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a b s t r a c t

It is investigated the possibility of controlling the electric flow through a ferromagnet–superconductor
junction by spin polarization, within a simple, ideal model of a perfect ferromagnetic–superconductor
junction. The ferromagnetic and superconducting properties as well as the Andreev reflection are briefly
reviewed and the electrical resistance of the junction is computed both in the diffusive and ballistic
regime for the ferromagnetic sample. It is shown that the resistance of the junction increases with
increasing magnetization, including both positive or negative jumps on passing from the ballistic to
the diffusive regime.

Published by Elsevier B.V.

1. Introduction

In spite of numerous past and recent extensive attempts [1–19],
which provide valuable experimental and theoretical information,
we still lack a simple, operational model for a basic understanding
of the electric flow through a ferromagnet–superconductor junc-
tion. It is the aim of this paper to attempt a formulation of such
a model. We consider an ideal, perfect ferromagnet–superconduc-
tor junction, of sufficient in-plane extension, as one realized by an
insulating non-magnetic thin film [20], such as to avoid the com-
plications arising from proximity effects [21]. It is assumed that
the ferromagnet and the s-wave superconductor are homogeneous.
We compute herein the electrical resistance of such a junction, af-
fected mainly by the well-known Andreev reflection, both in the
diffusive regime and ballistic regime for the ferromagnetic sample.
It is shown that the junction resistance increases with increasing
magnetization, including both positive and negative jumps on
passing from the ballistic into the diffusive regime.

2. Ferromagnet

We adopt a simple Fermi liquid picture for the charge carriers in
the ferromagnet; the charge carriers are assumed to be electrons,

with an isotropic single-particle energy spectrum eðkÞ labelled by
the wavevector k in the normal (non-ferromagnetic) state; their
number is given by N ¼ Vk3

F=3p2, where kF denotes the Fermi
wavevector and V is the volume of the sample; the quasi-particles
have a Fermi velocity

vn ¼ @e=�h@kjk¼kF
¼ �hkF=m�; ð1Þ

where m� is their effective mass (and �h is Planck’s constant); the
Fermi level is given by ln ¼ eðkFÞ (which defines the Fermi surface
by fixing ln from the number of particles).

Below a critical temperature Tm the ferromagnetic state begins
to set up; it is characterized by a temperature-dependent gap Dm in
the single-particle energy spectrum, which reads now

e1ðkÞ ¼ �Dm=2þ eðkÞ;
e2ðkÞ ¼ Dm=2þ eðkÞ;

ð2Þ

as corresponding to spin up (label 1) and spin down (label 2),
respectively. The number of electrons is given now by

N ¼ Vk3
F1=6p2 þ Vk3

F2=6p2; ð3Þ

and the magnetization reads

M ¼ lBðVk3
F1=6p2 � Vk3

F2=6p2Þ; ð4Þ

where lB ¼ e�h=2mc is Bohr’s magneton (with usual notations – e is
the electron charge, m is the electron mass and c denotes the
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velocity of light). It is convenient to introduce a reduced magnetiza-
tion defined as m ¼ M=lBN, which leads to

kF1 ¼ kFð1þmÞ1=3
;

kF2 ¼ kFð1�mÞ1=3
ð5Þ

for the two Fermi wavevectors in Eqs. (3) and (4); obviously, the rel-
ative magnetization varies between 0 and 1, 0 < m < 1. In the ferro-
magnetic state there are two types of quasi-particles, corresponding
to spin up and spin down, moving with velocities

vF1;2 ¼ v1;2 ¼ @e1;2=�h@kjk¼kF1;2
¼ �hkF1;2=m� ¼ vnð1�mÞ1=3; ð6Þ

this is the main point through which the dependence on magnetiza-
tion is introduced in the thermal or electric flows through the ferro-
magnet–superconductor junction, together with the m-dependence
of the Fermi wavevectors kF1;2 given by Eq. (5). The Fermi level of
the ferromagnetic state is given by

lm ¼ �Dm=2þ eðkF1Þ ¼ Dm=2þ eðkF2Þ; ð7Þ

hence,

Dm ¼ e kFð1þmÞ1=3
� �

� e kFð1�mÞ1=3
� �

: ð8Þ

This equation determines the temperature dependence of the mag-
netization m: Indeed, the ferromagnetic gap has a typical depen-
dence Dm ¼ Dm0ð1� T=TmÞ1=2 on temperature T close to Tm; for
lower temperatures its temperature slope is vanishing, as for a typ-
ical mean-field theory. Since kF1;2 have a slow dependence on mag-
netization (except for kF2 ¼ kFð1�mÞ1=3 for m � 1), we may use the
expansion

