

Available online at www.sciencedirect.com

Physics Letters A 351 (2006) 175-176

PHYSICS LETTERS A

www.elsevier.com/locate/pla

Euler's transform and a generalized Omori's law

Bogdan-Felix Apostol

Department of Seismology, Institute of Earth's Physics, Magurele-Bucharest MG-6, P.O. Box MG-35, Romania

Received 20 May 2005; received in revised form 23 October 2005; accepted 26 October 2005

Available online 2 November 2005

Communicated by A.R. Bishop

Abstract

The self-replication process of the statistical events generated by an original, main event and described by a finite distribution leads to a generalized Omori distribution singular at origin. The two distributions are related to each other by Euler's transform. The self-consistency of the generating process requires an exponential law for the finite distribution, which gives rise to the original Omori's law associated to the seismic activity accompanying a major earthquake.

© 2005 Elsevier B.V. All rights reserved.

PACS: 91.30.Dk; 91.30.Bi; 91.30.-f

Keywords: Power-law distributions; Omori's law; Seismic foreshocks and aftershocks; Statistical distributions

Singular distributions of power-law type $P(t) \sim 1/t^{\beta}$, for t > 0 and $\beta > 1$, seem to be ubiquituous [1]. Originally, they may have been introduced by Omori in 1894 [2,3] for describing the distribution of the seismic aftershocks with $\beta = 1^+$ and t denoting the time elapsed from the occurrence of the main seismic shock at t = 0. Such distributions, which may be called Omori-type singular distributions, are widely used in analyzing the seismic activity accompanying a major earthquake, both as aftershocks and foreshocks, as well as in a great variety of other situations [4–11]. The power-law bears also relevance on a critical-point theory for the accompanying seismic activity, and other similar phenomena, especially in connection with the self-organized criticality [12-14]. In view of their possible nonintegrability, such power-laws are usually defined over a range $t_c < t < D$, as large as possible, where t_c is a lower-bound cutoff and $D \gg t_c$ is an upper-bound cutoff. The cutoff parameter t_c may be set zero (for $0 < \beta < 1$, for instance), and D may be extended to infinite (for $\beta > 1$, for instance).

It is shown here that such Omori-type singular distributions may arise from self-replicating events, originally produced by a main event according to a finite distribution. The two distributions are related to each other by Euler's transform, which provides a generalized form for Omori's law. The self-consistency of the production process implies a self-generating original distribution, which is given by an exponential law. The distribution of all the events produced in such a process, self-replication included, is the original Omori's law.

Let p(t) = dN/dt be a finite distribution of N events over the range t > 0. The number $dN_0 = p_0 dt$ of events placed at origin, where $p(0) = p_0$, can be viewed as the number of the main events, while the rest of events, distributed over t > 0, can be viewed as produced by the main events at a rate r(t) given by

$$p(t) = p_0 r(t). \tag{1}$$

The self-replication process¹ implies a distribution P(t) obeying the relationship

$$P(t) = p(t) + r(t)P(t) = p(t) + \frac{p(t)}{p_0}P(t).$$
(2)

E-mail address: apoma@theory.nipne.ro (B.-F. Apostol).

 $^{0375\}text{-}9601/\$$ – see front matter @ 2005 Elsevier B.V. All rights reserved. doi:10.1016/j.physleta.2005.10.082

¹ The referee kindly suggested that "self-replication" may be related to what in some other works is called "self-consistency", or "cascades", and to "selfexcited processes".

It follows that distribution P(t) is given by

$$P(t) = \frac{p(t)}{1 - p(t)/p_0},$$
(3)

which is Euler's transform between $p(t)/p_0$ and $-P(t)/p_0$. The distribution P(t), as given by (3), corresponds to all the events generated in the process of producing accompanying events by the main events placed at t = 0. It is worth noting that P(t) is singular at origin.

Distributions P(t) as given by Euler's transform (3) can be considered for a general form of generating distributions p(t), which amounts to including only the self-replication process for the accompanying events produced by $p(t) = p_0 r(t)$. For this general case, the series expansion $p(t) = p_0 - p_1 t \cdots$ can be considered in the neighbourhood of t = 0, leading to Omori's law $P(t) = p_0 t_0/t$ for $t \ll t_0 = p_0/p_1$. Euler's transform (3) provides a general representation $P(t) = p_0/h(t)$ for such singular distributions, where h(0) = 0 and $h(\infty) \to \infty$ (such that, preferably, P(t) is integrable at infinite). It implies $p(t) = p_0/(1 + h) \simeq p_0(1 - h)$ for $t \to 0$. Such a representation may be regarded as a generalized Omori-type distribution. For $h(t) \sim t^{\beta}$, $\beta > 0$, power-law distributions $P(t) \sim 1/t^{\beta}$ are obtained (an upper-bound cutoff D is necessary for $0 < \beta \le 1$, as well as a lower-bound cutoff t_c for $1 \le \beta$).

