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Abstract

The quasi-classical theoretical description of matter aggregation
and solid-state cohesion at atomic level is described, in connection
with its multiple applications to atomic clusters and nanostructures.
The formation of isolated atomic clusters of up to 160 atoms is pre-
sented and characterized with respect to geometric forms, atomic po-
sitions, inter-atomic distances, ground-states and isomers, binding en-
ergies, magic numbers, vibration spectra, and the derivation of single-
particle properties is outlined, within the point-like ions approxima-
tion. The surface of a semi-infinite solid is characterized within the
same approach, and the formation of clusters deposited on surfaces is
described, with regard to similar physical and chemical information.
Peculiar nanostructures are also presented, as resulting from computa-
tion process, as an indication of the large variety of possible nanostruc-
tured forms. The extension of the theoretical tools to more complex
situations, in particular to directional bonds and quantum corrections,
is also discussed. More general effective inter-atomic potentials are
given, as resulting from the present quasi-classical description.

1 Introduction

The great deal of activity and interest recorded at present in nanoscience
and nanotechnologies raises basic issues of matter aggregation and struc-
turation at the atomic level. While enabling major breakthroughs in life
sciences and medicine, ultraminiatural electronics, materials, tools and pro-
cesses, and manipulating individual atoms at the same time, the nanoscale
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sciences provide a more direct, sensible representation of the atomic and
molecular matter, together with a more accurate knowledge of the physical
and chemical structures and processes at this level. Traditionally, the field
bears relevance upon chemical bonding of molecules and solid-state bulk bod-
ies. However, in-between there is an extremely large amount of various kinds
of supramolecules, molecular aggregates, atomic clusters, nanostructures and
nano-objects, either isolated or in various environments, sometime exhibit-
ing intricate geometries and beautiful symmetries, with their own specific
behaviour. This immense new realm that fills plenty in the "room at the
bottom", according to a famous Feynman’s statement, displays basically a
quantum behaviour and a size dependence. These issues are addressed in the
present paper, from the perspective of the quasi-classical description of en-
sembles of valence electrons and charge-compensating point-like ionic cores,
with particular emphasis on relevant physical and chemical information on
various atomic clusters and nanostructures, both isolated or under various
geometric constraints as, for instance, clusters deposited on surfaces. In par-
ticular, geometric forms, atomic positions, inter-atomic distances, binding en-
ergies, magic numbers and vibration spectra are presented, and the extension
to single-particle properties and structured ionic cores is outlined. Within
given approximation, the results are applicable to homo-atomic metallic for-
mations. The results described here are based on an original theory of the
authors, which shows that matter aggregation follows from the delocalization
of the electronic wavefunctions, the quantum statistics of the fermions (Pauli
exclusion principle) and the Coulomb interaction.

2 Theory

In chemical binding the single-electron wavefunctions are superpositions of
localized atomic-like orbitals and extended bond-like orbitals. Due to the
great disparity in the spatial scales of the two types of orbitals the problem of
the nuclei-electrons interaction is separated into a purely atomic-like part, a
chemical-bond part, and a residual interaction which can further be removed
by using classical variational principles.[1| The atomic-like part can be treated
by standard ab-initio wavefunctions method,|2] while for the chemical-bond
part a quasi-classical description has been developed recently,|3] in close con-
nection with the density-functional method.[4] For the chemical-bond part
we are left with an ensemble of electrons moving in a background of neutral-
izing effective charges in the valence upper shells of the ions. These charges
are distributed in space according to the corresponding atomic-like orbitals,
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but we adopt here, for the sake of the simplicity, a point-like distribution
N

p(r) =Y z/d(r—Ry) , (1)
i=1

where 27 are the effective charges (in units of electron charge e¢) and R; de-
note the positions of N ions, ¢ = 1,2,...N. Such a point-like ionic charge
distribution bears a limited relevance upon certain s-, d- and f-metallic ions,
where we may neglect the radial dependence of the atomic-like orbitals and
average out their angular dependence, but it is inadequate for an important,
very large class of ions with p-valence orbitals, or with hybridized valence
orbitals. The effective charges can, in principle, be obtained by solving the
entire problem of nuclei-electrons interaction, as remarked above, but results
are not yet available. However, for certain ions, within the point-like ap-
proximation, we may estimate the effective charges by making use of the
atomic screening theory.[5] For instance, we get z* = 0.57 for Fe?*(iron),
z* = 0.34 for Ba®"(barium), and 2* = 0.44 for Na'* (sodium). Such es-
timations, together with the point-like approximation, render a status of
model-calculations to the results presented herein. In addition, the theoret-
ical treatment employed here is valid for a sufficiently large number N of
not-too-light atoms.

Within the quasi-classical description of the Hartree-Fock equations|3] the
chemical-bond orbitals are quasi-plane waves in the first approximation, and
the electrons move in the Hartree self-consistent field

Z T R ‘ e—dqIr—Ri (2)

corresponding to the charge distribution given by (1), where ¢ is a screening
wavevector similar to the Thomas-Fermi wavevector, to be determined vari-
ationally. The self-consistency requires a linear relationship n = (¢*/4m)yp
between the electron density n and the potential ¢, which allows a straight-
forward computation of the interaction energy. This energy includes the
Coulomb attraction betwen electrons and ions and the Coulomb repulsions
both between electrons and between ions, respectively; we call it potential
energy, and it is given by

Pot q Z 2 +5 Z ) (3)

z;é] 1
where | 5
o * % —qR;;
O(R;j) = —59% Zi(1 - qu‘j)e ali; (4)
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Figure 1: (a) The inter-ionic potential function vs reduced distance. (b) A
two-dimensional sheet of the inter-ionic potential (4) for Fe-ions.

is the effective (pseudo-) potential acting between two ions separated by the
distance R;; = |R; — R;|. This inter-ionic potential is shown in Fig. 1. It
has an attractive tail at long distances and is strongly repulsive at short
distances.

