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Abstrat

The quasi-lassial theoretial desription of matter aggregation

and solid-state ohesion at atomi level is desribed, in onnetion

with its multiple appliations to atomi lusters and nanostrutures.

The formation of isolated atomi lusters of up to 160 atoms is pre-

sented and haraterized with respet to geometri forms, atomi po-

sitions, inter-atomi distanes, ground-states and isomers, binding en-

ergies, magi numbers, vibration spetra, and the derivation of single-

partile properties is outlined, within the point-like ions approxima-

tion. The surfae of a semi-in�nite solid is haraterized within the

same approah, and the formation of lusters deposited on surfaes is

desribed, with regard to similar physial and hemial information.

Peuliar nanostrutures are also presented, as resulting from omputa-

tion proess, as an indiation of the large variety of possible nanostru-

tured forms. The extension of the theoretial tools to more omplex

situations, in partiular to diretional bonds and quantum orretions,

is also disussed. More general e�etive inter-atomi potentials are

given, as resulting from the present quasi-lassial desription.

1 Introdution

The great deal of ativity and interest reorded at present in nanosiene

and nanotehnologies raises basi issues of matter aggregation and stru-

turation at the atomi level. While enabling major breakthroughs in life

sienes and mediine, ultraminiatural eletronis, materials, tools and pro-

esses, and manipulating individual atoms at the same time, the nanosale
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sienes provide a more diret, sensible representation of the atomi and

moleular matter, together with a more aurate knowledge of the physial

and hemial strutures and proesses at this level. Traditionally, the �eld

bears relevane upon hemial bonding of moleules and solid-state bulk bod-

ies. However, in-between there is an extremely large amount of various kinds

of supramoleules, moleular aggregates, atomi lusters, nanostrutures and

nano-objets, either isolated or in various environments, sometime exhibit-

ing intriate geometries and beautiful symmetries, with their own spei�

behaviour. This immense new realm that �lls plenty in the "room at the

bottom", aording to a famous Feynman's statement, displays basially a

quantum behaviour and a size dependene. These issues are addressed in the

present paper, from the perspetive of the quasi-lassial desription of en-

sembles of valene eletrons and harge-ompensating point-like ioni ores,

with partiular emphasis on relevant physial and hemial information on

various atomi lusters and nanostrutures, both isolated or under various

geometri onstraints as, for instane, lusters deposited on surfaes. In par-

tiular, geometri forms, atomi positions, inter-atomi distanes, binding en-

ergies, magi numbers and vibration spetra are presented, and the extension

to single-partile properties and strutured ioni ores is outlined. Within

given approximation, the results are appliable to homo-atomi metalli for-

mations. The results desribed here are based on an original theory of the

authors, whih shows that matter aggregation follows from the deloalization

of the eletroni wavefuntions, the quantum statistis of the fermions (Pauli

exlusion priniple) and the Coulomb interation.

2 Theory

In hemial binding the single-eletron wavefuntions are superpositions of

loalized atomi-like orbitals and extended bond-like orbitals. Due to the

great disparity in the spatial sales of the two types of orbitals the problem of

the nulei-eletrons interation is separated into a purely atomi-like part, a

hemial-bond part, and a residual interation whih an further be removed

by using lassial variational priniples.[1℄ The atomi-like part an be treated

by standard ab-initio wavefuntions method,[2℄ while for the hemial-bond

part a quasi-lassial desription has been developed reently,[3℄ in lose on-

netion with the density-funtional method.[4℄ For the hemial-bond part

we are left with an ensemble of eletrons moving in a bakground of neutral-

izing e�etive harges in the valene upper shells of the ions. These harges

are distributed in spae aording to the orresponding atomi-like orbitals,
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but we adopt here, for the sake of the simpliity, a point-like distribution

ρ(r) =
N∑

i=1

z∗i δ(r−Ri) , (1)

where z∗i are the e�etive harges (in units of eletron harge e) and Ri de-

note the positions of N ions, i = 1, 2, ...N . Suh a point-like ioni harge

distribution bears a limited relevane upon ertain s-, d- and f -metalli ions,

where we may neglet the radial dependene of the atomi-like orbitals and

average out their angular dependene, but it is inadequate for an important,

very large lass of ions with p-valene orbitals, or with hybridized valene

orbitals. The e�etive harges an, in priniple, be obtained by solving the

entire problem of nulei-eletrons interation, as remarked above, but results

are not yet available. However, for ertain ions, within the point-like ap-

proximation, we may estimate the e�etive harges by making use of the

atomi sreening theory.[5℄ For instane, we get z∗ = 0.57 for Fe

2+
(iron),

z∗ = 0.34 for Ba

2+
(barium), and z∗ = 0.44 for Na

1+
(sodium). Suh es-

timations, together with the point-like approximation, render a status of

model-alulations to the results presented herein. In addition, the theoret-

ial treatment employed here is valid for a su�iently large number N of

not-too-light atoms.

Within the quasi-lassial desription of the Hartree-Fok equations[3℄ the

hemial-bond orbitals are quasi-plane waves in the �rst approximation, and

the eletrons move in the Hartree self-onsistent �eld

ϕ(r) =
N∑

i=1

z∗i
|r−Ri|

e−q|r−Ri|
(2)

orresponding to the harge distribution given by (1), where q is a sreening
wavevetor similar to the Thomas-Fermi wavevetor, to be determined vari-

ationally. The self-onsisteny requires a linear relationship n = (q2/4π)ϕ
between the eletron density n and the potential ϕ, whih allows a straight-

forward omputation of the interation energy. This energy inludes the

Coulomb attration betwen eletrons and ions and the Coulomb repulsions

both between eletrons and between ions, respetively; we all it potential

energy, and it is given by

Epot = −
3

4
q

N∑

i=1

z∗2i +
1

2

N∑

i 6=j=1

Φ(Rij) , (3)

where

Φ(Rij) = −
1

2
qz∗i z

∗
j (1−

2

qRij

)e−qRij
(4)
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Figure 1: (a) The inter-ioni potential funtion vs redued distane. (b) A

two-dimensional sheet of the inter-ioni potential (4) for Fe-ions.

is the e�etive (pseudo-) potential ating between two ions separated by the

distane Rij = |Ri −Rj|. This inter-ioni potential is shown in Fig. 1. It

has an attrative tail at long distanes and is strongly repulsive at short

distanes.