Since the accompanying events are produced by the main events at a rate $r(t) = p(t)/p_0$, and since the events are not differentiated otherwise except by their occurrence time *t*, it follows that the distribution *p* may also be produced for $t + \tau$ by its value for *t* multiplied by rate $r(\tau)$, i.e.

$$p(t+\tau) = p(t)r(\tau), \tag{4}$$

for any $t, \tau > 0$. This distribution may be viewed as a selfgenerating distribution, and Eq. (4) expresses a self-consistency character of the distribution p(t). Eq. (4) can also be written as $p(t + \Delta t) = r(\Delta t)p(t)$, or $dp/dt = (-p_1/p_0)p(t)$, where $-p_1 = p'(0) < 0$ is the first derivative of p(t) at origin. It follows immediately, from (1) and (4), that distribution p(t)is given by an exponential law, $p(t) = p_0 e^{-p_1 t/p_0}$. It can be transformed into a normalized probability distribution $p(t) = p_0 e^{-p_0 t}$.

Inserting the exponential distribution $p(t) = p_0 e^{-p_0 t}$ in (3) the distribution

$$P(t) = \frac{p_0}{e^{p_0 t} - 1},\tag{5}$$

is obtained, which is Omori's law P(t) = 1/t for $p_0 t \ll 1$. It is customary to introduce a lower-bound cutoff t_c and to extend 1/t to infinite as $t_c^{\beta-1}/t^{\beta}$, where $\beta = 1^+$, such that

$$\int_{t_c}^{\infty} dt \, \frac{p_0}{e^{p_0 t} - 1} = \int_{t_c}^{\infty} dt \, (t_c^{\beta - 1} / t^{\beta}).$$
(6)

Eq. (6) gives the exponent $\beta = 1 - 1/\ln(p_0 t_c) = 1^+$ in the limit $t_c \rightarrow 0$.

It might be noted that P(t) as given by (5) is, formally, a Bose–Einstein-type occupation number (in two dimensions) for an exponential, Boltzmann-type, distribution p(t). The selfreplication equation (2), which describes a geometric series, has also a formal resemblance to Dyson's equation in the theory of interacting many-body ensembles. Eq. (5) can also be viewed as a generalized Omori's law.

In conclusion, it may be said that self-replication processes at a rate $r(t) = p(t)/p_0$ for a generating distribution p(t) of events accompanying the main events placed at t = 0 lead to Omori-type singular distributions as given by Euler's transform (3). Such distributions include power-type distributions of the form $1/t^{\beta}$, where $\beta > 0$. The self-consistency of the generating process requires a self-generating distribution p(t), which is given by an exponential law, and which leads to the original Omori's law $1/t^{\beta}$, with $\beta = 1^+$.

Acknowledgements

The author is indebted to the members of the Institute of Earth's Physics, Magurele-Bucharest for enlightening discussions.

References

- [1] M.E.J. Newman, Contemp. Phys. 46 (2005) 323, cond-mat/0412004.
- [2] F. Omori, J. Coll. Sci. Imper. Univ. Tokyo 7 (1894) 111.
- [3] T. Utsu, Geophys. Mag. 30 (1961) 521.
- [4] D. Sornette, C. Vanneste, L. Knopoff, Phys. Rev. A 45 (1992) 8351.
- [5] A. Helmstetter, D. Sornette, Phys. Rev. E 66 (2002) 061104.
- [6] A. Helstetter, S. Hergarten, D. Sornette, Phys. Rev. E 70 (2004) 046120.
- [7] D. Sornette, G. Ouillon, Phys. Rev. Lett. 94 (2005) 038501.
- [8] A. Saichev, D. Sornette, Phys. Rev. E 70 (2004) 046123;
- A. Saichev, D. Sornette, Phys. Rev. E 71 (2004) 016608.
 [9] R. Console, A.M. Lombardi, M. Murru, D. Rhoades, J. Geophys. Res. 108 (2003) 2128.
- [10] A. Petri, G. Paparo, A. Vespignani, A. Alippi, M. Constantini, Phys. Rev. Lett. 73 (1994) 3423.
- [11] C. Maes, A. Van Moffaert, H. Frederix, H. Strauven, Phys. Rev. B 57 (1998) 4987.
- [12] See, for instance, D. Sornette, Phys. Rep. 378 (2003) 1;
 P. Bak, K. Christensen, L. Danon, T. Scanlon, Phys. Rev. Lett. 88 (2002) 178501.
- [13] D. Sornette, C.G. Sammis, J. Physique I 5 (1995) 607;
 D. Sornette, Phys. Rep. 297 (1998) 239;
 D. Sornette, Phys. Rep. 313 (1999) 238.
- [14] B. Barriere, D.L. Turcotte, Phys. Rev. E 49 (1994) 1151.