Dm ¼
2
3

�hvnkFm ð9Þ

for Eq. (8); similarly, the Fermi level reads

lm ¼ �Dm=2þ ln þ
1
3

�hvnkFmþ O m2� �
¼ ln þ O m2� �

; ð10Þ

whence one can see that it does not change appreciably in the ferro-
magnetic state. These m-expansions are used, for small values of m.

3. Superconductor

For later convenience we review here briefly the Gorkov equa-
tions for a simple model of superconductivity [22]. Let ck be the
destruction operator of a quasi-particle state in a normal conduc-
tor; it obeys the Heisenberg’s equation

i�h@ck=@t ¼ eðkÞck ¼ ½ln þ �hvnðk� kFÞ�ck; ð11Þ

or, introducing the field operator wðrÞ ¼ 1=
ffiffiffiffi
V
p� �

Rkckeikr for k close
to kF ,

i�h@w=@t ¼ ðln � �hvnkF � i�hvn@=@rÞw: ð12Þ

We write the effective quasi-particle interaction as

Hint ¼
1
2

Z
drdr0 � gðr� r0Þwþa ðrÞw

þ
b ðr0Þwbðr0ÞwaðrÞ; ð13Þ

where a;b are spin labels and gðr� r0Þ is an interaction potential
(here chosen as spin-independent for simplicity); Eq. (12) reads
now

i�h@wa=@t ¼ ðln � �hvnkF � i�hvn@=@rÞwa

þ
Z

dr0 � gðr� r0Þwþb ðr0Þwbðr0ÞwaðrÞ; ð14Þ

such an interaction may lead to superconductivity, by a macro-
scopic occupation hwaðrÞwbðrÞi– 0 of the pair states. Here we as-
sume a d-type interaction gðr� r0Þ ¼ gdðr� r0Þ, which makes the

pair wavefunction a spin singlet hw�aðrÞwaðrÞi, and define
Fa ¼ ghw�aðrÞwaðrÞi. According to its definition F�a ¼ �Fa, while
F��a ¼ Fa by time reversal symmetry; it follows that we may define
the superconducting gap parameter Da ¼ D�a ¼ �D�a (> 0) through
Fa ¼ iDa. In addition, we include the basic time-dependence
wa � e�ilnt=�h in Eq. (14) (and subtract lnN from the hamiltonian).
Eq. (14) becomes

i�h@wa=@t ¼ ð��hvnkF � i�hvn@=@rÞwa þ iDaðrÞwþ�aðrÞ; ð15Þ

in addition we assume a constant Da ¼ DaðrÞ as for a s-wave pair
state. The above equation leads to

i�h@cka=@t ¼ �hvnðk� kFÞcka þ iDacþ�k�a;

� i�h@cþ�k�a=@t ¼ �hvnðk� kFÞcþ�k�a þ iDacka
ð16Þ

for k along vn, which are solved for the well-known superconduc-
ting spectrum

e�ðkÞ ¼ ln �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

a þ �h2v2
nðk� kFÞ2

q
; ð17Þ

with (the original) operators cka � e�iðlnþ�hxÞt=�h, cþ�k�a � eiðln��hxÞt=�h

and �hx ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

a þ �h2v2
nðk� kFÞ2

q
; the lower branch joints smoothly

the rest of the original energy spectrum, so that the superconduc-
ting Fermi level is given by

ls ¼ ln � Da: ð18Þ

It is convenient to measure the wavevectors with respect to the

Fermi wavevector, i.e. e�ðkÞ ¼ ln �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

a þ �h2v2
nk2

q
, so that the solu-

tions of Eq. (16) read

cka ¼ ukbka þ ivkbþ�k�a;

c�k�a ¼ ukb�k�a � ivkbþka;
ð19Þ

where uk ¼ j cos hkj;vk ¼ j sin hkj, tan hk ¼ �ðEk � �hvnkÞ=Da, Ek ¼
�hx ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

a þ �h2v2
nk2

q
, or

u2
k ¼

1
2
ð1þ �hvnk=EkÞ;

v2
k ¼

1
2
ð1� �hvnk=EkÞ

ð20Þ

for the energy branch eðkÞ ¼ ln þ sgnðkÞEk, and ukvk ¼ Da=2Ek. The
self-consistency condition Da ¼ �ighw�aðrÞwaðrÞi leads to the well-
known gap equation