We emphasize that the inter-atomic potential given by equation (4) is derived
from rigurous theoretical principles and is a new potential, in comparison
with many quasi-empirical potentials used to simulate the matter aggrega-
tion. This potential has beed discovered in 2000 by one of the co-auhors of
the present paper (L. C. Cune). The interacting part in E, is the only con-
tribution which depends on the ionic positions, so that we may minimize this
energy represented by the second term in the r.h.s. of (3) with respect to R;
(actually with respect to the dimensionless variables X; = ¢R;) in order to
get, the equilibrium forms of the ensemble of ions; doing so, we get both the
ground-state of the ionic aggregate and the isomers, which differ by slight
changes in energy and ionic positions. They correspond to local minima of
the potential energy (3). The minimum values of the interacting part in (3)
is usually very small in comparison with the self-energy ionic part given by
the first term in the r.h.s. of (3), so we may neglect this contribution in
approximate estimations. The model of metal obtained here resembles very
much the old Wigner-Seitz model.|[6]

The quasi-classical description is based upon slight spatial variations of the
electron density in extended chemical-bonds orbitals; this enables the linear
self-consistency relationship given above between electron density and po-
tential. Accordingly, such a linearization is in order for the kinetic energy of
the electrons too; it reads' Ej;, = (277%/640)¢* Y, zf. The quasi-classical

'In atomic units e2/ay = 27.2¢V, where ay = h?/me? = 0.53Ais the Bohr radius (m



A new approach to matter aggregation

energy B, = Ejyn, + Epy is then obtained, where E,, is the ground-state
minimum value of the potential energy (3), and minimized with respect to
the screening wavevector ¢. It is easy to see that such a minimum value
exists; for homo-atomic aggregates it is given by ¢ ~ 0.772*1/3, neglecting
the small contribution of the interacting part to the potential energy at equi-
librium. In this case we may also define an average inter-ionic distance a
by aq ~ 2.73, where X = 2.73 is the reduced distance; for this distance the
inter-ionic potential (4) reaches its minimum value.

The exchange energy in the Hartree-Fock equations admits plane waves as
eigenstates. More, it remains unchanged for quasi-plane waves, i.e. for slight
local changes in the electron density, as in the quasi-classical description, due
to its non-local character;? it follows that screening does not affect it in this
approximation, so we may simply add its (linearized) contribution E., =
—(9/32)¢*>", zF to the quasi-classical energy F,, with ¢ determined above,
to obtain the binding energy F = E, + E.,. For homo-atomic aggregates
the ground-state energy is given by E = —N(0.432*7/3 4 0.172*%/3), leaving
aside the small contribution of the interacting part of (3) (which however is
responsible for the non-thermodynamic behaviour and the size dependence).

The theoretical scheme outlined above is a linearized Thomas-Fermi model
in fact, as derived from the quasi-classical solution of the Hartree-Fock equa-
tions. It differs from the standard non-linear Thomas-Fermi model (charac-
terized by n ~ ©%2) in that it exhibits binding of the interacting ions and
electrons, in contrast to the latter where there is no binding.|[8] The non-linear
Thomas-Fermi model is valid in the limit of infinite ionic charges (so-called
quasi-classical limit), while the linearized model presented here is the starting
point of the quantum behaviour of matter aggregation, and it could represent
the solution to chemical bonding Schwinger was alluding to.[9] It has been
applied to heavy atoms (with atomic numbers Z > 1) where the well-known
binding energy —16Z7/3eV has been successfully reproduced (quantum cor-
rections included), to a consistent analysis of bulk properties of a model of
"universal" metal, and to realistic estimations of the ionization potentials
of metallic clusters.[10] The quasi-classical description as presented above is
only the first step in a full treatment. It offers the great advantage of getting
structured atomic ensembles with rather limited computational resources.
On the other hand, it offers the possibility of pursuing consistently the so-
called quantum corrections. The latter include the ab-initio computation of
the effective charge parameters as indicated before, taking into account the

is the electron mass and % denotes the Planck constant).
2This "rigidity" character of the exchange energy has been noticed probably for the
first time by Slater;[7] see also Ref. 6.
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entire problem of nuclei-electrons interaction, as well as the single-particle
properties, in particular the single-electron energy levels of the electrons mo-
tion in the self-consistent potential ¢, as given by (2), for instance.[3] These
corrections bring certain changes in energies and, consequently, equilibrium
ionic positions, as well as other relevant quantities. The quantum correc-
tions are basically due to the strong variations of the electron density and
self-consistent potential over small distances of the order of atomic distances.
These deviations can be estimated, if one considers, for instance, the screen-
ing wavevector ¢ as related to the average of the Fermi wavevector; doing so,
we obtain ~ 17% an accuracy of the quasi-classical results. Further on, the
single-particle wavefunctions of the Hartree-Fock equations entail an inher-
ent second-order uncertainty in the self-consistency scheme, which signals its
limits; therefore, we conclude that, once the quantum corrections included,
the results are valid within at most ~ 0.17 x 17% ~ 3% accuracy, and this
would be the limit of the approach.

3 Metallic Clusters

The first step in applying the method described above is to minimize the
potential energy given by (3) and (4) with respect to the reduced ionic po-
sitions X; = qR,;. Since the X-dependence of the potential function ® does
not involve the nature of the ions, the equilibrium geometric forms found by
such a minimization are universal. The minimization method is implemented
by giving originally ionic positions randomly distributed in space, computing
the forces at each position, and letting the ions move step by step in the di-
rection of the forces, until an equilibrium is reached (actually until the forces
are less than 10~%eV /A).