We emphasize that the inter-atomi potential given by equation (4) is derived

from rigurous theoretial priniples and is a new potential, in omparison

with many quasi-empirial potentials used to simulate the matter aggrega-

tion. This potential has beed disovered in 2000 by one of the o-auhors of

the present paper (L. C. Cune). The interating part in Epot is the only on-

tribution whih depends on the ioni positions, so that we may minimize this

energy represented by the seond term in the r.h.s. of (3) with respet to Ri

(atually with respet to the dimensionless variables Xi = qRi) in order to

get the equilibrium forms of the ensemble of ions; doing so, we get both the

ground-state of the ioni aggregate and the isomers, whih di�er by slight

hanges in energy and ioni positions. They orrespond to loal minima of

the potential energy (3). The minimum values of the interating part in (3)

is usually very small in omparison with the self-energy ioni part given by

the �rst term in the r.h.s. of (3), so we may neglet this ontribution in

approximate estimations. The model of metal obtained here resembles very

muh the old Wigner-Seitz model.[6℄

The quasi-lassial desription is based upon slight spatial variations of the

eletron density in extended hemial-bonds orbitals; this enables the linear

self-onsisteny relationship given above between eletron density and po-

tential. Aordingly, suh a linearization is in order for the kineti energy of

the eletrons too; it reads

1 Ekin = (27π2/640)q4
∑

i z
∗
i . The quasi-lassial

1

In atomi units e2/aH ∼= 27.2eV, where aH = ~
2/me2 ∼= 0.53Åis the Bohr radius (m
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energy Eq = Ekin + Epot is then obtained, where Epot is the ground-state

minimum value of the potential energy (3), and minimized with respet to

the sreening wavevetor q. It is easy to see that suh a minimum value

exists; for homo-atomi aggregates it is given by q ≃ 0.77z∗1/3, negleting
the small ontribution of the interating part to the potential energy at equi-

librium. In this ase we may also de�ne an average inter-ioni distane a
by aq ≃ 2.73, where X = 2.73 is the redued distane; for this distane the

inter-ioni potential (4) reahes its minimum value.

The exhange energy in the Hartree-Fok equations admits plane waves as

eigenstates. More, it remains unhanged for quasi-plane waves, i.e. for slight

loal hanges in the eletron density, as in the quasi-lassial desription, due

to its non-loal harater;

2

it follows that sreening does not a�et it in this

approximation, so we may simply add its (linearized) ontribution Eex =
−(9/32)q2

∑
i z

∗
i to the quasi-lassial energy Eq, with q determined above,

to obtain the binding energy E = Eq + Eex. For homo-atomi aggregates

the ground-state energy is given by E = −N(0.43z∗7/3 + 0.17z∗5/3), leaving
aside the small ontribution of the interating part of (3) (whih however is

responsible for the non-thermodynami behaviour and the size dependene).

The theoretial sheme outlined above is a linearized Thomas-Fermi model

in fat, as derived from the quasi-lassial solution of the Hartree-Fok equa-

tions. It di�ers from the standard non-linear Thomas-Fermi model (hara-

terized by n ∼ ϕ3/2
) in that it exhibits binding of the interating ions and

eletrons, in ontrast to the latter where there is no binding.[8℄ The non-linear

Thomas-Fermi model is valid in the limit of in�nite ioni harges (so-alled

quasi-lassial limit), while the linearized model presented here is the starting

point of the quantum behaviour of matter aggregation, and it ould represent

the solution to hemial bonding Shwinger was alluding to.[9℄ It has been

applied to heavy atoms (with atomi numbers Z ≫ 1) where the well-known
binding energy −16Z7/3

eV has been suessfully reprodued (quantum or-

retions inluded), to a onsistent analysis of bulk properties of a model of

"universal" metal, and to realisti estimations of the ionization potentials

of metalli lusters.[10℄ The quasi-lassial desription as presented above is

only the �rst step in a full treatment. It o�ers the great advantage of getting

strutured atomi ensembles with rather limited omputational resoures.

On the other hand, it o�ers the possibility of pursuing onsistently the so-

alled quantum orretions. The latter inlude the ab-initio omputation of

the e�etive harge parameters as indiated before, taking into aount the

is the eletron mass and ~ denotes the Plank onstant).

2

This "rigidity" harater of the exhange energy has been notied probably for the

�rst time by Slater;[7℄ see also Ref. 6.
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entire problem of nulei-eletrons interation, as well as the single-partile

properties, in partiular the single-eletron energy levels of the eletrons mo-

tion in the self-onsistent potential ϕ, as given by (2), for instane.[3℄ These

orretions bring ertain hanges in energies and, onsequently, equilibrium

ioni positions, as well as other relevant quantities. The quantum orre-

tions are basially due to the strong variations of the eletron density and

self-onsistent potential over small distanes of the order of atomi distanes.

These deviations an be estimated, if one onsiders, for instane, the sreen-

ing wavevetor q as related to the average of the Fermi wavevetor; doing so,

we obtain ∼ 17% an auray of the quasi-lassial results. Further on, the

single-partile wavefuntions of the Hartree-Fok equations entail an inher-

ent seond-order unertainty in the self-onsisteny sheme, whih signals its

limits; therefore, we onlude that, one the quantum orretions inluded,

the results are valid within at most ∼ 0.17 × 17% ≃ 3% auray, and this

would be the limit of the approah.

3 Metalli Clusters

The �rst step in applying the method desribed above is to minimize the

potential energy given by (3) and (4) with respet to the redued ioni po-

sitions Xi = qRi. Sine the X-dependene of the potential funtion Φ does

not involve the nature of the ions, the equilibrium geometri forms found by

suh a minimization are universal. The minimization method is implemented

by giving originally ioni positions randomly distributed in spae, omputing

the fores at eah position, and letting the ions move step by step in the di-

retion of the fores, until an equilibrium is reahed (atually until the fores

are less than 10−4
eV/Å).

The equilibrium positions an orrespond either to the ground-state or to

isomers. In order to distinguish the ground-state from the isomers we run

several hundreds times the equilibrium proess for eah atomi aggregate,

attempting to get a statistial ensemble as large as possible. In addition,

for di�erentiating between loal minima and saddle-points we ompute also

the vibration spetra in the harmoni-osillator approximation. Finally, we

ompute the quasi-lassial energy Eq, �nd out its minimum value and the

sreening wavevetor q, add the exhange energy Eex and get the binding

energy E for the ground-state, as desribed in Setion 2. The latter exhibits

small, irregular variations with respet to the number N of atoms; to put

them learly into evidene we ompute also the so-alled abundane, or mass

spetrum, as given by D = ln(I2N/IN+1IN−1) = E(N+1)+E(N−1)−2E(N),

6
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Figure 2: Ground-state mass spetrum of metalli lusters.

where IN is the Boltzmann statistial weight for the ground-state. It is found

that suh a spetrum does not depend on the e�etive harges z∗ within

reasonably large limits. This proedure has been applied to homo-atomi

lusters of metalli ions up to N = 160.