1 ¼ � gk2
F

2p2

Z
dk

tanh bEk

2Ek
; ð21Þ

whence one may see that interaction must be attractive, i.e. g < 0;
one obtains the well-known critical temperature

Tc ’ �hvnkce�1=Dg ; ð22Þ
where D ¼ k2

F=2p2�hvn is the density of states (per spin) at the Fermi
surface, kc is a wavevector cutoff (the scale energy �hvnkc is of the
order of the Debye energy �hxD for a phonon–electron superconduc-
ting interaction), and the sign of the interaction has been changed.
Similarly, one obtains the temperature dependence of the gap
Da ¼ Da0ð1� T=TcÞ1=2 for temperatures close to the critical temper-
ature, the gap Da0 being given by Da0 ’ 2�hvnkce�1=Dg . We may ne-
glect the temperature dependence of the superconducting gap
and Fermi level Eq. (18), assuming the temperature is sufficiently
low for superconductivity be well developed.

4. Andreev reflection

Further on, we give a brief description of the Andreev reflection
[23]. We focus first on the superconducting Eqs. (15) and (16),
where we drop out the label n for the Fermi velocity vn, and the
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superconducting gap Da is assumed constant and positive. In addi-
tion we introduce the one-particle amplitudes

ua ¼ h0jwaj1ai; va ¼ 0jwþ�aj1a
� �

; ð23Þ

where j1ai is an excited one-particle state. The amplitude ua is the
wavefunction of a k;a-quasi-particle, while va represents a �k;�a-
quasi-hole in a superconducting pair. Indeed, for instance,

ua ¼ h0jwaj1ai ¼ 1ffiffiffiffi
V
p

X
eik0r 0jck0a0c

þ
kaj0

� �
¼ 1ffiffiffiffi

V
p eikr ð24Þ

is the wavefunction of a quasi-particle, and similarly for va for the
superconducting state. The connection of the amplitudes above
with the canonical transform Eq. (19) is obvious; Eq. (15) reads now

i�h@ua=@t ¼ ð��hvkF � i�hv@=@rÞua þ iDava;

� i�h@va=@t ¼ ð��hvkF � i�hv@=@rÞva þ iDaua;
ð25Þ

and it is easy to check up the continuity equation

@ juaj
2 þ jvaj

2
� �.

@t þ v@ juaj
2 � jvaj

2
� �.

@r ¼ 0 ð26Þ

for each spin orientation a. Since D�a ¼ �Da and, similarly,
v�a ¼ �va according to its definition, Eq. (25) are the same for each
spin orientation, so we may drop out the label a for the supercon-
ducting gap and amplitudes. Eq. (26) tells that the localization prob-
ability juj2 þ jvj2 of a quasi-particle in the superconducting state
changes in time according to the divergence of the current
j ¼ v juj2 � jvj2

� �
. The current j consists of two contributions,

vjuj2 which flows along the velocity, and �vjvj2 which flows in
the opposite direction; this latter contribution is the Andreev reflec-
tion. The quasi-particles encounter a potential barrier on their at-
tempt of entering a superconductor, and, consequently, they are
reflected by the superconductor gap, as well as transmitted
through. Eq. (25) can also be written as

�hðxþ vkF þ iv@=@rÞu ¼ iDv;
�hðx� vkF � iv@=@rÞv ¼ �iDu

ð27Þ

for u;v � e�ixt . In addition, we remove the vkF-term by introducing

n ¼ e�ikFru; g ¼ e�ikFrv; ð28Þ

so that Eq. (27) become

�hðxþ iv@=@rÞn ¼ iDg;
�hðx� iv@=@rÞg ¼ �iDn;