The equilibrium positions can correspond either to the ground-state or to
isomers. In order to distinguish the ground-state from the isomers we run
several hundreds times the equilibrium process for each atomic aggregate,
attempting to get a statistical ensemble as large as possible. In addition,
for differentiating between local minima and saddle-points we compute also
the vibration spectra in the harmonic-oscillator approximation. Finally, we
compute the quasi-classical energy E,, find out its minimum value and the
screening wavevector ¢, add the exchange energy FE., and get the binding
energy F for the ground-state, as described in Section 2. The latter exhibits
small, irregular variations with respect to the number N of atoms; to put
them clearly into evidence we compute also the so-called abundance, or mass
spectrum, as given by D = In(I%/Iny1Iy 1) = E(N+1)+E(N—1)—2E(N),
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Figure 2: Ground-state mass spectrum of metallic clusters.

where [y is the Boltzmann statistical weight for the ground-state. It is found
that such a spectrum does not depend on the effective charges z* within
reasonably large limits. This procedure has been applied to homo-atomic
clusters of metallic ions up to N = 160.

The mass spectrum of homo-atomic metallic clusters is shown in Fig. 2. It
exhibits a sequence of high and very sharp peaks, corresponding to what
we call magic clusters. Indeed, these magic clusters in their ground-states
are much more stable as compared to their neighbours, and may possess
a high symmetry, most of them a pentagonal one, like the centered icosa-
hedron N = 13. Some of these magic clusters are shown in Fig. 3. For
relatively small values of N we expect to get Plato’s perfect polihedra; how-
ever, this is not always true; for instance, we obtain the tetrahedron (N = 4)
and the octahedron (N = 6), but the hexahedron (cube, N = 8) and the
dodecahedron (N = 20) are not ground-states (we get them as isomers),
while the icosahedron prefers to be centered (N = 13). It seems that the
principle of atomic packing in such magic clusters is a certain "space econ-
omy". Indeed, this can be shown convincingly on the three "most magic"
clusters shown in Fig. 4, with N = 45, 110 and 115, respectively. The
first row in Fig. 4 shows a front view which displays the highly symmetric
forms of these clusters, while their outer shells are shown in the second row;
indeed, such clusters are made of multiple, closed geometric atomic shells,
with one shell’s atoms placed just above the facets’ centers of another. These



Modern Trends in Nanoscience

13 ©

115

146 148 ’ 156

Figure 3: Magic clusters of metallic ions.

clusters display an outstanding five-fold symmetry, yet other magic clusters,
though very close to a high symmetry, exhibits also slight, disconcerting im-
perfections, like the N = 113, 144, or 148 clusters in Fig. 3. It is worth
noting here that some of these structures have also been obtained either by
other theoretical techniques, or have been identified experimentally,[11] and
the five-fold symmetry magic numbers like N = 13, 45, 115 are known as
geometric, or icosahedral magic numbers. As regards a possible compari-
son with experimental results a word of caution is in order here. First, it
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Figure 4: Highly-symmetric metallic clusers (first row), displaying outer
shells (second row).

must be stressed that the mass spectrum given in Fig. 2 corresponds to the
ground-states, while clusters are usually produced experimentally in a sta-
tistical ensemble at a non-vanishing temperature. Consequently, a statistical
average is relevant for experimental abundance, which includes isomers be-
side the ground-state; this gives "statistical" magic numbers N, as distinct
from the present "geometric", or "ground-state" magic numbers given in Fig.
2. A table of isomers is given in Fig. 5 for Fe-clusters, where we may notice
an increase in the number of isomers on increasing size, as well as several
"white islands" placed approximately at the magic clusters (for instance at
N = 13, 45 and 115), as expected. Similarly, it is worth noting that slight
differences in energy differentiate the isomers from the ground-states. Sec-
ondly, "electronic" magic numbers may be obtained, as different from the two
previous ones, from the filling up of the electron states in model potentials,
like the well-known quadropole-deformed harmonic-oscillator potential. In
particular, the latter potential is obtained from the self-consistent potential
(2) in the long-wavelengths (continuum) limit,[3] which may be relevant for
other sets of experimental data, depending on the clusters nature and the
particular conditions of producing these clusters.

Having obtained the equilibrium ionic coordinates X; by minimization of
the potential energy, and the screening wavevector ¢ from the minimum
value of the quasi-classical energy, we may obtain the inter-ionic distances
R;; = X,;/q at equilibrium; on the average they are of the order of 2 — 3A. Tt
is worth noting that for computing such quantities, as well as for computing
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Figure 5: Isomer table of Fe-clusters.

the binding energy or the vibration spectra, one needs to know the nature
of the atomic species, in particular the effective charges z*. The vibration
spectra for several magic clusters of Fe in the ground state are shown in
Fig. 6. One can notice the increase of low-energy vibration states density
with increasing cluster size, as expected, as well as higher multiplicity of the
vibrational states for more symmetric clusters. The binding energy per atom
for the ground state of Fe-clusters (z* = 0.57) is given in Fig. 7 wvs cluster
size N. The binding energies of such clusters are of the order of 5 — 6 eV
per atom. These numerical values are in good agreement with the results
of other computations.[12] In this respect, it is worth mentioning the large
amount of work devoted to metallic clusters, by employing both ab-initio
calculations, molecular dynamics, density functionals, or jellium-like models;
numerical data, when available, can be found, for instance, in Ref. 13.

The results presented here suggest that metallic clusters produced experi-
mentally by various techniques may have very likely equilibrium geometric
forms like those given in Fig. 3 for their ground-states, or slightly different
ones for their isomers. Most metallic clusters serve as cores for more com-
plex, nanostructured aggregates, like organo-metallic clusters (as we shall
see in the next section), and the core geometry brings useful information in
designing the structure and the functionality of the latter. The presence of
the isomers, which are separated from the ground-state by small amounts of
energy, is particularly interesting in giving indication about cluster stabil-

10
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Figure 6: Ground-state vibration spectra of ground-state Fe-clusters.

ity and their possible tunneling between various geometric configurations; a
privileged position in this connection have the magic clusters associated with
"white islands" in the isomer table in Fig. 5, but the origin of the rather
wide energy gaps between the ground-state and the first excited state in this
case is not known; at most, we can trace it back to a rather vague principle
of "space economy", as said above.