The mass spetrum of homo-atomi metalli lusters is shown in Fig. 2. It

exhibits a sequene of high and very sharp peaks, orresponding to what

we all magi lusters. Indeed, these magi lusters in their ground-states

are muh more stable as ompared to their neighbours, and may possess

a high symmetry, most of them a pentagonal one, like the entered iosa-

hedron N = 13. Some of these magi lusters are shown in Fig. 3. For

relatively small values of N we expet to get Plato's perfet polihedra; how-

ever, this is not always true; for instane, we obtain the tetrahedron (N = 4)
and the otahedron (N = 6), but the hexahedron (ube, N = 8) and the

dodeahedron (N = 20) are not ground-states (we get them as isomers),

while the iosahedron prefers to be entered (N = 13). It seems that the

priniple of atomi paking in suh magi lusters is a ertain "spae eon-

omy". Indeed, this an be shown onviningly on the three "most magi"

lusters shown in Fig. 4, with N = 45, 110 and 115, respetively. The

�rst row in Fig. 4 shows a front view whih displays the highly symmetri

forms of these lusters, while their outer shells are shown in the seond row;

indeed, suh lusters are made of multiple, losed geometri atomi shells,

with one shell's atoms plaed just above the faets' enters of another. These

7



Modern Trends in Nanosiene
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Figure 3: Magi lusters of metalli ions.

lusters display an outstanding �ve-fold symmetry, yet other magi lusters,

though very lose to a high symmetry, exhibits also slight, disonerting im-

perfetions, like the N = 113, 144, or 148 lusters in Fig. 3. It is worth

noting here that some of these strutures have also been obtained either by

other theoretial tehniques, or have been identi�ed experimentally,[11℄ and

the �ve-fold symmetry magi numbers like N = 13, 45, 115 are known as

geometri, or iosahedral magi numbers. As regards a possible ompari-

son with experimental results a word of aution is in order here. First, it

8
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N=45 N=110 N=115

Figure 4: Highly-symmetri metalli lusers (�rst row), displaying outer

shells (seond row).

must be stressed that the mass spetrum given in Fig. 2 orresponds to the

ground-states, while lusters are usually produed experimentally in a sta-

tistial ensemble at a non-vanishing temperature. Consequently, a statistial

average is relevant for experimental abundane, whih inludes isomers be-

side the ground-state; this gives "statistial" magi numbers N , as distint

from the present "geometri", or "ground-state" magi numbers given in Fig.

2. A table of isomers is given in Fig. 5 for Fe-lusters, where we may notie

an inrease in the number of isomers on inreasing size, as well as several

"white islands" plaed approximately at the magi lusters (for instane at

N = 13, 45 and 115), as expeted. Similarly, it is worth noting that slight

di�erenes in energy di�erentiate the isomers from the ground-states. Se-

ondly, "eletroni" magi numbers may be obtained, as di�erent from the two

previous ones, from the �lling up of the eletron states in model potentials,

like the well-known quadropole-deformed harmoni-osillator potential. In

partiular, the latter potential is obtained from the self-onsistent potential

(2) in the long-wavelengths (ontinuum) limit,[3℄ whih may be relevant for

other sets of experimental data, depending on the lusters nature and the

partiular onditions of produing these lusters.

Having obtained the equilibrium ioni oordinates Xi by minimization of

the potential energy, and the sreening wavevetor q from the minimum

value of the quasi-lassial energy, we may obtain the inter-ioni distanes

Rij = Xij/q at equilibrium; on the average they are of the order of 2−3Å. It
is worth noting that for omputing suh quantities, as well as for omputing

9
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Figure 5: Isomer table of Fe-lusters.

the binding energy or the vibration spetra, one needs to know the nature

of the atomi speies, in partiular the e�etive harges z∗. The vibration

spetra for several magi lusters of Fe in the ground state are shown in

Fig. 6. One an notie the inrease of low-energy vibration states density

with inreasing luster size, as expeted, as well as higher multipliity of the

vibrational states for more symmetri lusters. The binding energy per atom

for the ground state of Fe-lusters (z∗ = 0.57) is given in Fig. 7 vs luster

size N . The binding energies of suh lusters are of the order of 5 − 6 eV

per atom. These numerial values are in good agreement with the results

of other omputations.[12℄ In this respet, it is worth mentioning the large

amount of work devoted to metalli lusters, by employing both ab-initio

alulations, moleular dynamis, density funtionals, or jellium-like models;

numerial data, when available, an be found, for instane, in Ref. 13.

The results presented here suggest that metalli lusters produed experi-

mentally by various tehniques may have very likely equilibrium geometri

forms like those given in Fig. 3 for their ground-states, or slightly di�erent

ones for their isomers. Most metalli lusters serve as ores for more om-

plex, nanostrutured aggregates, like organo-metalli lusters (as we shall

see in the next setion), and the ore geometry brings useful information in

designing the struture and the funtionality of the latter. The presene of

the isomers, whih are separated from the ground-state by small amounts of

energy, is partiularly interesting in giving indiation about luster stabil-

10
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Figure 6: Ground-state vibration spetra of ground-state Fe-lusters.

ity and their possible tunneling between various geometri on�gurations; a

privileged position in this onnetion have the magi lusters assoiated with

"white islands" in the isomer table in Fig. 5, but the origin of the rather

wide energy gaps between the ground-state and the �rst exited state in this

ase is not known; at most, we an trae it bak to a rather vague priniple

of "spae eonomy", as said above.

4 Partiular Nanostrutures

The theoretial model of atomi aggregation presented in Setion 2 an also

be applied to more omplex lusters. Suh a omplex organo-metalli luster

is the iron-hydroarbonated Fe13(C2H2)6 whih has reently been synthesized

experimentally.[14℄ Sine eah CH-radial may bind to a Fe-ion by taking

one valene eletron, it seems naturally to assume that 12 Fe-ions possess

half of the e�etive harge of a standard Fe-ion, i.e. z∗ = 0.57/2 = 0.28,
and view the entire struture as onsisting of 12 suh Fe-CH ions and one

11
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Figure 7: Ground-state energy per atom of Fe-lusters vs luster size.

standard Fe-ion (with e�etive harge z∗ = 0.57). Suh a struture lusterizes
into a entered perfet iosahedron as the one shown in Fig. 3 for N =
13, whih may be viewed as the ore of the atual organo-metalli luster

Fe13(C2H2)6. Simple arguments of a minimal interation energy between the

C2H2-aetylene radials lead then to a symmetri arrangement of them on

the surfae of the Fe-ore luster, as shown in Fig. 8. The ontribution of the

metalli ore to the binding energy has been estimated, as well as the inter-

atomi distanes, vibration spetrum and the eletron harge distribution,[15℄

getting thus useful preliminary information for a more detailed study, whih

must inlude the diretional bonding of the C2H2- radials.