ð29Þ

for n;g � eikr one can check out the superconducting spectrum

�hx ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 þ �h2ðvkÞ2

q
, while the reduced wavefunctions are given

by

n ¼ Caffiffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ vk=x

q
eikr;

g ¼ �iCaffiffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� vk=x

q
eikr;

ð30Þ

where Ca is a constant, �hvk ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�hxÞ2 � D2

q
and �hx > D (other-

wise the quasi-particle does not propagate, and the wavefunctions
decay exponentially with the distance). The wavevectors k in Eq.
(30) are small in comparison with the Fermi wavevector kF (where
the velocity v is calculated), so the wavefunctions n;g vary slowly in
space. The constant Ca bears temporarily a spin label, for the sake of
generality. Before passing to the ferromagnet–superconductor junc-
tion we note that the transmitted (tunneling) current in the super-
conductor is

jta ¼ v jnj2 � jgj2
� �

¼ jCaj2vðvk=xÞ: ð31Þ

We may pass now to the Andreev reflection in a ferromagnet–
superconductor junction. We assume that the Fermi level in ferro-

magnet is close to the Fermi level in superconductor, as for a per-
fect contact. Under these circumstances Eq. (25) hold for the
ferromagnet by simply dropping out the superconducting-gap con-
tribution. Obviously, the remaining part depends on the spin orien-
tation, through both the Fermi velocity and Fermi wavevector. In
addition, v vanishes for the non-superconducting sample (indeed,
g! 0 in Eq. (30) for D! 0, as expected), so that we may write
down Eq. (27) (or (29)) as

½xþ v1;2ðkF1;2 � kFÞ þ iv1;2@=@r�n1;2 ¼ 0; ð32Þ

where the velocities v1;2 ¼ vð1�mÞ1=3 and the Fermi wavevectors
kF1;2 ¼ ð1�mÞ1=3 correspond to spin up and down, respectively, as
defined in (6) and (5), m being the reduced magnetization. In addi-
tion, we may note that the term v1;2ðkF1;2 � kFÞ ¼ �ð1=3ÞvkFm � Dm

is small according to the previous discussion, i.e. it is comparable to
D with respect to the Fermi energy. Consequently it is immaterial in
Eq. (32). It follows that the corresponding Eqs. (27) and (29) for the
ferromagnet reduce to

½xþ iv1;2@=@r�n1;2 ¼ 0; ð33Þ

whose solution is

n1;2 ¼ A1;2eik1;2r ð34Þ

for

v1;2k1;2 ¼ vð1�mÞ1=3k1;2 ¼ x: ð35Þ

The continuity condition of the wavefunctions n given by Eqs.
(30) and (34) leads to

A1;2 ¼
C1;2ffiffiffi

2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ vk=x

q
ð36Þ

for a boundary placed at x ¼ 0. On the other hand, the incoming cur-
rent is given by

ji ¼ v1jA1j2 þ v2jA2j2 ¼ v ð1þmÞ1=3jA1j2 þ ð1�mÞ1=3jA2j2
h i

: ð37Þ

Making use of Eq. (31) we may define the transmission
coefficient

w ¼ ðjt1 þ jt2Þ=ji ¼
jC1j2 þ jC2j2

ð1þmÞ1=3jA1j2 þ ð1�mÞ1=3jA2j2
ðvk=xÞ

¼ 2ðjA1j2 þ jA2j2Þ
ð1þmÞ1=3jA1j2 þ ð1�mÞ1=3jA2j2

vk=x
1þ vk=x

: ð38Þ

The asymptotic spin amplitudes in the superconductor are equal, i.e.
jA1j2 ¼ jA2j2 (and jC1j2 ¼ jC2j2), so we get

w ¼ 4

ð1þmÞ1=3 þ ð1�mÞ1=3

vk=x
1þ vk=x

; ð39Þ

or

w ¼ 2

ð1þmÞ1=3 þ ð1�mÞ1=3 w0; ð40Þ

where

w0 ¼ 2
vk=x

1þ vk=x
ð41Þ

is the transmission coefficient for zero magnetization. Within the
present approximation

w0 ’ 2
ffiffiffi
2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�hx=D� 1
q