4 Particular Nanostructures

The theoretical model of atomic aggregation presented in Section 2 can also
be applied to more complex clusters. Such a complex organo-metallic cluster
is the iron-hydrocarbonated Fe;3(CoHy)g which has recently been synthesized
experimentally.[14] Since each CH-radical may bind to a Fe-ion by taking
one valence electron, it seems naturally to assume that 12 Fe-ions possess
half of the effective charge of a standard Fe-ion, i.e. z* = 0.57/2 = 0.28,
and view the entire structure as consisting of 12 such Fe-CH ions and one

11
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Figure 7: Ground-state energy per atom of Fe-clusters vs cluster size.

standard Fe-ion (with effective charge z* = 0.57). Such a structure clusterizes
into a centered perfect icosahedron as the one shown in Fig. 3 for N =
13, which may be viewed as the core of the actual organo-metallic cluster
Fei3(CoHsy)g. Simple arguments of a minimal interaction energy between the
CyHg-acetylene radicals lead then to a symmetric arrangement of them on
the surface of the Fe-core cluster, as shown in Fig. 8. The contribution of the
metallic core to the binding energy has been estimated, as well as the inter-
atomic distances, vibration spectrum and the electron charge distribution,|[15]
getting thus useful preliminary information for a more detailed study, which
must include the directional bonding of the CyHs- radicals.

A more complex experiment has been run on computer by making use of
the present theory. It consists of giving 83-unit cells of a bce-metal and let
the ions relax to equilibrium. Doing so, a huge cluster of N = 855 atoms
has been obtained as shown in Fig. 9a, with a pretty disordered structure,
which however preserves an approximate original bce-symmetry in a core of
about 3 unit cells, as shown in Fig. 9b. The computations take a rather long
time in this case, and the statistics of the results is poor enough to have a
reliable structure. However, this may give useful indications as to how the
translation symmetry of a bulk solid may appear on increasing the number of
atoms, and the extent of the surface (finite-size) effects. It has also found that
the isomers of such a chunk of solid are extremely numerous, within a narrow
energy range just above the ground-state energy, as expected, but, what is
very interesting, they are associated mainly with slight, multiple changes in

12
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Figure 8: A Fej3(CyHs)g cluster (Refs. 14, 15).

the positions of the outer ions. It suggests that the surface of a very large
cluster, or of a solid, might be fuzzy, as corresponding to a superposition of
states with slightly different atomic positions, very similar to a liquid (it may
be termed a "quasi-liquid"). Such a picture may have important significance
for friction.

In some computer runnings various peculiar nanostructures have been ob-
tained accidentally, each with suggestive particularities. For instance, we got
an atomic sheet with an almost perfect hexagonal symmetry, as shown in Fig.
10a, which is unstable, as expected (it may be stabilized by depositing it on

Figure 9: (a) An 855-atoms bit of metal. (b) A bce-core of an 855-atoms
metal.

13
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Figure 10: (a) An unstable hexagonal metallic sheet. (b) A metallic popcorn
wire (unstable).

a surface); or unstable chains of metallic ions, the most interesting being the
one shown in Fig. 10b; it consists of a sequence of intertwined, mutually ro-
tated icosahedra, leaving outside one protruding icosahedral end-atom, which
might be suggestive for a perfect probe tip in scanning microscopy. The chain
is however unstable, as expected for such a simplified one-dimensional model
of metal, but its diameter is smaller than the inner diameter of a carbon nan-
otube, so the latter may act as a stabilizing support. The results obtained
within the present theoretical approach for such low-dimensional nanostruc-
tures, beside their suggestive character, may be useful as a constitutive input
for more elaborate theoretical models.

\

7
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YAl
NS
Figure 11: Two weakly interacting metallic clusters.

Another very interesting situations appeared in a few computer runnings
where a number of metallic ions aggregated spontaneously in a two-clusters
structure as shown in Fig. 11; the two aggregates interact extremely weakly,

and end by forming one connected cluster after a very long while. The

14
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Figure 12: Charge distribution at the metallic surface double layer.

occurrence of such disconnected atomic structures originates in the separable
nature of the interaction (3) with respect to the ionic positions.

Some of the peculiar nanostructures described above may be stabilized either
by geometric constraints (as, for instance, depositing them on surfaces, as
we shall see in the next section), or by dynamic constraints. Indeed, we may
apply a tension for instance on the two end-atoms of, say, the perfect 13-
atoms icosahedron (or more complex structures), as produced by two forces
acting in opposite directions, and look for equilibrium forms of such a dis-
torted cluster. It is found that there are several discrete equilibrium forms
until the breaking of the cluster, and the transverse size of the cluster is
successively diminished in steps on increasing the applied force. These steps
are very close to "atomic steps", corresponding to one atom getting in-line
with the rest along the applied force, suggesting an "atomic quantization" of
the cross-section of the sample.

5 Metallic Clusters Deposited on Surfaces

The summation over ionic positions in the potential energy (3) can be re-
stricted to certain space regions, for instance to a half-space corresponding
to a semi-infinite solid with a free, plane surface at + = 0. In this case we
may use the continuum approximation, ¢.e. we may replace the summation
over ionic positions in (3) by an integration. We apply this procedure first
to the self-consistent potential ¢ given by (2), and obtain

(5)
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Figure 13: Interaction potential a metallic ion and a semi-infinite metal.

where 2* is the average effective charge and a denotes the average inter-
ionic distance; as mentioned in Section 2 we may take a ~ 2.73/q and ¢q ~
0.772*1/3, as for a metall. Comparing the self-consistent potential (5) with the
bulk contribution ¢ = 472*/¢%a® (obtained from (2) by integrating over the
entire space), one can see that the surface brings its own contribution dp(z) =
(2m2*/q%a®)(x/ |z|)e=9 to the self-consistent potential, which, through the
self-consistency relationship n = (¢?/4m)y, entails a spill dn of the electrons
over the surface and a charge double layer at the surface, as expected. The
total charge distribution at the surface double layer is shown schematically in
Fig. 12. The work function of the solid can be computed from (5), obtaining
¢ = 4mwz"/¢*a®, as expected. The interaction energy —(1/2) [dx - dpdn
associated with the electron double layer is —7w2*?/2¢%a® (per unit area), and
it acts like an additional uncertainty in the quasi-particle energy, giving rise
to boundary (finite-size) lifetime; it leads also to a weak relaxation of the
ionic positions at the surface, which, however, is beyond the accuracy of the
present computations. On the other hand, the potential energy (3) can be
estimated for a semi-infinite metal in the continuum approximation, leading
to 3 #2
mZ

Epot = _ZQZ*QN -+ 2q3a6
where the first term is the bulk contribution (N represents the number of
ions in metal), while the second term is the surface contribution, A denoting
the area of the cross-section; hence, one may derive the surface tension o =
72*2/2¢3a® of a metal; it agrees with the energy given above for the electron
double layer.