A more omplex experiment has been run on omputer by making use of

the present theory. It onsists of giving 83-unit ells of a bcc-metal and let

the ions relax to equilibrium. Doing so, a huge luster of N = 855 atoms

has been obtained as shown in Fig. 9a, with a pretty disordered struture,

whih however preserves an approximate original bcc-symmetry in a ore of

about 3 unit ells, as shown in Fig. 9b. The omputations take a rather long

time in this ase, and the statistis of the results is poor enough to have a

reliable struture. However, this may give useful indiations as to how the

translation symmetry of a bulk solid may appear on inreasing the number of

atoms, and the extent of the surfae (�nite-size) e�ets. It has also found that

the isomers of suh a hunk of solid are extremely numerous, within a narrow

energy range just above the ground-state energy, as expeted, but, what is

very interesting, they are assoiated mainly with slight, multiple hanges in

12



A new approah to matter aggregation

Figure 8: A Fe13(C2H2)6 luster (Refs. 14, 15).

the positions of the outer ions. It suggests that the surfae of a very large

luster, or of a solid, might be fuzzy, as orresponding to a superposition of

states with slightly di�erent atomi positions, very similar to a liquid (it may

be termed a "quasi-liquid"). Suh a piture may have important signi�ane

for frition.

In some omputer runnings various peuliar nanostrutures have been ob-

tained aidentally, eah with suggestive partiularities. For instane, we got

an atomi sheet with an almost perfet hexagonal symmetry, as shown in Fig.

10a, whih is unstable, as expeted (it may be stabilized by depositing it on

(a) (b)

Figure 9: (a) An 855-atoms bit of metal. (b) A bcc-ore of an 855-atoms

metal.
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(a) (b)

Figure 10: (a) An unstable hexagonal metalli sheet. (b) A metalli poporn

wire (unstable).

a surfae); or unstable hains of metalli ions, the most interesting being the

one shown in Fig. 10b; it onsists of a sequene of intertwined, mutually ro-

tated iosahedra, leaving outside one protruding iosahedral end-atom, whih

might be suggestive for a perfet probe tip in sanning mirosopy. The hain

is however unstable, as expeted for suh a simpli�ed one-dimensional model

of metal, but its diameter is smaller than the inner diameter of a arbon nan-

otube, so the latter may at as a stabilizing support. The results obtained

within the present theoretial approah for suh low-dimensional nanostru-

tures, beside their suggestive harater, may be useful as a onstitutive input

for more elaborate theoretial models.

Figure 11: Two weakly interating metalli lusters.

Another very interesting situations appeared in a few omputer runnings

where a number of metalli ions aggregated spontaneously in a two-lusters

struture as shown in Fig. 11; the two aggregates interat extremely weakly,

and end by forming one onneted luster after a very long while. The
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Figure 12: Charge distribution at the metalli surfae double layer.

ourrene of suh disonneted atomi strutures originates in the separable

nature of the interation (3) with respet to the ioni positions.

Some of the peuliar nanostrutures desribed above may be stabilized either

by geometri onstraints (as, for instane, depositing them on surfaes, as

we shall see in the next setion), or by dynami onstraints. Indeed, we may

apply a tension for instane on the two end-atoms of, say, the perfet 13-
atoms iosahedron (or more omplex strutures), as produed by two fores

ating in opposite diretions, and look for equilibrium forms of suh a dis-

torted luster. It is found that there are several disrete equilibrium forms

until the breaking of the luster, and the transverse size of the luster is

suessively diminished in steps on inreasing the applied fore. These steps

are very lose to "atomi steps", orresponding to one atom getting in-line

with the rest along the applied fore, suggesting an "atomi quantization" of

the ross-setion of the sample.

5 Metalli Clusters Deposited on Surfaes

The summation over ioni positions in the potential energy (3) an be re-

strited to ertain spae regions, for instane to a half-spae orresponding

to a semi-in�nite solid with a free, plane surfae at x = 0. In this ase we

may use the ontinuum approximation, i.e. we may replae the summation

over ioni positions in (3) by an integration. We apply this proedure �rst

to the self-onsistent potential ϕ given by (2), and obtain

ϕ(x) =
2πz∗

q2a3
×






e−qx , x ≥ 0

2− eqx , x < 0
(5)
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Figure 13: Interation potential a metalli ion and a semi-in�nite metal.

where z∗ is the average e�etive harge and a denotes the average inter-

ioni distane; as mentioned in Setion 2 we may take a ∼ 2.73/q and q ≃
0.77z∗1/3, as for a metall. Comparing the self-onsistent potential (5) with the

bulk ontribution ϕ = 4πz∗/q2a3 (obtained from (2) by integrating over the

entire spae), one an see that the surfae brings its own ontribution δϕ(x) =
(2πz∗/q2a3)(x/ |x|)e−q|x|

to the self-onsistent potential, whih, through the

self-onsisteny relationship n = (q2/4π)ϕ, entails a spill δn of the eletrons

over the surfae and a harge double layer at the surfae, as expeted. The

total harge distribution at the surfae double layer is shown shematially in

Fig. 12. The work funtion of the solid an be omputed from (5), obtaining

ϕ = 4πz∗/q2a3, as expeted. The interation energy −(1/2)
∫
dx · δϕδn

assoiated with the eletron double layer is −πz∗2/2q3a6 (per unit area), and
it ats like an additional unertainty in the quasi-partile energy, giving rise

to boundary (�nite-size) lifetime; it leads also to a weak relaxation of the

ioni positions at the surfae, whih, however, is beyond the auray of the

present omputations. On the other hand, the potential energy (3) an be

estimated for a semi-in�nite metal in the ontinuum approximation, leading

to

Epot = −
3

4
qz∗2N +

πz∗2

2q3a6
A , (6)

where the �rst term is the bulk ontribution (N represents the number of

ions in metal), while the seond term is the surfae ontribution, A denoting

the area of the ross-setion; hene, one may derive the surfae tension σ =
πz∗2/2q3a6 of a metal; it agrees with the energy given above for the eletron

double layer.