: ð42Þ

One can see that the transmission coefficient in the Andreev
reflection increases slowly with increasing magnetization,

w ¼ ð1þm2=9Þw0 ð43Þ

for small values of m.
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5. Electrical resistance of the junction. Diffusive regime

For a voltage drop U a charge

� @n
@e

e2U
2 � dp

ð2p�hÞ3
ð44Þ

is transported per unit volume by a quasi-particle, where n denotes
the Fermi distribution. During the quasi-particles lifetime s the
charge flux (charge per unit area) along the x-direction is

� @n
@e

e2Uvxs
2 � dp

ð2p�hÞ3
; ð45Þ

while the total flow (charge per unit area and unit time) is

j ¼ � 2e2

ð2p�hÞ3
Z

dp � @n
@e

v2
xsð@U=@xÞ: ð46Þ

From j ¼ rE, where E ¼ �@U=@x is the electric field, we obtain
the electric conductivity

r ¼ e2

3p2�h
k2

F vs; ð47Þ

in the low-temperature limit. In the derivation given above the sta-
tistical equilibrium is assumed, as well a mean-free path much
shorter than the size of the sample, a low, uniform electric field,
and a lifetime free of finite-size contributions or other geometric
effects.

Eq. (47) shows that the electric conductivity of a ferromagnet
does not depend essentially on magnetization. Indeed, the depen-
dence on the magnetization comes through the velocity v and Fer-
mi wavevector kF in Eq. (47), which gives ð1=2Þðv1k2

F1 þ v2k2
F2Þ ¼

ð1=2Þvk2
F ð1þmþ 1�mÞ ¼ vk2

F . A weak magnetization depen-
dence may be included in the lifetime, but its contribution is
uncertain. This point is supported by the fact that flows are propor-
tional to density of states � k2

F=v multiplied by velocity v multi-
plied by mean-free path vs in the diffusive regime, hence their
� k3

F proportionality to density, and the independence of
magnetization.

The electric conductivity corresponding to the tunneling cur-
rent in a superconductor can be derived in a similar way. The flow
involves now the quantum probability beside the statistical one,
i.e. it is given by

j ¼ � 2e2

ð2p�hÞ3
Z

dp � n
T

v2
xs juj

2 � jvj2
h i

ð@U=@xÞ; ð48Þ

where the temperature is so small in comparison with the super-
conducting gap that we may use n ¼ e��hx=T , �hx > D, for the Fermi
distribution. The wavefunctions u and v are those given by (28)
and (30) for jCaj2 ¼ 1; one can see that

juj2 � jvj2 ¼ vk=x ’
ffiffiffi
2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�hx=D� 1
q

ð49Þ

is much lesser than unity (which corresponds to a normal conduc-
tor), as due to the Andreev reflection. Making use of (48) and (49)
one can compute the tunneling electric conductivity of a supercon-
ductor as

rs ¼
e2

3p2�h

ffiffiffi
2
p

k2
Fvs

T

Z 1

D
dn �

ffiffiffiffiffiffiffiffiffiffiffiffi
n� D

D

r
e�n=T

¼ e2

3p2�h
k2

Fvs
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pT=2D

p
e�D=T ; ð50Þ

or

rs ¼ r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pT=2D

p
e�D=T ð51Þ

for the tunneling conductivity of the superconducting state, where
r is the electric conductivity of the normal state. One can note in

Eq. (51) a drastic reduction in the electric conductivity, in compar-
ison with the normal state, as a consequence of the Andreev reflec-
tion. In addition, from

j ¼ rU � U0

lf
;

j ¼ rs
U0

ls

ð52Þ

for a ferromagnet–superconductor junction, where lf ;s denote the
lengths of the ferromagnet and superconducting samples, respec-
tively, one obtains the electric resistance of the junction

Rj ¼ lf =rþ ls=rs ¼ Rþ Rs ð53Þ

for unit area, whence one can see that it is independent of magne-
tization; U0 denotes the voltage drop at the junction. The supercon-
ducting resistance Rs ¼ ls=rs is very high in comparison with the
normal resistance R ¼ lf ;s=r. In particular

Rs ¼ ls=rs ¼ R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2D=pT

p
eD=T ð54Þ

is the additional, large electric resistance due to the Andreev reflec-
tion in the superconductor, similar to the one computed originally
for a thermal flow [23,24].

