes little to
the ciefficient B, in comparison with the atomic ”self-energy” contribution.
With a few possible exceptions, the isomers are very close in energy to the
ground-state.

According to the quasi-classical description of the inhomogeneous elec-
tron liquid the kinetic energy of the electrons reads

Ekin = V k5
F /10π2 → k

4
F

10π2

∫
dr · kF =

(26)

=
1

5π2
(3π/8)3q6

∫
dr · ϕ =

27π2

640
zoq

4 = Aq4/4 ,

where V is the volume the electrons and ions are confined to, z0 =
∑

i z
∗
i

is the total charge, and the coefficient A is defined by (26). The Thomas-
Fermi screening wavevector q is obtained by minimizing the quasi-classical
energy

Eq = Ekin + Epot = Aq4/4−Bq ; (27)

one obtains
q = (B/A)1/3 ' 0.77z∗1/3 , (28)

where z∗ is the average effective charge z∗i ; the effective atomic interac-
tion contributes little to this variational value of the equilibrium screening
wavevector. Making use of this q-value one gets the average inter-atomic
distance a ' 2.73/q ' 3.55z∗−1/3; the equilibrium quasi-classical energy is
Eq ' −0.43Nz∗7/3; the average self-consistent potential given by (21) is
ϕ0 = ϕ = 4πz∗/a3q2 = (4π/c3)z∗q ' 0.48z∗4/3.

The total energy is given by the quasi-classical energy Eq plus the ex-
change energy Eex. The latter reads

Eex = −V k4
F /4π

3 → − 1
4π3

k
3
F

∫
dr · kF =
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(29)

= − 1
2π3

(3π/8)2q4
∫
dr · ϕ = − 9

32
q2z0 ,

or Eex = −0.17Nz∗5/3. Therefore, the total energy is given by

E = Eq + Eex ' −N(0.43z∗7/3 + 0.17z∗5/3) . (30)

Since the chemical potential of the independent atoms vanishes in the quasi-
classical description the total energy given above is the binding energy Eb of
the atomic aggregate, Eb = E. The direct (Hartree) contribution−0.43z∗4/3

to the global (thermodynamic) chemical potential ∂E/∂(Nz∗) = −0.43z∗4/3

−0.17z∗2/3 compares well with the average self-consistent potential energy
−ϕ0 given above.

The quantal effects originate in the abrupt variations near the ionic
cores. They are included by solving the Hartree contribution to (14), i.e.
Schrodinger’s equation

(p2/2m)Φs − eϕ · Φs = εΦs (31)

with the self-consistent potential ϕ given by (21), and treating the corre-
sponding exchange contribution to the first-order of the perturbation the-
ory; the latter is indeed a perturbation as a consequence of the off-diagonal
character of the exchange energy (16) with respect to the electron states;
this is the third remark made upon the exchange energy. The correction
statute of the quantal effects is established by estimating the average kFav

of the Fermi wavevector

kFav =
1
z0

∫
dr · kFn , (32)

and comparing it with the variational Fermi wavevector kF = (3π/8)q2

obtained above. Equation (32) leads to

kFav =
16

3πz0

∫
dr · r2ϕ2 , (33)

and qav ' 0.9z∗1/3. Comparing it with the variational screening wavevector
q ' 0.77z∗1/3 given by (28), one may estimate the contribution of the quan-
tal effects of ∼ 17% to all the relevant quantities. Since the symmetry of ϕ
is the same with the quasi-classical symmetry of the aggregates the latter is
preserved by such quantal corrections. The quantal effects however correct
the Fermi level (which is the chemical potential and may be taken as the
ionization potential), and give the structure of the lowest-energy spectrum
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of the electronic excitations (which are relevant for the spectroscopic prop-
erties; the lowest unoccupied level being taken as the electron affinity); the
long-wavelength behaviour of the self-consistent potential (21) may be rele-
vant for statistical ensembles of atomic aggregates, or for their liquid state,
allowing for deformation, finite-size, and electronic-shell effects; statistical
magic numbers and electronic magic numbers are obtained this way.

Extended quantal structure of the ionic cores, and the corresponding
fractional occupancy of the electronic orbitals fall in the class of quan-
tal corrections, due to their short-scale lengths nature. However, though
quantitatively small, they may bring qualitative changes in the structure
symmetry of the aggregates, especially when constraints like translational
symmetry of bulk solids are involved. The effects of the fractional occu-
pancy act in opposite directions in the chemical-bond orbitals part and the
atomic-like orbitals part of the energy functional; consequently, within the
limits discussed herein, the fractional occpancy may be neglected (β2 = 1)
in global quantities like those related to cohesion, binding, structure, etc.
However, in specific electronic quantities the fractional occupancy is rele-
vant. One example is the ionization potential of such an atomic aggregate,
which can be written as I = (1 − β2)Ia + β2Ib, where β2 is the fractional
occupancy, Ia is the atomic ionization potential and Ib is the ionization po-
tential of the slightly inhomogeneous electron liquid; in the quasi-classical
description the latter vanishes. One may say that the electronic states in an
atomic aggregate are ”strongly renormalized” through the fractional occu-
pancy by the atomic interaction. Similarly, the fractional occupancy affects
the plasma frequency; the latter is obtained as the second-order variation
of the collective energy functional of the hamiltonian (10) with respect to
the electron density (the first-order variation vanishes, for equilibrium).