A, (6)

Similarly, by using (3) and (4), we can estimate the interaction potential
between a semi-infinite metal and a metallic ion with an effective charge z§
placed at distance x from the surface; we obtain

P> 3 o TEZy

pot — Es — Zqzo er*qm , (7)

16
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Figure 14: Ground-state mass spectrum of Fe-clusters deposited on Na-
surface.

where Fy denotes the potential energy of the solid as given by (6); one can
notice in (7) the self-energy of the added ion and the last term which repre-
sents the solid-ion interaction potential. This potential has an attractive tail
above the surface and a repulsive barrier beneath, as shown in Fig. 12. The
attractive part is responsible for forming up clusters added to the surface,
while the interplay between the attractive and repulsive parts may determine
the penetration of added atoms just beneath the surface, leading to diffusion
and interfaces between a solid and a deposited cluster. It is worth noting
that this interaction potential varies over a scale distance ~ 1/q, which is
smaller than the average inter-ionic distance a ~ 2.73/q.

It is easy now, by making use of (7), to write down the potential energy of an
ensemble of N metallic ions with effective charges z; deposited on a metallic
surface; it reads

3 N 1 N e N
Epot = Es - quzl 2:2 + 5 Z (I)(RU) — Z:Xie_q‘xi‘ s (8)

z
3
a

i#j=1 E AL

where the potentials ®(R;;) are given by (4) and X; denotes the z-coordinate
of R;. Tt is worth noting that the screening wavevector ¢ in (8) is the one
of the solid, as the latter prevails upon the deposited cluster in the ther-
modynamic limit. In this respect, the deposited clusters differ from isolated
clusters which have their own screening wavevector, as resulting from the

17
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Figure 15: Magic Fe-clusters deposited on Na-surface, front view (upper
rows) and top view (lower rows).

minimization of their quasi-classical energy. According to the theoretical
approach presented in Section 2, the quasi-classical energy of the deposited
cluster is E, = (2772/640)¢* ", zf + Epot — Es, and the binding energy is
E =E,;—(9/32)¢*>", zf. One can see here the separability of the general
theoretical expression for the potential energy as given by (3) and (4) with
respect to the ionic positions. We may also define an interaction energy from
(8), between solid and a deposited cluster, by

N
mZ .

Eip = —— Z 2 Xe Nl (9)

which may serve as a measure of the energy needed to separate the cluster off
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Figure 16: Ground-state energy per atom for Fe-clusters (3D, solid line)
deposited on Na-surface wvs cluster size, compared with monolayer cluster
energy (2D, dashed line).

the surface (the difference in the cluster energy must be added, arising from
its own screening wavevector corresponding to cluster relaxation). One can
also check that the interaction energy (8) for the halves of a solid compensates
exactly the surface energies of the two facets, as given by (6), as expected.

The main problem of depositing clusters on surface is the minimization of the
potential energy given by (8) with respect to the ionic positions R; (in fact,
with respect to the reduced positions ¢R;). We follow the same procedure
employed for isolated clusters, as described in Section 3, and illustrate the
results here for Fe-clusters (z* = 0.57) deposited on Na surface (z* = 0.44).
The ground-state mass spectrum for such clusters is shown in Fig. 14, up
to N = 100. One can notice magic clusters deposited on surface like, for in-
stance, those corresponding to N = 7, 14, 19, 23, 75, 77, 85, 88, 94...; they
may acquire highly symmetric forms as those shown in Fig. 15. The principle
of their packing seems to be the same "space economy"; for small values of
N they arrange in rather regular polygons onto the surface, but with increas-
ing N they start to construct up vertically, by adding successively multiple
terraces, more or less regular; the overall constructions exhibit often a won-
derfully intricate geometry, as one can see in Fig. 15 for N = 23,77,94,
suggesting hats, theaters, stadia, domes, etc. In general, there is a compe-
tition between growing up vertically and laying down horizontally along the
surface. We obtain monolayers (2D clusters) as ground-states for N < 7
and as isomers for N > 7, as shown in Fig. 16, where their binding energy
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Figure 17: (a) A deposited cluster with one ion beneath the surface. (b) An
ion diffused into solid from a deposited cluster.

is compared with the ground-state energy of deposited clusters (3D). We
obtain also isomers, as expected, some of them with strange constructions
close to unstability (i.e. with high energies). There are many curiosities in
constructing such deposited clusters, as for instance, the rather structure-
less island between N = 23 and N = 75 in Fig. 14, which is intriguing.
Some of the constructions obtained here theoretically can be found in exper-
imental works.[16] In this connection it is worth noting that the continuum
approximation employed here is, in fact, unnecessary, though useful; it af-
fects the proximity properties between clusters and surface, and, of course,
the problem of the "lattice constants" matching.