6. Electrical resistance of the junction. Ballistic regime for the
ferromagnet

It is easy to see that for a mean-free path K ¼ vs comparable
with the sample length Eq. (46) leads to an electric current

I ¼ e2

3p2�h
k2

F A � U; ð55Þ

through the cross-sectional area A. By this equation quanta � 2e2=h
of electric conductance can be inferred. Actually, in such a ballistic
regime of transport the lifetime s does not appear anymore in Eq.
(45), and the average over angle integration gives 1 instead of 2=3
in Eq. (46); we obtain therefore

j ¼ e2k2
F

2p2�h
U; ð56Þ

i.e. an electric resistance

R ¼ 2p2�h

e2k2
F

ð57Þ

for unit area. It is worth noting that in a ballistic transport regime
the resistance may depend on the voltage drop, in some cases. In-
deed, for a normal conductor we have obviously �hvdkF ¼ �eU,

and the current j¼ �ek2
F

� .
2p2

�R
duðvdkFÞ¼ e2k2

F

� .
2p2�h

�
U, hence

the ballistic resistance Eq. (57). For a superconductor the current is
reduced by vk=x, according to Eq. (41), where �hx ¼ �eU. One ob-

tains R�1
s ¼ R�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2U2 � D2

p .
eU, which is the typical behaviour for

the tunneling resistance in superconductors [25–27].
We turn now the attention to a ferromagnet–superconductor

junction where the ferromagnet is in the ballistic or quasi-ballistic
regime. We assume that the superconducting sample is in the dif-
fusive regime, i.e.

j ¼ 1
R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pT=2D

p
e�D=T U0; ð58Þ

where R ¼ 3p2�hls
	

e2k2
FK as given by Eq. (50). Let us assume that the

temperature is sufficiently low and the ferromagnetic sample is suf-
ficiently thin that the length lf is much shorter than the mean-free
path K ¼ vs in the normal state of the ferromagnet, lf < K. Increas-
ing the magnetization the spin-up electron fluid increases its mean-
free path K1 ¼ Kð1þmÞ1=3, so that it transports in the ballistic re-
gime; therefore, we may write down
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j1 ¼
e2k2

F1

4p2�h
ðU � U0Þ ¼

e2k2
F

4p2�h
ð1þmÞ2=3ðU � U0Þ; ð59Þ

according to the discussion above. The spin-down electron fluid de-
creases its mean-free path K2 ¼ Kð1�mÞ1=3 on increasing magneti-
zation. Up to a threshold magnetization mt ¼ 1� ðlf =KÞ3 it is still in
the ballistic regime, so that

j2 ¼
e2k2

F2

4p2�h
ðU � U0Þ ¼

e2k2
F

4p2�h
ð1�mÞ2=3ðU � U0Þ; ð60Þ

it follows

j ¼ j1 þ j2 ¼
e2k2

F

4p2�h
ð1þmÞ2=3 þ ð1�mÞ2=3
h i

ðU � U0Þ; ð61Þ

which means a resistance

Rf ¼ R
2

ð1þmÞ2=3 þ ð1�mÞ2=3 ; m < mt ; ð62Þ

where R ¼ 2p2�h=e2k2
F as given above. For m > mt the mean-free

path K2 gets shorter than the length lf of the sample and the
spin-down fluid flows in the diffusive regime. In this case