Similarly, by using (3) and (4), we an estimate the interation potential

between a semi-in�nite metal and a metalli ion with an e�etive harge z∗0
plaed at distane x from the surfae; we obtain

Epot = Es −
3

4
qz∗20 −

πz∗z∗0
qa3

xe−q|x| , (7)
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Figure 14: Ground-state mass spetrum of Fe-lusters deposited on Na-

surfae.

where Es denotes the potential energy of the solid as given by (6); one an

notie in (7) the self-energy of the added ion and the last term whih repre-

sents the solid-ion interation potential. This potential has an attrative tail

above the surfae and a repulsive barrier beneath, as shown in Fig. 12. The

attrative part is responsible for forming up lusters added to the surfae,

while the interplay between the attrative and repulsive parts may determine

the penetration of added atoms just beneath the surfae, leading to di�usion

and interfaes between a solid and a deposited luster. It is worth noting

that this interation potential varies over a sale distane ∼ 1/q, whih is

smaller than the average inter-ioni distane a ∼ 2.73/q.

It is easy now, by making use of (7), to write down the potential energy of an

ensemble of N metalli ions with e�etive harges z∗i deposited on a metalli

surfae; it reads

Epot = Es −
3

4
q

N∑

i=1

z∗2i +
1

2

N∑

i 6=j=1

Φ(Rij)−
πz∗

qa3

N∑

i=1

z∗iXie
−q|Xi| , (8)

where the potentials Φ(Rij) are given by (4) and Xi denotes the x-oordinate
of Ri. It is worth noting that the sreening wavevetor q in (8) is the one

of the solid, as the latter prevails upon the deposited luster in the ther-

modynami limit. In this respet, the deposited lusters di�er from isolated

lusters whih have their own sreening wavevetor, as resulting from the
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Figure 15: Magi Fe-lusters deposited on Na-surfae, front view (upper

rows) and top view (lower rows).

minimization of their quasi-lassial energy. Aording to the theoretial

approah presented in Setion 2, the quasi-lassial energy of the deposited

luster is Eq = (27π2/640)q4
∑

i z
∗
i + Epot − Es, and the binding energy is

E = Eq − (9/32)q2
∑

i z
∗
i . One an see here the separability of the general

theoretial expression for the potential energy as given by (3) and (4) with

respet to the ioni positions. We may also de�ne an interation energy from

(8), between solid and a deposited luster, by

Eint = −
πz∗

qa3

N∑

i=1

z∗i Xie
−q|Xi| , (9)

whih may serve as a measure of the energy needed to separate the luster o�
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Figure 16: Ground-state energy per atom for Fe-lusters (3D, solid line)

deposited on Na-surfae vs luster size, ompared with monolayer luster

energy (2D, dashed line).

the surfae (the di�erene in the luster energy must be added, arising from

its own sreening wavevetor orresponding to luster relaxation). One an

also hek that the interation energy (8) for the halves of a solid ompensates

exatly the surfae energies of the two faets, as given by (6), as expeted.

The main problem of depositing lusters on surfae is the minimization of the

potential energy given by (8) with respet to the ioni positions Ri (in fat,

with respet to the redued positions qRi). We follow the same proedure

employed for isolated lusters, as desribed in Setion 3, and illustrate the

results here for Fe-lusters (z∗ = 0.57) deposited on Na surfae (z∗ = 0.44).
The ground-state mass spetrum for suh lusters is shown in Fig. 14, up

to N = 100. One an notie magi lusters deposited on surfae like, for in-

stane, those orresponding to N = 7, 14, 19, 23, 75, 77, 85, 88, 94...; they
may aquire highly symmetri forms as those shown in Fig. 15. The priniple

of their paking seems to be the same "spae eonomy"; for small values of

N they arrange in rather regular polygons onto the surfae, but with inreas-

ing N they start to onstrut up vertially, by adding suessively multiple

terraes, more or less regular; the overall onstrutions exhibit often a won-

derfully intriate geometry, as one an see in Fig. 15 for N = 23, 77, 94,
suggesting hats, theaters, stadia, domes, et. In general, there is a ompe-

tition between growing up vertially and laying down horizontally along the

surfae. We obtain monolayers (2D lusters) as ground-states for N ≤ 7
and as isomers for N > 7, as shown in Fig. 16, where their binding energy
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Figure 17: (a) A deposited luster with one ion beneath the surfae. (b) An

ion di�used into solid from a deposited luster.

is ompared with the ground-state energy of deposited lusters (3D). We

obtain also isomers, as expeted, some of them with strange onstrutions

lose to unstability (i.e. with high energies). There are many uriosities in

onstruting suh deposited lusters, as for instane, the rather struture-

less island between N = 23 and N = 75 in Fig. 14, whih is intriguing.

Some of the onstrutions obtained here theoretially an be found in exper-

imental works.[16℄ In this onnetion it is worth noting that the ontinuum

approximation employed here is, in fat, unneessary, though useful; it af-

fets the proximity properties between lusters and surfae, and, of ourse,

the problem of the "lattie onstants" mathing.

Finally, it is worth presenting a very interesting situation shown in Fig. 17a,

where one added ion has penetrated beneath the surfae, the rest having

remained at the surfae and formed there a deposited luster. The ion goes

through the potential barrier shown in Fig. 13, and is kept in equilibrium

by the interplay between the metal attration and the surfae-luster attra-

tion, whih at in opposite diretions. Suh a luster exhibiting an inipient

interfae with the solid is always an isomer, i.e. its energy is higher than the

ground-state energy of a luster of the same size deposited on surfae. There

appears also the possibility of a penetrating ion to esape into the solid, as

shown in Fig. 17b, where the position of the ion in solid is pratially un-

de�ned, i.e. this ion is free; it has di�used into the solid. A more sizeable

number of atoms may penetrate beneath the surfae, as shown in the �rst two

pitures in Fig. 18 for a 50-atoms luster, or for a 100-atoms luster whih

developed a well-de�ned inipient interfae with the solid (last piture in Fig.

18). These formations are inipient quantum dots of a very small size. Suh

results are enouraging for applying the present theoretial approah to more

omplex situations, in partiular to nanostrutures exhibiting interfaes, or

other geometri and dynami partiularities.
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Figure 18: A 50-atoms luster di�using beneath a solid surfae (�rst two

pitures), and a 100-atoms luster developing an inipient interfae with a

solid (last piture in the row).

