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Abstract 

A non-linear diffusion equation is derived by taking into account the local variations in the solvent density, within a 
mechanism of diffusion driven by particle collisions. A particular class of radially-symmetric solutions is discussed, which 
are localized over finite ranges, centered either on the origin or on finite values of the radius. In the case of a thin layer 
of solute they look like disks or rings, and we suggest that they might be appropriate for describing the shapes of clouds, 
or wreaths of smoke. The latter case of ring-like solutions may correspond, for example, to the polluting puffs of smoke 
thrown into the atmosphere by chimneys and smokestacks. These patterns exhibit diffusion fronts propagating slower and 
slower, and growing in time at a constant rate of the total number of solute particles. @ 1997 Elsevier Science B.V. 

Recently [ 11, the ascent of warm, moist air in 
the Earth’s atmosphere has been modelled with the 
Kardar-Parisi-Zhang (KPZ) equation [ 21, known 
from crystal growth on atomic surfaces. This equation 
has been solved numerically, [ 3,4] and the fractal as- 
pects of the solutions has been emphasized. Leaving 

aside the noise term responsible for the fractal be- 
haviour, the remaining part of this equation looks like 
a non-linear diffusion equation, though the non-linear 

term has originally been interpreted as describing 
growth. Taking into account the local variations in 
the solvent density, within a diffusion mechanism 
driven by particle collisions, we show here that the 
non-linear term of the KEY equation may indeed arise 
in a diffusion process in non-equilibrium conditions, 

while at equilibrium, an identical term is obtained, 
only with opposite sign. The non-linear diffusion 

’ E-mail: apoma@theorl.ifa.ro. 

equation thereby obtained is solved for a particular 
class of radially-symmetric solutions. In the first case, 
it is found that the solute concentrations extend over 
finite ranges in space, having the shape of a disk in 
two dimensions. In the second case, solutions of an- 
nular shape are obtained in two dimensions. These 

patterns of the solute concentration exhibit diffusion 
fronts propagating slower and slower, and growing in 
time at a constant rate of the total number of solute 

particles. We suggest that they might be interpreted 
as describing clouds or wreaths of smoke, the latter, 
for example, as the polluting puffs thrown into the at- 
mosphere by chimneys and smokestacks. Specifically, 
we discuss the two-dimensional case, but relevant 
features, wherever appropriate, are pointed out in one 
and three dimensions. 

Suppose that we have a thin layer of fluid whose 
particles may jump from the position (x, y) at time t 
to the neighbouring positions (X f a, y) , (x, y * a), 
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where a is a generic, atomic length scale; suppose, 
further on, that these jumps proceed with an average 
frequency Y( X, y ) . Then, the time variation of the fluid 

concentration n( X, y, t) is given by [ 51 

- = Y(X + a, y)n(x + a, y) at 
+ v(x - a,y)n(x - u,y) - 2vn 

+ V(X, y + u)n(x, y + a) 

+ v(x,y - u)n(x,y - a) - 2vn. (1) 

Here we assume that n varies slowly over lapses of 
time much longer than the time scale v-l, and n and 
Y vary slowly in space too, over distances much larger 

than a. Then, by series expansion, the leading terms 

in Eq. (1) are given by 

an 
- = U*V a n + 2u*grad v . grad n. 
at (2) 

Within a kinetic model of the fluid, the collision fre- 

quency Y is proportional to the density N of solvent 
particles, and during the diffusion process this density 
becomes either N + n, for a non-equilibrium process, 

or N - n, at equilibrium* (n/N << 1) . It is now easy 

to see that Eq. (2) becomes 

$$ = An + A(gradn)’ 

in the former case, and 

(3) 

k$ = Ln - A(gradn)* 

in the latter, where S - u*N and A N l/N. The first 
process is expected to occur more frequently in dilute 
gases, while the latter is more appropriate for dense 
gases or liquids. Eqs. (3) and (4) are non-linear dif- 

fusion equations, Eq. (3) being the KPZ equation [ 21 
without noise. We note that the non-linear term in 
Eqs. (3) and (4) occurs as a result of taking into ac- 
count the local variations of the solvent density, within 
a mechanism of diffusion driven by particle collisions. 

This is in contrast with the diffusion by tunnelling in 

2 Here it is assumed that the solute and the solvent particles 
are of similar nature; for solute particles which differ from the 

solvent particles, as, for example, in the case of suspensions of 
smoke particles in air, the treatment is similar, only the particular 

expressions of the coefficients S and A will change. 

an external potential, as, for example, in a (homoge- 
neous) solid, where the jump frequency u does not 
depend on the solute concentration n. Of course, if N 

is very large then we may neglect the non-linear term 
in Eqs. (3) and (4)) and we get the usual, linear dif- 

fusion equation. 
We note, first, that the non-linear diffusion equation 

given above by Eqs. (3) and (4) does not conserve 
the total number of solute particles, in contrast with 
the linear diffusion equation. Indeed, we have 

a 
at s 

n dr = LSA 
s 

(gradn)* dr, (5) 

and requiring the conservation of particle number 

would imply the trivial solution n = const. We shall 
look for radially-symmetric solutions (corresponding 

to radially-symmetric initial conditions), in which 
case Eq. (3) reads 

1 an a*n --=- 
S at Jr* 

(6) 

further, we assume that n depends on 4 = r/m 
only, which represents a particular class of solutions, 
corresponding to an increase of the total number of 
solute particles at a constant rate, 

s 
n(c)dr = const x t (7) 

(& in one dimension, t3/* in three dimensions). 

