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Euler’s transform and a generalized Omori’s law
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Abstract

The self-replication process of the statistical events generated by an original, main event and described by a finite distribution
generalized Omori distribution singular at origin. The two distributions are related to each other by Euler’s transform. The self-consistee
generating process requires an exponential law for the finite distribution, which gives rise to the original Omori’s law associated to th
activity accompanying a major earthquake.
 2005 Elsevier B.V. All rights reserved.
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Singular distributions of power-law typeP(t) ∼ 1/tβ , for
t > 0 andβ > 1, seem to be ubiquituous[1]. Originally, they
may have been introduced by Omori in 1894[2,3] for describ-
ing the distribution of the seismic aftershocks withβ = 1+ and
t denoting the time elapsed from the occurrence of the m
seismic shock att = 0. Such distributions, which may be calle
Omori-type singular distributions, are widely used in anal
ing the seismic activity accompanying a major earthquake,
as aftershocks and foreshocks, as well as in a great varie
other situations[4–11]. The power-law bears also relevance
a critical-point theory for the accompanying seismic activ
and other similar phenomena, especially in connection with
self-organized criticality[12–14]. In view of their possible non
integrability, such power-laws are usually defined over a ra
tc < t < D, as large as possible, wheretc is a lower-bound cut
off andD � tc is an upper-bound cutoff. The cutoff parame
tc may be set zero (for 0< β < 1, for instance), andD may be
extended to infinite (forβ > 1, for instance).

It is shown here that such Omori-type singular distributio
may arise from self-replicating events, originally produced b
main event according to a finite distribution. The two distrib
tions are related to each other by Euler’s transform, which
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vides a generalized form for Omori’s law. The self-consiste
of the production process implies a self-generating original
tribution, which is given by an exponential law. The distributi
of all the events produced in such a process, self-replicatio
cluded, is the original Omori’s law.

Let p(t) = dN/dt be a finite distribution ofN events over
the ranget > 0. The numberdN0 = p0 dt of events placed a
origin, wherep(0) = p0, can be viewed as the number of t
main events, while the rest of events, distributed overt > 0, can
be viewed as produced by the main events at a rater(t) given
by

(1)p(t) = p0r(t).

The self-replication process1 implies a distributionP(t) obey-
ing the relationship

(2)P(t) = p(t) + r(t)P (t) = p(t) + p(t)

p0
P(t).

1 The referee kindly suggested that “self-replication” may be related to w
in some other works is called “self-consistency”, or “cascades”, and to “
excited processes”.
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It follows that distributionP(t) is given by

(3)P(t) = p(t)

1− p(t)/p0
,

which is Euler’s transform betweenp(t)/p0 and −P(t)/p0.
The distributionP(t), as given by(3), corresponds to all th
events generated in the process of producing accompan
events by the main events placed att = 0. It is worth noting
thatP(t) is singular at origin.

DistributionsP(t) as given by Euler’s transform(3) can be
considered for a general form of generating distributionsp(t),
which amounts to including only the self-replication proc
for the accompanying events produced byp(t) = p0r(t). For
this general case, the series expansionp(t) = p0 − p1t · · ·
can be considered in the neighbourhood oft = 0, leading to
Omori’s lawP(t) = p0t0/t for t � t0 = p0/p1. Euler’s trans-
form (3) provides a general representationP(t) = p0/h(t) for
such singular distributions, whereh(0) = 0 andh(∞) → ∞
(such that, preferably,P(t) is integrable at infinite). It implies
p(t) = p0/(1 + h) � p0(1 − h) for t → 0. Such a representa
tion may be regarded as a generalized Omori-type distribu
For h(t) ∼ tβ , β > 0, power-law distributionsP(t) ∼ 1/tβ are
obtained (an upper-bound cutoffD is necessary for 0< β � 1,
as well as a lower-bound cutofftc for 1� β).

Since the accompanying events are produced by the
events at a rater(t) = p(t)/p0, and since the events are n
differentiated otherwise except by their occurrence timet , it
follows that the distributionp may also be produced fort + τ

by its value fort multiplied by rater(τ ), i.e.

(4)p(t + τ) = p(t)r(τ ),

for any t, τ > 0. This distribution may be viewed as a se
generating distribution, and Eq.(4) expresses a self-consisten
character of the distributionp(t). Eq. (4) can also be written
asp(t + �t) = r(�t)p(t), or dp/dt = (−p1/p0)p(t), where
−p1 = p′(0) < 0 is the first derivative ofp(t) at origin. It
follows immediately, from(1) and (4), that distributionp(t)

is given by an exponential law,p(t) = p0e
−p1t/p0. It can be

transformed into a normalized probability distributionp(t) =
p0e

−p0t .
Inserting the exponential distributionp(t) = p0e

−p0t in (3)
the distribution

(5)P(t) = p0

ep0t − 1
,

is obtained, which is Omori’s lawP(t) = 1/t for p0t � 1. It
is customary to introduce a lower-bound cutofftc and to extend
1/t to infinite astβ−1

c /tβ , whereβ = 1+, such that

(6)

∞∫
tc

dt
p0

ep0t − 1
=

∞∫
tc

dt (tβ−1
c

/
tβ

)
.

ng

.

in

Eq.(6) gives the exponentβ = 1−1/ ln(p0tc) = 1+ in the limit
tc → 0.

It might be noted thatP(t) as given by(5) is, formally,
a Bose–Einstein-type occupation number (in two dimensio
for an exponential, Boltzmann-type, distributionp(t). The self-
replication equation(2), which describes a geometric series, h
also a formal resemblance to Dyson’s equation in the theor
interacting many-body ensembles. Eq.(5) can also be viewed
as a generalized Omori’s law.

In conclusion, it may be said that self-replication proces
at a rater(t) = p(t)/p0 for a generating distributionp(t) of
events accompanying the main events placed att = 0 lead to
Omori-type singular distributions as given by Euler’s tra
form (3). Such distributions include power-type distributions
the form 1/tβ , whereβ > 0. The self-consistency of the gene
ating process requires a self-generating distributionp(t), which
is given by an exponential law, and which leads to the orig
Omori’s law 1/tβ , with β = 1+.
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