6 Other E�etive Potentials

The self-onsistent Hartree �eld (2) was obtained for point-like ioni harge

distributions. Preserving the quasi-lassial self-onsisteny

n = (q2/4π)ϕ , (10)

we an give a formal solution for the Hartree �eld ϕ for a general bakground

harge distribution ρ by solving the linear equation

∆ϕ(r) = −4πρ(r) + q2ϕ(r) ; (11)

whih is obtained from Poisson equation by making use of (10); the solution

of this equation is

3

ϕ(r) =

∫
dr′

ρ(r′)

|r− r′|
e−q|r−r′| . (12)

For the point-like harge distribution (1) the self-onsistent �eld (2) is re-

obtained but now we an write the general solution

ϕ(r) =
N∑

i=1

∫
dr′

ρi(r
′ −Ri)

|r− r′|
e−q|r−r′| , (13)

3

In general, we an write the solution as ϕ(r) =
∫
drG(r, r′)ρ(r′), where G(r, r′) is the

Green funtion (or the resolvent) of the homogeneous equation

(∆− q2)G(r, r′) = −4πδ(r− r
′) .

The solution of this equation, G(r, r′) = exp(−q|r− r
′|)/|r− r

′| leads to the above expres-

sion for the self-onsistent �eld ϕ.
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for a nano-aggregate with N atoms with the ore harge distributions ρi(r)
and the atomi positions Ri (ρ(r) =

∑N
i=1 ρi(r − Ri)). Starting from this

potential and the orresponding eletron density given by (10) we an follow

the same steps as in Setion 2 and derive the kineti energy, the potential

energy, the quasi-lassial energy and the exhange orretion; as before we

will identify a general expression for the e�etive inter-ioni potential.

The potential energy is given by

Epot = Ec −
1

2

∫
dr · n (ϕ+ ϕc) (14)

where

Ec =
1

2

∑

i 6=j

∫
dr1dr2

ρi(r1 −Ri)ρj(r2 −Rj)

|r1 − r2|
(15)

is the potential energy of the atomi ores and

ϕc(r) =

N∑

i=1

∫
dr′

ρi(r
′ −Ri)

|r− r′|
(16)

is the ioni-ore ontribution to the self-onsistent potential. Using (10),

after performing the integration over r, the intervening integrals being of

two-enter type, the potential energy (14) reads

Epot = −1
4
q
∑

i ǫi−

−1
4
q
∑

i 6=j

∫
dr1dr2ρi(r1 −Ri)ρj(r2 −Rj)v(q |r1 − r2|) ,

(17)

where v(x) = (1 − 2/x)e−x
and ǫi plays the role of an ioni "self-energy"

given by

ǫi =

∫
dr1dr2ρi(r1)ρi(r2)

[
e−q|r1−r2| + 2

1− e−q|r1−r2|

q |r1 − r2|

]
. (18)

Beause, usually ρi(r) is exponentially vanishing at large distane, the main

ontribution to the ioni self-energy is obtained for |r1 − r2| ≪ 1, therefore
we have

ǫi ≃ 3

[∫
drρi(r)

]2
= 3z∗2i , (19)

where z∗i =
∫
drρi(r) is the e�etive valene harge of the i-th atom. For

homo-atomi lusters we obtain the total ioni self-energy 3Nz∗, where z∗ =
z∗i =onstant.
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The last term in the potential energy (17) orresponds to e�etive inter-ioni

potentials

Φij(Ri,Rj) = −1
2
q
∫
dr1dr2ρi(r1 −Ri)ρj(r2 −Rj)×

×
(
1− 2

q|r1−r2|

)
e−q|r1−r2| .

(20)

whih depends on the atomi speies and positions.

For homo-atomi lusters (single-omponent lusters) the ore harge dis-

tribution is the same for all atoms, ρi(r) = ρj(r)
.
= ρc(r) and the e�etive

inter-atomi potential depends only on the atomi positions. Obviously, for

atoms with spherially symmetri ore harge distribution the above poten-

tial depends only on the inter-atomi distane. For example, in the point-like

ion approximation ρc(r) = z∗δ(r), we re-obtain the potential given by (4), as

expeted. It is worth mentioning here that long time ago a similar potential

has been suggested on semi-empirial grounds, with some suess, for the H2

moleule.[20℄

We an apply these expressions to various situations ranging from spatially

extended ions to interations between nanostrutures and marosopi solids;

all we have to known is the form of the positive harge distributions. Before

giving a few interesting examples we would like to explain the multi-partile

harater of these e�etive interations. For a onstant sreening waveve-

tor q, these potentials desribe genuine two-partile interations. However,

this piture is essentially altered if we follow the quasi-lassial presrip-

tions used in deriving the above e�etive potentials. In the quasi-lassial

desription[3℄ q is determined by minimizing the quasi-lassial energy; there-

fore it has a slow dependene on the atomi positions. The quasi-lassial

energy is obtained by adding to the potential energy (17) the kineti energy

ontributions:

Ekin =
27π2

640
q4

N∑

i=1

∫
drρi(r) =

27π2

640
q4

N∑

i=1

z∗i , (21)

whih has the same form as for point-like ions. We obtain the quasi-lassial

funtional

Eq = Ekin −
1

4
q
∑

i

ǫi +
1

2

∑

i 6=j

Φij , (22)

where ǫi and Φij have been introdued above. In priniple, the ioni self-

energy has a slow q-dependene. We have shown that, for atoms with rapidly

vanishing ore harge distribution, the point-like ion solution ǫi = 3z∗ is a
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good approximation. Therefore we will neglet this q-dependene. It is

expeted that for very large atoms this dependene may beome important.

The parameter q is obtained by the minimum ondition

∂Eq

∂q
= 0 . (23)

In this way, q is a global parameter whih depend on all atomi positions

Ri. In this respet the above potentials have a multi-partile (N-partile)

harater. Equation (23) gives

27π2

160
zq3−

1

4
ǫ−

1

4N

∑

i 6=j

∫
dr1dr2ρi(r1)ρj(r2)g (q |r1 − r2 +Ri −Rj|) , (24)

where g(x) = (3 − x) exp(−x), z̄ = 1
N

∑
i z

∗
i is the mean valene harge and

ǫ = 1
N

∑
i ǫi is the mean ioni self-energy. The �rst two terms are dominant,

giving the asymptoti solution (|Ri −Rj | → ∞)

q0 =
2

3π

(
5π

ǫ

z̄

)1/3
, (25)

whih leads to the bare two-partile interation Φ0
ij .

