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a  b  s  t  r  a  c  t

The  interaction  of  the classical  electromagnetic  field  with  an ensemble  of  polarizable,  identical,  atomic
particles  with  two  energy  levels  is investigated,  and  the  coupled  non-linear  equations  of  motion  for  the
polarization  field  and  the  amplitudes  of  the level  occupancies  are  solved  by  a perturbation-theoretical
method.  A  small  coupling  constant  is  identified,  and  the  solution  is represented  as  a  power  series  in this
coupling  constant.  Explicit  results  are  given  for the  leading  contributions  to the  solution.  In particular,  it is
shown  that  an  external  electromagnetic  field  may  induce  a lasing  effect  in such  an ensemble  of particles,
by  populating  the  (initially  empty)  upper  level.

© 2011 Elsevier GmbH. All rights reserved.
eywords:
atter interacting with radiation
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erturbation theory

on-linear equations

The interaction of the classical electromagnetic radiation with
n ensemble of polarizable, identical, atomic particles with two
nergy levels is the core of the “semi-classical theory” of the laser
see, for instance, Refs. [1–3]). The problem has been extensively
nvestigated, by various approaches and from many angles [4–17].
sually, the equations of motion for the electromagnetic field and

he occupancies of the two levels are solved by means of some
pproximations which, among other particular assumptions, dis-
ard the fast oscillating terms. However, such terms may  bring
elevant contributions in the stationary regime. It is generally
elieved that an exact solution of the coupled, non-linear equations
f the semi-classical theory of the laser would be impossible (see,
or instance, Ref. [2],  p. 459, Ref. [3],  p. 98). We  present here a fully
omputable solution, represented as a power series in a (small)
oupling constant �, and give explicit results for the polarization
eld, occupancy numbers and energy in the lowest, most relevant
rders of �, in the presence of an external eletromagnetic field. We
how that a lasing effect can be induced in the ensemble of parti-

les, driven by the external field which can populate the (initially
mpty) upper level.

∗ Tel. +40 21 404 62 34/0727 438 755.
E-mail address: apoma@theory.nipne.ro

030-4026/$ – see front matter ©  2011 Elsevier GmbH. All rights reserved.
oi:10.1016/j.ijleo.2010.10.053
We  consider a uniform distribution of polarizable, identical par-
ticles, each with two  quantum energy levels ε0,1, subjected to an
external electromagnetic field and to their own polarization field.
The ensemble of particles exhibits a fluctuating curent density j(r,
t), and a polarization P(r, t), related by j(r, t) = ∂P(r, t)/∂t, which, in
turn, give rise to a polarization field, according to the well-known
wave equations with sources

1
c2

∂2A
∂t2

− �A  = 4�

c
j,

1
c2

∂2E
∂t2

− �E  = −4�

c2

∂2P
∂t2

, (1)

where A is the vector potential and E = − (1/c)∂A/∂t is the polariza-
tion electric field (we  assume a transverse radiation field). We  take
only one polarization, oriented along one coordinate axis, and look
for a separable solution of the form E(r, t) = E(t)�(r), P(r, t) = P(t)�(r),
where �(r) is an eigenfunction of the laplacian, ��(r) = − �2�(r), �
being a constant. With the notation ω2

0 = c2�2, the second equation
(1) becomes

Ë(t) + ω2
0E(t) = −4�

∂2P(t)
∂t2

. (2)

We envisage a classical polarization field E; consequently, the

source in the rhs of Eq. (2) can be written as 4�n〈∂2p/∂t2〉, where
p is the dipole momentum of a particle and the brackets denote
the quantum average; the spatial average is taken into account
by the (uniform) density n of the ensemble of particles. We  take
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∂2p/∂t2〉 = −ω2
1〈p〉, where h̄ω1 = ε1 − ε0. Eq. (2) can then be written

s

¨ (t) + ω2
0E(t) = 4�nω2

1〈p〉. (3)

n general, 〈∂2p/∂t2〉 depends on the internal dynamics of the par-
icles, and can be kept as such in Eq. (3),  or it may  be expressed
n terms of other conventional parameters. We  note also that the
lectric field source, given generaly by ∂j(t)/∂t, may  not originate
nly in orbital currents (as we assumed here), but it may  have also
ther origins, like the spin, for instance.