j2 ¼
e2

6p2�h
k2

F2v2s
U � U0

lf
¼ e2k2

F

6p2�h
vs
lf
ð1�mÞðU � U0Þ

¼ e2k2
F

6p2�h
K
lf
ð1�mÞðU � U0Þ ¼

1
3R

1�m

ð1�mtÞ1=3 ðU � U0Þ; ð63Þ

it follows the resistance

Rf ¼ R
2

ð1þmÞ2=3 þ 2
3

1�m
ð1�mtÞ1=3

; m > mt ð64Þ

for the ferromagnetic sample. The two resistances given by Eqs. (62)
and (64) are discontinuous at the threshold magnetization m ¼ mt ,
as a consequence of the distinct numerical factors in the ballistic
and diffusive conductivities. This negative jump in the resistance
is in fact round-off (by geometric effects, for instance), and it may
be viewed as a negative resistance for magnetization values close
to magnetization threshold. Apart from this jump the resistance
Rf exhibits a monotonous increase with magnetization over the en-
tire range 0 < m < 1. In addition, as previously discussed, the And-
reev reflection may greatly be diminished for values of the
magnetization m close to unity for the spin-down quasi-particle
fluid (in the sense that the corresponding electric flow may drasti-
cally be reduced), but its contribution to the conductivity is small
for m � 1. We note two limiting behaviours for Rf , namely
Rf � Rð1þm2=9Þ for m � 0 (which is similar to the behaviour of
the transmission coefficient w as given by (43)), and

Rf � 21=3R 1þ 1
3

21=3

ð1�mt Þ1=3 � 1
h i

ðm� 1Þ
n o

for m � 1. We note also that

the resistance of the junction is Rj ¼ Rf þ Rs, and it depends on mag-
netization through Rf .

For K < lf < 21=3K there exists another threshold
mt ¼ ðlf =KÞ3 � 1 below which both spin-up and spin-down fluids
flow diffusively, while for m > mt the spin-up fluid flows ballisti-
cally (we call this regime quasi-ballistic). The ferromagnetic resis-
tance is then given by

Rf ¼
3
2

Rð1þmtÞ1=3
; m < mt ð65Þ

in the former case, and

Rf ¼
3
2

Rð1þmtÞ1=3 2

1�mþ 3
2 ð1þmtÞ1=3ð1þmÞ2=3 ; m > mt

ð66Þ

in the latter, where R is the same as above. For small values of the
magnetization the resistance is constant (and close to the value R

corresponding to lf < K), while for higher values of magnetization
it increases up to the same value 21=3R as above. At the threshold
it has a positive jump, in contrast to the case lf < K, where the jump
is negative. The reduced ferromagnetic resistance is shown in Fig. 1
for both cases.

7. Discussion and concluding remarks

It is worth stressing the complexity brought about by the ferro-
magnet–superconductor interface. Herein we have assumed a per-
fect, ideal junction, leaving aside the proximity effects (and
neglecting the potential barrier it may contribute). In particular,
the matching conditions of the Andreev reflection may be appre-
ciably affected by a more realistic, complex interface. at the ferro-
magnet–superconductor junction. It is very likely that two very
dissimilar solids (including appreciably different Fermi levels)
may diffuse largely into one another, such that an extended contact
is built up at the interface. Such a contact acts like a ‘‘third solid”
in-between the former two, with its own properties. Along such
an extended contact the physical properties vary slowly, and the
Andreev reflection may work in principle. However, such an ex-
tended contact may put certain limitations on the ballistic regime
of transport in the ferromagnetic sample, as due to proximity ef-
fects. If the two solids are similar they diffuse into each other over
a rather limited scale length. It is reasonable to assume, as we did
herein, that the two Fermi levels are close to each other. It is also
reasonable to assume that both the ferromagnetic and supercon-
ducting gaps do not change appreciably this picture.

It was shown that under such ideal conditions the electric
transport through a ferromagnet–superconductor junction is not
affected by spin polarization in the diffusive regime. On the con-
trary, it depends on magnetization in the ballistic regime for the
ferromagnetic sample. It is our opinion that a ballistic regime for
the superconducting sample may prove to be inconsistent (in par-
ticular, a spin-polarized injected current may destroy the super-
conductivity over small length scales). The change in
magnetization may be performed by slight changes in temperature
just below the magnetic critical temperature, but much lower than
the superconducting critical temperature. The results are valid for
small values of the relative magnetization m. For high values of the
magnetization (m! 1) the spin-down fluid of quasi-particles in
the ferromagnet ceases to fulfill the Andreev matching conditions.
However, the two spin fluids of quasi-particles act like two con-
ductors coupled in parallel, and the spin-up contribution domi-
nates the junction resistance.

0.8

0.9

1

1.1

1.2

1.3

0 0.5 1

R
f/
R

m
mt=1/ 3 mt=2/3

Fig. 1. Reduced resistance of a ferromagnetic sample vs. magnetization in the
ballistic (solid line) and quasi-ballistic (dotted line) regime for two arbitrary values
of the threshold magnetization mt .
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