Finally, it is worth presenting a very interesting situation shown in Fig. 17a,
where one added ion has penetrated beneath the surface, the rest having
remained at the surface and formed there a deposited cluster. The ion goes
through the potential barrier shown in Fig. 13, and is kept in equilibrium
by the interplay between the metal attraction and the surface-cluster attrac-
tion, which act in opposite directions. Such a cluster exhibiting an incipient
interface with the solid is always an isomer, i.e. its energy is higher than the
ground-state energy of a cluster of the same size deposited on surface. There
appears also the possibility of a penetrating ion to escape into the solid, as
shown in Fig. 17b, where the position of the ion in solid is practically un-
defined, i.e. this ion is free; it has diffused into the solid. A more sizeable
number of atoms may penetrate beneath the surface, as shown in the first two
pictures in Fig. 18 for a 50-atoms cluster, or for a 100-atoms cluster which
developed a well-defined incipient interface with the solid (last picture in Fig.
18). These formations are incipient quantum dots of a very small size. Such
results are encouraging for applying the present theoretical approach to more
complex situations, in particular to nanostructures exhibiting interfaces, or
other geometric and dynamic particularities.
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Figure 18: A 50-atoms cluster diffusing beneath a solid surface (first two
pictures), and a 100-atoms cluster developing an incipient interface with a
solid (last picture in the row).

6 Other Effective Potentials

The self-consistent Hartree field (2) was obtained for point-like ionic charge
distributions. Preserving the quasi-classical self-consistency

n=(¢/Ar)p | (10)

we can give a formal solution for the Hartree field ¢ for a general background
charge distribution p by solving the linear equation

Ap(r) = —4mp(r) + ¢ p(r) ; (11)

which is obtained from Poisson equation by making use of (10); the solution
of this equation is?

o(r) = /dr’ﬂe‘”r/ : (12)

v — 1’|

For the point-like charge distribution (1) the self-consistent field (2) is re-
obtained but now we can write the general solution

o(r) = Z/drfwe—qlr—r’l ’ (13)

v — |

3In general, we can write the solution as ¢(r) = [ drG(r,r’)p(r’), where G(r,r’) is the
Green function (or the resolvent) of the homogeneous equation

(A= ¢*G(r,v') = —4ms(r — 1) .

The solution of this equation, G(r,r’') = exp(—g|r —r'|)/|r — r'| leads to the above expres-
sion for the self-consistent field .
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for a nano-aggregate with N atoms with the core charge distributions p;(r)
and the atomic positions R, (p(r) = SN pi(r — Ry)). Starting from this
potential and the corresponding electron density given by (10) we can follow
the same steps as in Section 2 and derive the kinetic energy, the potential
energy, the quasi-classical energy and the exchange correction; as before we
will identify a general expression for the effective inter-ionic potential.

The potential energy is given by
1
Epot:Ec—§/dr-n(<p+<pc) (14)

where

Z/dhd 2/)2 — Ri>pj<r2 - Rj) (15)

i#]j ‘rl B r2‘

is the potential energy of the atomic cores and

/pz R;)
Z/d |r_r,| (16)

is the ionic-core contribution to the self-consistent potential. Using (10),
after performing the integration over r, the intervening integrals being of
two-center type, the potential energy (14) reads

pot - —4(12 €—

=30 iz; [ dridrapi(ry — Ry)p;(ra — Ry)u(gry —raf)

(17)

where v(z) = (1 — 2/x)e™® and ¢; plays the role of an ionic "self-energy"
given by

1 — g—dlr1i—r2

€ = /drldrgpi(rl)pl-(rQ) [eqr1r2| + 2 (18)

q|ry — 1ol
Because, usually p;(r) is exponentially vanishing at large distance, the main
contribution to the ionic self-energy is obtained for |r; — ry| < 1, therefore
we have

€~ 3 [/ drpl-(r)] 2 =327, (19)

where zf = [drp;(r) is the effective valence charge of the i-th atom. For
homo-atomic clusters we obtain the total ionic self-energy 3Nz*, where z* =
z; =constant.
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The last term in the potential energy (17) corresponds to effective inter-ionic
potentials

®;;(Ri, R;) = —3q [ dridrapi(ry — R;)p;(r2 — Rj) x

- e-alni—ral
Q\rl ra|

which depends on the atomic species and positions.

(20)

For homo-atomic clusters (single-component clusters) the core charge dis-
tribution is the same for all atoms, p;(r) = p;(r) = p.(r) and the effective
inter-atomic potential depends only on the atomic positions. Obviously, for
atoms with spherically symmetric core charge distribution the above poten-
tial depends only on the inter-atomic distance. For example, in the point-like
ion approximation p.(r) = z*d(r), we re-obtain the potential given by (4), as
expected. It is worth mentioning here that long time ago a similar potential
has been suggested on semi-empirical grounds, with some success, for the H,
molecule.|20]

We can apply these expressions to various situations ranging from spatially
extended ions to interactions between nanostructures and macroscopic solids;
all we have to known is the form of the positive charge distributions. Before
giving a few interesting examples we would like to explain the multi-particle
character of these effective interactions. For a constant screening wavevec-
tor ¢, these potentials describe genuine two-particle interactions. However,
this picture is essentially altered if we follow the quasi-classical prescrip-
tions used in deriving the above effective potentials. In the quasi-classical
description|3] ¢ is determined by minimizing the quasi-classical energy; there-
fore it has a slow dependence on the atomic positions. The quasi-classical
energy is obtained by adding to the potential energy (17) the kinetic energy
contributions:

2772 277T
Eiin = d i = 2z ’ 21
kin = 640 1 Z / roilr) = 54 2 (21)
which has the same form as for point-like ions. We obtain the quasi-classical
functional . .
Eq:Ekm—ZQZEiJré;‘sz 5 (22)
i 1#]

where ¢; and ®;; have been introduced above. In principle, the ionic self-
energy has a slow g-dependence. We have shown that, for atoms with rapidly
vanishing core charge distribution, the point-like ion solution ¢; = 32" is a
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good approximation. Therefore we will neglect this ¢-dependence. Tt is
expected that for very large atoms this dependence may become important.

The parameter ¢ is obtained by the minimum condition
—=0. (23)

In this way, ¢ is a global parameter which depend on all atomic positions
R;. In this respect the above potentials have a multi-particle (N-particle)
character. Equation (23) gives

TP e 1y 3 [ drdrap(eey gl — xR~ Ry L (24

i#j

where g(z) = (3 —z) exp(—x), Z = & >, # is the mean valence charge and
€= % > . € is the mean ionic self-energy. The first two terms are dominant,
giving the asymptotic solution (|R; — R;| — 00)

2 €\1/3
=g (3) (25)

which leads to the bare two-particle interaction ®f.