The self-consistent nature of the Hartree potential ϕ leads to a quasi-
classical quasi-particles picture for the slightly inhomogeneous electron liq-
uid. The f -function of the normal Fermi liquid is given by Born scattering
amplitude

f(k− k′) = 4πe2
∑

i

z∗i
q2 + |k− k′|2

ei(k−k′)Ri (34)

for parallel spins, and its main contribution is the forward scattering am-
plitude

f(p− p′) = (4πe2Nz∗/q2)
(2πh̄)3

V
δ(p− p′) ; (35)

the variation of the Fermi distribution at the Fermi surface implies δ(ε −
εF ) = 1/∆ε = (m/pF )(a/πh̄), where εF is the Fermi level and a denotes
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the average inter-atomic distance. One obtains the effective mass

m∗ = m(1 + 0.39z∗1/3) (36)

for the quasi-classical electronic quasi-particles, no zero-sound and no renor-
malization of the Pauli spin paramagnetism. The quasi-particles (quasi-
holes) lifetime τ = 1/γ is given by

γ =
π

2h̄
(4πe2Nz∗/V q2)2(ρ/n)3

(ε− εF )2 + π2T 2

exp(∓(ε− εF )/T ) + 1
, (37)

where ρ = mpF /π
2h̄3 denotes here the density of states, n is the electron

concentration and T denotes the temperature; it can also be written as

γ ' (ε− εF )2/εF , (38)

since εF ' ϕ0 given above. The relative uncertainty in the (ε− εF )-energy
is (ε− εF )/εF .

The second-order variations of the quasi-classical energy Eq with respect
to both the electron density (or, equivalently, the screening wavevector q,
since q2 = (8/3π)(3π2n)1/3) and the atomic positions leads to the vibration
spectrum of the aggregate (phonons), to electron-phonon interaction, and to
plasmon renormalization (which, however, brings irrelevant contributions).
In the long-wavelength limit the electron-phonon interaction is renormal-
ized to zero, according to the adiabatic Born-Oppenheimer theorem, and
the aggregate exhibits the adiabatic sound with typical velocities

vs = [(0.43z∗7/3 + 0.68z∗5/3)/A]1/2m/s , (39)

where A is the atomic mass. The short-wavelength electron-phonon inter-
action involves the product of the electron density variation by the local
atomic displacement times a M ∼ 10−2z∗2/3(0.27z∗2/3eV)-factor. The ther-
modynamics, transport, spectroscopic and various response properties of
the atomic aggregate are given by its elementary excitations like phonons,
quasi-classical electronic quasi-particles, plasmons, etc. In particular the
static electric polarizability is computed by the first-order variation of the
potential energy to an external electric field, and the diamagnetic suscep-
tibility is also obtained by making use of the known electron density.

An estimation of the effective charge z∗ is provided by the atomic screen-
ing theory for heavy metallic atoms. As remarked before, the Thomas-Fermi
theory applies to this case,[4] and it leads to a self-consistent potential
ϕ = Ze−qr/r, a quasi-classical energy −11.78Z7/3eV (the exchange energy
is −4.6Z5/3eV), where the variational screening wavevector is q = 0.77Z1/3,
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and the average screening wavevector is qav = 0.9Z1/3. The quantal correc-
tion to the quasi-classical energy is −4.56Z7/3eV, so that the total energy is
' −16Z7/3eV, in agreement with the empirical binding energy. The number
of electrons lying outside a sphere of radius R is given by

Nout =
∫

r>R
dr · n = Z(1 + qR)e−qR , (40)

where n = (q2/4π)ϕ, and the ratio Nout/Z may be taken as an estimate
for the fractional occupancy, in virtue of the fact that the latter represents
the content of plane waves in the molecular-like (atomic-like ) orbitals.
For typical R = 1 values and a mean screening wavevector q = (0.77 +
0.9)Z1/3/2 = 0.84Z1/3 one obtains

z∗ = z(1 + 0.84Z1/3)e−0.84Z1/3
; (41)

z∗ = 0.57, for instance, for iron Fe (Z = 26, z = 2). Two electrons out
of the six d-electrons of the isolated Fe atom pair up according to Hund’s
rule to give a 4µB-magnetic momentum, where µB is Bohr’s magneton; in
atomic aggregates 0.57 electrons participate in the chemical bond, and the
remaining 0.43 pair up, leading to 4.57µB a magnetic momentum.

It is worth nothing that there is a natural limitation for the convergence
of the iterative self-consistency scheme of computation, brought about by
the single-electron picture. Indeed, the quantal corrections bring a contribu-
tion δε ∼ δϕ, to the first order, and contribute ∼ (δϕ)2 to the next-order;
the latter, however, is comparable with the lifetime effects, according to
(38). According to the estimations given before this implies a limitation as
large as 0.17 · 17% = 3%.

Another final remark may be made upon the so-called virial theorem,
which is satisfied by the average kinetic and potential energies, within a
complete scheme of computation procedure.

In conclusion, one might note that the atomic aggregation proceeds
by quantal delocalization, Fermi statistics, and Coulomb potential, as the
essential, basic ingredients of the theory presented above.
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