The two quantum states ϕ0,1 are defined by the free hamiltonian
0 of the internal degrees of freedom of each individual parti-
le, H0ϕ0,1 = ε0,1ϕ0,1. The interaction hamiltonian for one particle
laced at r is given by

int = −p�(r)[E0(r, t) + E(r, t)] = −pEt(t)�2(r), (4)

here the external field E0 has been introduced, as well as the
otal field Et = E0 + E. We  assume the fields and the (orthogonal-
zed) eigenfunctions real. The spatial average of Eq. (4) gives an
nteraction hamiltonian

Hint)av = −pEt(t). (5)

he interacting state ϕ = c0ϕ0 + c1ϕ1 is a superposition of the two
ree states ϕ0,1, with coefficients c0,1 satisfying the Schrodinger
quation

ih̄
∂c0

∂t
= ε0c0 − p01Etc1,

ih̄
∂c1

∂t
= ε1c1 − p∗

01Etc0.
(6)

he quantum average of the dipole momentum is given by

p〉 = p01c∗
0c1 + p∗

01c∗
1c0, (7)

here we have assumed p00 = p11 = 0, as for stationary states. More-
ver, we assume for simplicity p01 = p∗

01 = p. We  set ε0 = 0 and
ntroduce the parameter

(t) = 2p

h̄ω1
Et(t), (8)

o that Eq. (6) become

∂c0

∂t
= −1

2
ω1x(t)c1, i

∂c1

∂t
= ω1c1 − 1

2
ω1x(t)c1 (9)

nd Eq. (3) can be written as

¨ (t) + ω2
0E(t) = 4�nω2

1p(c∗
0c1 + c∗

1c0). (10)

n Eq. (8) we may  recognize the well-known Rabi “frequency” pEt/h̄.
sually, the system of Eq. (9) is transformed into a system of equa-

ions for the occupancies |c0,1 | 2 and the associated matrix density
2,3]. We  adopt a different route, and focus on the system of Eq. (9)
or the occupancy amplitudes c0,1.

The system of Eq. (9) can be solved formally with c0,1 = C0,1ei�;
e get immediately Ċ0,1 = 0 and

c0 = C0ei�0 − fC1ei�1 , c1 = fC0ei�0 + C1ei�1 ,

�̇0,1 = 1
2

ω1(−1 ±
√

x2(t) + 1),
(11)

here

 (t) = x(t)√
x2(t) + 1 + 1

.  (12)

he coefficients C0,1 are determined by requiring the initial values of
2
he occupancy numbers |c0,1(t = 0) | be equal with n0,1 (n0 + n1 = 1).

e get the amplitudes

0,1 = 1
1 + f 2(t)

[
√

n0,1 ± f (t)
√

n1,0] (13)
(2012) 193– 196

and the occupancy numbers

|c0,1|2 = n0,1 ± 1
2

x(t)
x2(t) + 1

[2
√

n0n1 − x(t)(n0 − n1)]

× [1 − cos(�0 − �1)], (14)

where the phase difference �0 − �1 is given by

�� = �0 − �1 = ω1

∫ t

0

dt
√

x2(t) + 1.  (15)

The oscillations of the occupancies given by Eq. (14) are reminis-
cent of the well-known Rabi oscillations, exhibited, for instance, by
the Jaynes–Cummings model (see, for instance, Refs. [4,15]).  We
take the time averages of all the relevant quantities given above.
We can see, by Eq. (11), that the energy levels ε0,1 are changed by
interaction into the mean values of h̄�̇0,1, and, in addition, the inter-
action mixes up the two  states, as expected. We  can see also that
the mean values of the coefficients C0,1, as well as the mean val-
ues of the coefficients fC0,1 entering Eq. (11), are constants, as it is
required by a stationary solution; it becomes apparent that n0,1 are
constants of integration.

From Eqs. (11)–(13) we  get

c∗
0c1 + c∗

1c0 = 1
x2 + 1

{x[2x
√

n0n1 + n0 − n1]

+ [2
√

n0n1 − x(n0 − n1)] cos ��}, (16)

which can be inserted into Eq. (10); we can add the external field
E0, which satisfies the free wave equation Ë0 + ω2

0E0 = 0, such that
Eq. (10) becomes

ẍ + ω2
0x = �2ω2

1
1

x2 + 1
{x[2x

√
n0n1 + n0 − n1]

+ [2
√

n0n1 − x(n0 − n1)] cos ��}, (17)

where �2 = 8�np2/h̄ω1. We  note that x = �Et/e, where e =
√

2�nh̄ω1
is a characteristic electric field.