Equation (24) an be written as

q3 − q30 = q30
1

ǫN

∑

i 6=j

Gij , (26)

where

Gij =

∫
dr1dr2ρi(r1)ρj(r2)g (q0 |r1 − r2 +Ri −Rj|) . (27)

Treating the r.h.s. of the above equation (the interation part) as a small

perturbation whih lead to small variations in q around the free value q0, we
obtain in the �rst order

q = q0

(
1 +

1

ǫN

∑

i 6=j

Gij

)1/3

(28)

∼= q0 +
q0
3ǫN

∑

i 6=j

Gij .
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The interation energy is

V =
1

2

∑

i 6=j

Φij
∼=

1

2

∑

i,j

Φ0
i,j +

1

2

∑

i,j

(
∂Φij

∂q

)

q0

δq . (29)

The �rst term is a superposition of two-partile bare interation potentials;

the seond term will give orretions to this two-body potential (the dressing

phenomenon) and a three- and a four-body interation. Higher order solu-

tions for q will ontinue to dress up the two-body interation, and in addition
will give highest order many-body potentials:

V =
1

2

∑

i,j

Φ0
ij + ...

︸ ︷︷ ︸
two-partile+dressing

+ v3 + ...︸ ︷︷ ︸
three-partile

+ v4 + ...︸ ︷︷ ︸
four-partile

+... (30)

The �rst order solution give the dressing orretion to the bare two-body

interation

δv2 = −
q0
6ǫN

∑

i,j

Gij , (31)

and three and four-body interation potentials

v3 = −
q0
3ǫN

∑

i 6=j 6=k

GijGjk , v4 = −
q0

12ǫN

∑

i 6=j 6=k 6=l

GijGkl . (32)

It is worth noting that this expansion is valid at large distanes where the

bare two-body interation is dominant. When the inter-atomi distanes be-

ome lose to the binding distanes, the higher order multi-partile potentials

beome also important. In the viinity of the equilibrium positions all the

terms are important and must be taken into aount. This expansion is used

only to illustrate the multi-partile harater and the medium dependene of

these potentials. In order to get the equilibrium positions we must minimize

the quasi-lassial energy with respet to the atomi positions Ri and the

sreening wavevetor q. In other words, we must solve �rst equation (24) and

then inlude the expression thus obtained for q in Eq; we obtain in this way

an expression for the luster energy dependent only on the atomi positions

Ri whih an be minimized to get the equilibrium positions.

A major simpli�ation ours if the ore-harge distribution is a n-th order

homogeneous funtion,

ρ(λr) = λnρ(r) . (33)
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Sine

∫
drρi(r) = z∗i , the only possible situation is n = −3. In this ase the

quasi-lassial energy funtional (22) an be written as

Eq =
27π2

640
q4
∑N

i=1 z
∗
i −

1
4
q
∑

i ǫi−

−1
4
q
∑

i 6=j

∫
dr1dr2ρi(r1)ρj(r2)v(|r1 − r2 +Xi −Xj|) ,

(34)

where we have introdued the dimensionless variables Xi = qRi and ǫi is not
q-dependent anymore; it is given by

ǫi =

∫
dr1dr2ρi(r1)ρi(r2)

[
e−|r1−r2| + 2

1− e−|r1−r2|

|r1 − r2|

]
. (35)

In this ase the two minimization steps an be inverted. The equilibrium

geometri forms of nano-aggregates are obtained by minimizing the redued

interation term in equation (34),

Eint = −
∑

i 6=j

∫
dr1dr2ρi(r1)ρj(r2)v(|r1 − r2 +Xi −Xj|) , (36)

with respet to the dimensionless variables Xi. The resulting value for this

interation energy is used in the seond step: the minimization of the quasi-

lassial energy with respet to the sreening wavevetor q. The equilibrium
value is given by

q = q0

(
1 +

1

ǫN
|Ei|

)1/3

, (37)

where q0 and ǫ have been introdued above. Thereafter, the atomi positions

are derived from Ri = Xi/q.

Though the ondition (33) is ful�lled in the point-like ion approximation,

more realisti ore harge distributions do not have this property. For exam-

ple, for the hard ore ioni harge distribution, ρ(r) = ρoθ(a− r), where a is

the radius of the ioni ore, with onstant harge density ρ0 = z∗3/4πa3, we
obtain the e�etive inter-atomi potential

Φ(|Ri −Rj|) = −
1

2
qz∗2α2

1

(
1− β1

2

q |Ri −Rj|

)
e−q|Ri−Rj | , (38)

for |Ri −Rj| > 2a, where

α1 = 3 qa cosh qa−sinh qa
(qa)3

,

β1 =
2qa cosh qa−(2+q2a2) sinh qa

sinh qa−qa cosh qa
.

(39)
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We an see that in the limit a → 0 we have α1 → 1, β1 → 1, re-obtaining, as
expeted, the e�etive-potential in the point-like ion approximation. Exept

for the expliit dependene on q, as disussed above for non-homogeneous

harge distributions, there are no major di�erenes ompared to the point-

like ion potential. The shape of the potential is the same. Also, for reasonable

values for a and q we get quantitatively the same results. For example, for

a = 1 and q = 0.5 we get α1 = 1.02 and β1 = 1.05.

For a more realisti ore harge distribution ρ(r) = Zδ(r) − ρ0θ(a − r),
where the �rst term orrespond to the nuleus harge Z and the last term

orrespond to the ore eletrons with onstant ρ0 = 3(Z − z∗)/4πa3 density
inside of a sphere of radius a (the ion radius) entered around the nuleus,

we get the same form for the e�etive inter-atomi potential

Φ(|Ri −Rj|) = −
1

2
qz∗2α2

2

(
1− β2

2

q |Ri −Rj|

)
e−q|Ri−Rj | , (40)

with

α2 = α1 +
Z
z∗
(α1 − 1) ,

β2 = β1α
2
1 +

Z2

z∗2
(1 + α2

1β1 − 2γα1) + 2α1
Z
z∗
(γ − α1β1) ,

(41)

where α1and β2 are given by equations (39) and

γ =
1

2

qa cosh qa− (1 + q2a2) sinh qa

sinh qa− qa cosh qa
. (42)

Again, the point-like ion result is re-obtained in the limit a → 0.

The general expression for the self-onsistent �eld (12) an be used in deriving

the self-onsistent potential of a semi-in�nite solid. Writing the bakground

harge density as ρ(r) = ρ0 · θ(−x) we obtain from equation (12) the self-

onsistent potential[17℄

ϕ(r) =
2πρ0
q2

×





e−qx , x ≥ 0

2− eqx , x < 0
(43)

and the eletron density

n(r) = ρ0 ×





1
2
e−qx , x ≥ 0

1− 1
2
eqx , x < 0

(44)

whih is the well known Smoluhowski density,[18℄ used often with good re-

sults as a trial eletron density funtion for metalli surfaes (see, for instane,
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Ref. [19℄). The present theoretial approah provides, probably for the �rst

time, the derivation for this relation. In Setion 5 we have obtained these

expressions (see eq. (5)) by taking the ontinuum limit in equation (2).[17℄

These two methods are equivalent.