Equation (24) can be written as

q3 = QO Z GZ_] ) (26)

Z#J

where

Gij = /drldrzpz(rl)/)j(rz)g (g |r1 —r2+R; —Rj]) . (27)

Treating the r.h.s. of the above equation (the interaction part) as a small
perturbation which lead to small variations in ¢ around the free value gy, we
obtain in the first order

i#j
(28)
~ qo
G+ 3eN ; Gy
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The interaction energy is

1 1 1 oD,
V:§Z¢ij252¢3j+gz<a—;)%5q. (29)

i#] 1,J 0,

The first term is a superposition of two-particle bare interaction potentials;
the second term will give corrections to this two-body potential (the dressing
phenomenon) and a three- and a four-body interaction. Higher order solu-
tions for ¢ will continue to dress up the two-body interaction, and in addition
will give highest order many-body potentials:

1 0
vV — §;q>zj+... F ovsd e VAo o (30)

three-particle  four-particle

two-particle+dressing

The first order solution give the dressing correction to the bare two-body

interaction g

Svy = ———N "Gy , 31
V2 6€N ; J ( )

and three and four-body interaction potentials

do do
- _ GiiGip , vy = — GG 32
BT RN Z Ik T T 06N D GG (32)
1#]#k (avkalzall

It is worth noting that this expansion is valid at large distances where the
bare two-body interaction is dominant. When the inter-atomic distances be-
come close to the binding distances, the higher order multi-particle potentials
become also important. In the vicinity of the equilibrium positions all the
terms are important and must be taken into account. This expansion is used
only to illustrate the multi-particle character and the medium dependence of
these potentials. In order to get the equilibrium positions we must minimize
the quasi-classical energy with respect to the atomic positions R; and the
screening wavevector ¢. In other words, we must solve first equation (24) and
then include the expression thus obtained for ¢ in E;; we obtain in this way
an expression for the cluster energy dependent only on the atomic positions
R,; which can be minimized to get the equilibrium positions.

A major simplification occurs if the core-charge distribution is a n-th order
homogeneous function,

p(Ar) = A"p(r) . (33)

25



Modern Trends in Nanoscience

Since [ drp;(r) = zf, the only possible situation is n = —3. In this case the
quasi-classical energy functional (22) can be written as

_21w?2 AN _x 1
E, = 6a0 4 Zi:l 2 — 44 Zz €i—

=142z [ dridrapi(ri)pj(ra)o(|ry — 1o + X = X)

where we have introduced the dimensionless variables X; = gR,; and ¢; is not
g-dependent anymore; it is given by

(34)

1 — eIri—rzl

G = /dmdrzpz‘(rl)/)z’(m) {erlrﬂ +2 (35)

[t — 13

In this case the two minimization steps can be inverted. The equilibrium
geometric forms of nano-aggregates are obtained by minimizing the reduced
interaction term in equation (34),

Bu= =Y [ et meln -r X X0, 60
i#]
with respect to the dimensionless variables X;. The resulting value for this
interaction energy is used in the second step: the minimization of the quasi-
classical energy with respect to the screening wavevector ¢g. The equilibrium
value is given by

] 1/3
q=qo (1+W|Ez|) ; (37)

where ¢o and € have been introduced above. Thereafter, the atomic positions
are derived from R; = X;/q.

Though the condition (33) is fulfilled in the point-like ion approximation,
more realistic core charge distributions do not have this property. For exam-
ple, for the hard core ionic charge distribution, p(r) = p,0(a — r), where a is
the radius of the ionic core, with constant charge density py = 2*3/4ma®, we
obtain the effective inter-atomic potential

1. 2 CRR
O(|R: —Ry) = —5¢2"a] (1 —&m) em IRl (38)
i ]

for |R; — R;| > 2a, where

__ gqacosh ga—sinh qa
oy = 3 (qa)3 )
(39)
6 __ 2qacosh ga—(2+q2a?) sinh qa
1= sinh ga—qa cosh ga
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We can see that in the limit a — 0 we have a; — 1, §; — 1, re-obtaining, as
expected, the effective-potential in the point-like ion approximation. Except
for the explicit dependence on ¢, as discussed above for non-homogeneous
charge distributions, there are no major differences compared to the point-
like ion potential. The shape of the potential is the same. Also, for reasonable
values for a and g we get quantitatively the same results. For example, for
a=1and ¢ =0.5 we get oy = 1.02 and ; = 1.05.

For a more realistic core charge distribution p(r) = Zd(r) — pof(a — 1),
where the first term correspond to the nucleus charge Z and the last term
correspond to the core electrons with constant py = 3(Z — 2*)/4ma® density
inside of a sphere of radius a (the ion radius) centered around the nucleus,
we get the same form for the effective inter-atomic potential

1 2
P(R; —Rj|) = —=¢z%a? (1 — fy——=—"—— | e 4R~ RSl 40
(s~ Ry = —goad (1= g ) o o)
with
0422041+Z%(041—1) )
(41)
2
Bo = piod + (1 + aify — 2yon) + 2004 (y — au )
where ajand [ are given by equations (39) and
1 gacosh ga — (1 + ¢*a®) sinh ga

2 sinh qa — qa cosh qa
Again, the point-like ion result is re-obtained in the limit a — 0.

The general expression for the self-consistent field (12) can be used in deriving
the self-consistent potential of a semi-infinite solid. Writing the background
charge density as p(r) = po - (—x) we obtain from equation (12) the self-
consistent potential|[17]

27 po
p(r) = —5 X (43)
q 2—e?” <0
and the electron density
%e*qx , >0
n(r) = po X (44)

1—%6‘”” , <0

which is the well known Smoluchowski density,[18] used often with good re-
sults as a trial electron density function for metallic surfaces (see, for instance,
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Ref. [19]). The present theoretical approach provides, probably for the first
time, the derivation for this relation. In Section 5 we have obtained these
expressions (see eq. (5)) by taking the continuum limit in equation (2).[17]
These two methods are equivalent.