Eq. (17) is a non-linear (integro-differential) equation. We  ass-
sume � � 1, and seek the solution as a power series in �,

x = �x0 + �2x1 + �3x2 + . . . , (18)

where x0 = B cos ω̃0t, B = E0/e and ω̃0 remains to be determined. We
get straightforwardly

x1 = 2
√

n0n1
ω2

1

ω2
0 − ω2

1

cos ω̃1t,

x2 = 1
2

(n0 − n1)B

[
ω1

2ω0 + ω1
cos( ω̃0 + ω̃1)t − ω1

2ω0 − ω1
cos( ω̃0 − ω̃1)t

]
,

(19)

where

ω̃0 = ω0 − �2 ω2
1

2ω0
(n0 − n1), ω̃1 = ω1

(
1 + 1

4
�2B2

)
, (20)

for ω1 /= ω0, ± 2ω0. These restrictions can be related to the
parametric resonances 2ω0 � nω1 (where n /= 0 is any integer),
occurring for an associated Mathieu equation which is a close rep-
resentation of the linearized form of Eq. (17) for n1 = 0 (though
not a fully correct approximation to Eq. (17)) [18]. Leaving aside
the (weak) frequency renormalization, the resonances exhibited
by Eq. (19) are in fact what we may  expect from a non-linear oscil-
lator with the basic frequency ω0 subjected to an external force of
frequency ω1. As it is well known, such an oscillator exhibits the
combined-frequency phenomenon, as reflected in the occurrence
of frequencies of the form ω0 ± ω1 and denominators 2ω0 ± ω1, etc.

(arising from terms like ω2

0 − (ω0 ± ω1)2).
We can see that the interaction renormalizes both the field fre-

quency ω0 and the characteristic frequency ω1 of the ensemble of
particles. The term x1 represents the oscillations of the ensemble
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f particles (for n0,1 /= 0); the effect of the external field appears
nly in the next order (the term x2), with combined frequencies

˜ 0 ± ω̃1. For n1,0 = 0 the polarization process is governed entirely
y the external field, as expected (and the constraint ω0 /= ω1 is
emoved).

Having known the parameter x(t), the mean values (time aver-
ges) of all the relevant quantities can be computed, as given by
qs. (11)–(15). We  get, for instance, the frequencies

0 = ¯̇�0 = 1
8

�2ω1B2, �1 = ¯̇�1 = −ω1 − 1
8

�2ω1B2 (21)

nd the mean occupancies

c0,1|2 = n0,1 ∓ �2n0n1
ω2

1

ω2
0 − ω2

1

∓ 1
4

�2(n0 − n1)B2. (22)

ne can see that the external field can pump, or deplete, the upper
evel, depending on the parameters n0,1 and ω0,1. Particularly inter-
sting is the case n1 = 0 (corresponding to an upper level which is
mpty at the initial moment t = 0). In this case, the occupancy of the
pper level is given by

c1|2 = 1
4

�2B2 = 1
4e2

�2E2
0 =

(
pE0

h̄ω1

)2
; (23)

he external field leads to a macroscopic occupation of this level.
he release of the corresponding energy Es = h̄ω1|c1|2 (per particle)
s a lasing effect, driven by the external field. We  note in Eq. (23)
he occurrence of the Rabi frequency pE0/h̄.

The polarization can be computed by making use of the solution
(t) given here (Eq. (19)) in Eq. (7) and (16). Within this approxima-
ion, the polarization is a complicate function, involving quadratic
ependence on the strength of the external field, frequency dou-
ling, combined frequencies, etc., as expected for a non-linear
quation. We  collect here a few relevant terms:

c∗
0c1 + c∗

1c0 = 2
√

n0n1 cos ω̃1t + �B(n0 − n1)(1 − cos ω̃1t) cos ω̃0t−
+2�2√

n0n1

[
B2 cos2 ω̃0t − (n0 − n1)

ω2
1

ω2
0 − ω2

1

cos2 ω̃1t

]
−

−�3 ω1B2

16ω0
(n0 − n1) sin ω̃0t sin ω̃1t.