Let us onsider another example. For an atomi nano-slab of thikness L
with a free surfae plaed at x = 0 and the other one at x = −L we obtain

the self-onsistent potential

ϕ(x) =
2πρ0
q2

×






e−q|x| − e−q|x+L| , x ≥ 0 or x ≤ L

2− eqx − e−q(x+L) , −L ≤ x < 0
, (45)

for a onstant bakground harge density ρ0. For L → ∞, as for a semi-

in�nite solid, we re-obtain equation (43); for L → 0, as for a thin in�nite

plate with a surfae harge density ρL → σ, we obtain an exponentially

dereasing potential, ϕ = 2πσ exp(−q|x|)/q. Using equation (20) we an

alulate the interation potential in the jellium approximation between two

suh nano-strutures. We get the interation potential per unit area

Φ(d) = −
πσ2

q
e−qd(qd− 1) , (46)

for two parallel in�nite plates with the positive surfae harge distribution

σ plaed at a distane d. A �nite numbers of suh plates forms equilibrium

strutures with one dimensional behaviors. The eletron distributions for this

type of strutures has been reently investigated using an numerial approah

to the Thomas-Fermi model.[21℄ We an obtain these densities analytially.

A very interesting appliation is the interation between two semi-in�nite

solids. Various eletroni struture alulations have given support for the

existene of an universal saling of binding energies;[19, 22℄ it appears that

these energies divided by their minimum values are well represented by the

Rydberg funtion

E∗(d̃) = −(1 + βd̃)e−βd̃ , (47)

where d̃ = (d − dm)/l with dm being the equilibrium distane and l a

sale length whose values ould be given by the Thomas-Fermi sreening

length.[19℄

We obtain, from equation (20), the interation per unit area

Φ(d) = −
πρ20
q3

(1 + q|d|)e−q|d|
(48)
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for two solids at distane d with bakground harge density ρ0. This potential
has a minimum for dm = 0, that is for solids in ontat; it is worth nothing

that in the ontinuum approximation from whih this potential is derived the

inter atomi distanes, whih represent a measure for dm, has been taken as

being in�nitesimally small. Moreover, the sreening wave vetor q depends

on a variationally Thomas-Fermi wavevetor through, q2 = 8k̄F/3π;[3℄ in-
troduing a (variationally) Thomas-Fermi sreening length through 1/λ̄TF =
(4k̄F/π)

1/2
, we an write q = (2/3)1/2/λ̄TF . As above, dividing by the mini-

mum absolute value πρ20/q
3
, we an de�ne

Φ∗(d̃) = −(1 + β|d̃|)e−β|d̃|
(49)

where β = (2/3)1/2 and d̃ = d/λ̄TF , onsistent with our jellium model. We

an see that for d̃ ≥ 0 (or d ≥ dm) we have obtained the form (47) suggested

in Ref. [22℄. Moreover, our value for β(= (2/3)1/2) is lose to the value

β = 0.9 whih provided the best �t in Ref. [22℄. We must note that we an

diretly identify a sreening length as λTF = 1/q; in this ase β = 1 also

lose to the 0.9 best �t value. Moreover, if we take a mean value between the

two methods of de�ning λTF we get β ≃ 0.908 whih is astonishingly lose

to the �t value.

7 Conluding Remarks

The theoretial approah presented here deals with matter aggregation at

the atomi level. It is based on the quasi-lassial solution to Hartree-Fok

equations desribing a neutral ensemble of Coulomb interating ions and va-

lene eletrons. The main ingredient of the theory is an inter-ioni e�etive

(pseudo-) potential, of the type given by (4) for point-like e�etive ioni

harges. The model has been applied to several speies of metalli ions,

leading to formation of homo-atomi lusters, either isolated or deposited

on surfaes, as well as to some peuliar nanostrutures, both with geomet-

ri and dynami onstraints. It provides quantitative results for geometri

forms, ioni positions, inter-ioni distanes, binding energies, both of ground-

states and isomers, lusters stability and vibration spetra. Magi lusters

and magi numbers have been obtained for ground-states, giving an insight

into the geometri patterns of luster aggregation. At this level, the theo-

retial approah has a �rst-step approximation harater, the full treatment

requiring the so-alled quantum orretions. These provide single-partile

properties, like eletron energy levels, ionization potentials, hemial a�ni-
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Figure 19: The magi luster A14B28 (left) with a f A−ore (enter) and
an outside B−shell (right).

ties, as well as response to external �elds, transport and various spetrosop-

ial properties inluded. The quantum orretions set also the ground for

treating the lusters magnetism. The latter originates mainly in the eletron

ferromagnetism, as aused by the exhange interation, and the ioni param-

agnetism; both are to be treated in the partiular ontext of a single-domain

(or a few domains) magnetism, and a frational oupany of the eletron

levels, as required by the e�etive harge parameters. Both loalized and itin-

erant magneti moments are spei� to lusters magnetism, with partiular

properties, like high, inhomogeneous magnetization, super-paramagnetism,

et. In addition, the model must be further re�ned by taking into aount

the spatial struture of the ioni harge distribution, in partiular its angular

dependene in oriented hemial bonds. This would onsiderably enlarge the

appliability of the theory to large lasses of hemial speies.

Another interesting appliation is ohesion in hetero-atomi strutures. A

study of binary metalli lusters onsisting of a large variety of atoms types is

urrently underway. We �nd that inreasing the disrepany between the two

types of atoms (inreasing the ratio between theirs e�etive valene harges)

leads to a gradually derease of the homo-atomi magi (total) numbers

and the appearane of magi pairs like (6,32), (10,22), (13,20), (14,24) or

(26,12). The equilibrium strutures are in general ore-shell lusters with

the atoms of greater z∗ in the enter. Although the iosahedral symmetry

is still dominant, the double magi lusters have sometime ubi symmetries

like, for example, the A14B22 luster presented in Fig. 19, magi (or double

magi) for 1.4 ≤ z∗A/z
∗
B ≤ 2; its ore is a fae entered ube and the outside

shell is a trunated otahedron. The b symmetry has been obtained for

the A9B6 luster; in the range 1.4 ≤ z∗A/z
∗
B ≤ 2.3 the A atoms forms a single

b ell while the B atoms �nd equilibrium positions in the viinity of the

nearest neighbour enters.
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