Let us consider another example. For an atomic nano-slab of thickness L
with a free surface placed at x = 0 and the other one at © = —L we obtain
the self-consistent potential

e-dlel —e=dletll x> 00orx <L

27 po

e B Y
q 2 — et —ema@tl) [ <3<

p(z) (45)

for a constant background charge density py. For L — oo, as for a semi-
infinite solid, we re-obtain equation (43); for L — 0, as for a thin infinite
plate with a surface charge density pL. — o, we obtain an exponentially
decreasing potential, ¢ = 2mwoexp(—q|z|)/q. Using equation (20) we can
calculate the interaction potential in the jellium approximation between two
such nano-structures. We get the interaction potential per unit area

71'0'2

o(d) = —TG*qd(qd -1, (46)

for two parallel infinite plates with the positive surface charge distribution
o placed at a distance d. A finite numbers of such plates forms equilibrium
structures with one dimensional behaviors. The electron distributions for this
type of structures has been recently investigated using an numerical approach
to the Thomas-Fermi model.[21] We can obtain these densities analytically.

A very interesting application is the interaction between two semi-infinite
solids. Various electronic structure calculations have given support for the
existence of an universal scaling of binding energies;[19, 22] it appears that
these energies divided by their minimum values are well represented by the
Rydberg function

E*(d) = —(1 + Bd)e?? | (47)

where d = (d — d,,)/l with d,, being the equilibrium distance and [ a
scale length whose values could be given by the Thomas-Fermi screening
length.[19]

We obtain, from equation (20), the interaction per unit area

2

B(d) = —20(1 4 g|d])e (48)

_?
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for two solids at distance d with background charge density py. This potential
has a minimum for d,, = 0, that is for solids in contact; it is worth nothing
that in the continuum approximation from which this potential is derived the
inter atomic distances, which represent a measure for d,,, has been taken as
being infinitesimally small. Moreover, the screening wave vector ¢ depends
on a variationally Thomas-Fermi wavevector through, ¢> = 8kp/3m;[3] in-
troducing a (variationally) Thomas-Fermi screening length through 1/App =
(4kp/m)Y2, we can write ¢ = (2/3)Y2/Arp. As above, dividing by the mini-
mum absolute value 7p3/q®, we can define

o (d) = —(1 + fd|)e " (49)

where 8 = (2/3)"/2 and d = d/Arp, consistent with our jellium model. We
can see that for d > 0 (or d > d,,,) we have obtained the form (47) suggested
in Ref. [22]. Moreover, our value for 3(= (2/3)1/2) is close to the value
£ = 0.9 which provided the best fit in Ref. [22]. We must note that we can
directly identify a screening length as A\rp = 1/¢; in this case § = 1 also
close to the 0.9 best fit value. Moreover, if we take a mean value between the
two methods of defining A\rr we get § ~ 0.908 which is astonishingly close
to the fit value.

7 Concluding Remarks

The theoretical approach presented here deals with matter aggregation at
the atomic level. It is based on the quasi-classical solution to Hartree-Fock
equations describing a neutral ensemble of Coulomb interacting ions and va-
lence electrons. The main ingredient of the theory is an inter-ionic effective
(pseudo-) potential, of the type given by (4) for point-like effective ionic
charges. The model has been applied to several species of metallic ions,
leading to formation of homo-atomic clusters, either isolated or deposited
on surfaces, as well as to some peculiar nanostructures, both with geomet-
ric and dynamic constraints. It provides quantitative results for geometric
forms, ionic positions, inter-ionic distances, binding energies, both of ground-
states and isomers, clusters stability and vibration spectra. Magic clusters
and magic numbers have been obtained for ground-states, giving an insight
into the geometric patterns of cluster aggregation. At this level, the theo-
retical approach has a first-step approximation character, the full treatment
requiring the so-called quantum corrections. These provide single-particle
properties, like electron energy levels, ionization potentials, chemical affini-
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Figure 19: The magic cluster A14Bog (left) with a fecc A—core (center) and
an outside B—shell (right).

ties, as well as response to external fields, transport and various spectroscop-
ical properties included. The quantum corrections set also the ground for
treating the clusters magnetism. The latter originates mainly in the electron
ferromagnetism, as caused by the exchange interaction, and the ionic param-
agnetism; both are to be treated in the particular context of a single-domain
(or a few domains) magnetism, and a fractional occupancy of the electron
levels, as required by the effective charge parameters. Both localized and itin-
erant magnetic moments are specific to clusters magnetism, with particular
properties, like high, inhomogeneous magnetization, super-paramagnetism,
etc. In addition, the model must be further refined by taking into account
the spatial structure of the ionic charge distribution, in particular its angular
dependence in oriented chemical bonds. This would considerably enlarge the
applicability of the theory to large classes of chemical species.

Another interesting application is cohesion in hetero-atomic structures. A
study of binary metallic clusters consisting of a large variety of atoms types is
currently underway. We find that increasing the discrepancy between the two
types of atoms (increasing the ratio between theirs effective valence charges)
leads to a gradually decrease of the homo-atomic magic (total) numbers
and the appearance of magic pairs like (6,32), (10,22), (13,20), (14,24) or
(26,12). The equilibrium structures are in general core-shell clusters with
the atoms of greater z* in the center. Although the icosahedral symmetry
is still dominant, the double magic clusters have sometime cubic symmetries
like, for example, the A;4Bs9 cluster presented in Fig. 19, magic (or double
magic) for 1.4 < 27 /25 < 2; its core is a face centered cube and the outside
shell is a truncated octahedron. The bcc symmetry has been obtained for
the AgBg cluster; in the range 1.4 < z7% /25 < 2.3 the A atoms forms a single
bee cell while the B atoms find equilibrium positions in the vicinity of the
nearest neighbour centers.
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