Eq. (6) then reads 

n” +.( l/t + on’ + An’* = 0, (8) 

which is a Bernoulli-type equation. Introducing 
f = 1 /n’ we get an equation of the type 

f’fuf+b=O, (9) 

whose solution is [ 61 

(10) 

where F = s’ a d&. In this way we obtain from Eq. (8) 

exp( -4*/2) 

n’ = &[const + Am Ei( -.$2/2)] ’ 
( 11) 
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where Ei is the exponential integral (Ei(x) = 
- J’_“,(e-‘/t) dt).Th e ex p onential integral Ei ( -12/2) 
is a monotonically increasing function which has the 
following asymptotic behaviour, 

Ei f-5*/2) N In (e2/2) , 5’12 < 1, 

(12) 

It is now easy to see that for const 2 0 in Eq. ( 11) we 
would get a negative, unphysical solution n, while for 
const < 0 we get a monotonically decreasing solution 
n whose asymptotics are 

n N ln Iln (r2/2)l 
Ad% ’ 

$92 < 1 
3 (13) 

,-F2i2 

TgT’ e2/2 > 1. (14) 

The small solute density is therefore given by the 
smooth function n in ( 14) for 6’12 > 1, while it in- 
creases rapidly for &*/Z << 1, as suggested by ( 13). 
There exists, consequently, a front of diffusion placed 
at &?/2 N 1, i.e. at Y - 2&, which propagates slower 
and slower (dr/dt - l/v6 - 0 for t - co), en- 
compassing an area which increases linearly with time, 
exactly as the total number of soluteparticles does. We 
may say that the solute particles placed initially over a 
certain, small area, propagate rather compactly (with 
a diffusion front), and slower and slower, while being 
fed continuously at a constant rate. This suggests that 
we may speak in this case of a disk-like cloud pattern, 
as of an atmospheric, or a smoke cloud. 

sign of A in Eqs. (8) and (11). It is easy to see, in 
this case, that we would get an unphysical solution for 
const 2 0 in ( 1 1 ), but a physical one for const < 0 
(and 6’12 > 1). However, this solution has a log- 
arithmic singularity at certain, finite values &e (de- 
pending on this integration constant), where it looks 
Iike n N - in I(5 - ~~)/v”?$ For large values of the 
variable ,$*/2 the solution behaves like the previous 
one, given by Eq. ( 14). One may say, therefore, that 
there exists in this case a finite value & (and a finite 
value of the radius re), where the solute density is 
concentrated; it extends over a finite range of the order 
80, so that we may identify two diffusion fronts, one 
for each side of the singularity, propagating (in oppo- 
site directions) slower and slower, and encompassing 
an area which increases again linearly in time, in the 
same manner as the total number of solute particles. 
The pattern has an annular shape, suggesting again 
atmospheric clouds or wreaths of smoke. It may be 
appropriate for describing, for example, the polluting 
puffs of smoke thrown into the atmosphere by chim- 
neys and smokestacks. We remark that such a solution 
might be expected for the ~uilibrium diffusion pro- 
cess, corresponding to Eq. (4). Indeed, a spot of so- 
lute particles cannot proceed to diffuse at equilibrium 
by removing the solvent particles only outwardly, they 
have to displace them inwardly too, acquiring thereby 
the ring-like shape of an annulus. 

Similar conclusions may also be reached in one and 
three dimensions, though in the former case the solu- 
tion may be peaked at the origin, too (50 = 0). 

We note that a similar solution exists also for 
the linear diffusion equation (A = 0), n = const x 
Ei( -t2/2>, but not for the number-conserving solu- 
tion 

n m fexp(-(‘/2). t2/2 >> 1, (1% 

which decreases uniformly to zero for t --+ 00. 

Finally, we mention that the smoothness conditions 
required for deriving Eq. (2) are met by our solutions 
given by (14) for distances Ar and lapses of time 
At much smaller than the distance r and, respectively, 
the time t of observation (but certainly much larger 
than a and, respectively, V-’ ) ; we note also that a low 
diffusion coefficient S favours the fulfillment of the 
asymptotic condition 5’/2 > 1 where our solutions 
hold. 

Similar solutions exist for the non-linear equation in 
three dimensions and in one dimension, but in the latter 
case the existence of the diffusion front is doubtful, 
since the solution IZ and its derivative are finite at the 
origin. 
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