(24)

he mean value of the polarization is given by

¯ = np(c0c∗
1 + c1c∗

0) = �2np
√

n0n1

[
B2 − (n0 − n1)

ω2
1

ω2
0 − ω2

1

]
, (25)

here the quadratic dependence on the external field is to be noted.
t is worth noting that P̄ = 0 for n0,1 = 0. The ω̃0-component of the
olarization gives the permittiviy � = (2np2/h̄ω1)(n0 − n1) and the
article polarizability  ̨ = 2p2/h̄ω1 (for n1 = 0). We  can see that the
oupling constant � =

√
8�np2/h̄ω1 can be related to the polar-

zability  ̨ through �2 = 4�n˛. It follows that we are justified in
ssuming � � 1 as far as the polarizability per unit volume is small,
hich is a usual situation.

By Eq. (18), the total electric field can be represented as a
t = e(x0 + �x1 + �2x2 + . . . ). Hence, we can obtain the vector poten-
ial At(t) = −c

∫ t

0
dtEt and the magnetic field H = curlAt(r, t) (where

e take into account the transversality condition divAt = 0). It is
hen easy to compute the mean value of the total field energy den-
ity (per particle) Et

f
. We  get

t
f = 1

8�n
E2

0 + �2

4�n

[
n0n1

ω2
1(ω2

0 + ω2
1)

(ω2
0 − ω2

1)
2

e2 + (n0 − n1)
ω2

1

4ω2
0

E2
0

]
.(26)
rom Eqs. (5), (7) and (16) we can compute the interaction energy
per particle)

int = −〈p〉Et = −1
2

h̄ω1x(c∗
0c1 + c∗

1c0) (27)
(2012) 193– 196 195

and its mean value

Ēint = −�2h̄ω1

[
n0n1

ω2
1

ω2
0 − ω2

1

+ 1
4

(n0 − n1)B2

]
. (28)

As it was  said above, the energy of the ensemble of particles (per
particle) is given by

Es = h̄ω1|c1|2 = h̄ω1

[
n1 + �2n0n1

ω2
1

ω2
0 − ω2

1

+ 1
4

�2(n0 − n1)B2

]
.

(29)

Particularly interesting are these equations for n1 = 0:

Et
f

= E0
f

(
1 + �2 ω2

1

2ω2
0

)
,

Es = −Ēint = 1
4

h̄ω1�2B2 = �2E0
f ,

(30)

where E0
f

= E2
0/8�n is the energy (per particle) of the (bare) exter-

nal field. One can see that the total energy Et = Et
f
+ Es + Ēint reduces

to the total field energy Et
f
, the polarization energy (Es) being

entirely compensated by the interaction energy (Ēint), as expected.
The efficiency quotient of this lasing process is ��2.

In conclusion, after setting up the equations of motion for the
polarization field and the amplitudes of the level occupancy for an
ensemble of identical, polarizable particles with two energy lev-
els interacting with a classical electromagnetic radiation, we have
identified a small coupling constant � which allows the solution of
these coupled non-linear equations to be obtained by a theoretical-
perturbation method. The solution is represented as a power series
in �. The coupling constant � is related to the polarizaton n  ̨ per unit
volume of the ensemble of particles, � = √

4�n˛. Explicit results
have been given for the leading contributions to the polarization
field, occupancy numbers and energy in the presence of an exter-
nal field. It was  shown that an external field can induce a lasing
effect, by pumping the upper energy level which was  empty at the
initial moment of time.

Finally, it is worthwhile commenting upon the absence of the
external field in the problem presented in this paper. The equa-
tions of motion (3) and (6) have a completely different solution
in this case. These equations can be solved exactly, and the solu-
tion, which is independent of time and exists only for � exceeding
a critical value, is non-analytic in the coupling constant �. For a
strong enough coupling the ensemble of particles is unstable, and
it undergoes a phase transition to a state known as a super-radiance
state. Beside such a criticality condition upon the coupling constant,
for finite temperatures the super-radiance (second-order) phase
transition occurs below a certain critical temperature. The exact
solution was  obtained in a previous paper [19], where the super-
radiance transition was also characterized, under the assumption of
a coherent interaction of matter with radiation. It was shown there
that the two  energy levels and the photon states are macroscopi-
cally occupied, leading to a spatially long-range ordered state which
involves the quantum phases of the internal motion of the parti-
cles. The transition process is initiated, and carried on, for ω0 = ω1,
as corresponding to quantum transitions. In the classical case the
condition of coherent interaction is implicitly included. The solu-
tion of the classical equations of motion (3) and (6) in the absence
of the external field is identical with the solution obtained in Ref.
[19] within the coherent interaction theory.
The author is indebted to the Romanian-European Governmen-
tal Research Project “Extreme Light Infrastructure” (ELI) for giving
him the opportunity of studying this problem.
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