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Abstract

The self-replication process of the statistical events generated by an original, main event and described by a finite distribution leads t
generalized Omori distribution singular at origin. The two distributions are related to each other by Euler’s transform. The self-consiseency of t
generating process requires an exponential law for the finite distribution, which gives rise to the original Omori’s law associated to the seisr
activity accompanying a major earthquake.
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Singular distributions of power-law typg(r) ~ 1/¢#, for  vides a generalized form for Omori’s law. The self-consistency
t >0 andg > 1, seem to be ubiquituoyg]. Originally, they  of the production process implies a self-generating original dis-
may have been introduced by Omori in 18243] for describ-  tribution, which is given by an exponential law. The distribution
ing the distribution of the seismic aftershocks withk= 1" and  of all the events produced in such a process, self-replication in-
¢t denoting the time elapsed from the occurrence of the maieluded, is the original Omori’s law.
seismic shock at= 0. Such distributions, which may be called Let p(t) = dN/dt be a finite distribution ofV events over
Omori-type singular distributions, are widely used in analyz-the ranger > 0. The numbek/ Ng = podt of events placed at
ing the seismic activity accompanying a major earthquake, botbrigin, wherep(0) = po, can be viewed as the number of the
as aftershocks and foreshocks, as well as in a great variety afiain events, while the rest of events, distributed ovelO, can
other situation$4—11]. The power-law bears also relevance onbe viewed as produced by the main events at an@jegiven
a critical-point theory for the accompanying seismic activity, by
and other similar phenomena, especially in connection with the
self-organized criticality12—14] In view of their possible non-
integrability, such power-laws are usually defined over a rangé’(t) = por (). (1)
gﬁ<atn; DD ,>>a[sc Iiz;rgi i;ggi zlct))lljen, dwchue:([)aﬁs. #ngrt:f? ggfazl:;t erThe self—replicatiqn processmplies a distributionP (1) obey-

t. may be set zero (for @ 8 < 1, for instance), and may be ing the relationship
extended to infinite (fop > 1, for instance).

It is shown here that such Omori-type singular distributions . . p(t)
may arise from self-replicating events, originally produced by aP(t) =P +r®OP@)=p@)+ EP(I)' )
main event according to a finite distribution. The two distribu-
tions are related to each other by Euler’s transform, which pro-

1 The referee kindly suggested that “self-replication” may be related to what
in some other works is called “self-consistency”, or “cascades”, and to “self-
E-mail address: apoma@theory.nipne.(®.-F. Apostol). excited processes”.
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It follows that distributionP (¢) is given by Eg.(6) gives the exponert = 1— 1/ In(pot.) = 17 in the limit
Pty =—20 @ "t might be noted thap iven by(5) is, formall
=10/ t might be noted thatP(z) as given by(5) is, formally,

a Bose-Einstein-type occupation number (in two dimensions)
for an exponential, Boltzmann-type, distributip(¥). The self-
replication equatioi2), which describes a geometric series, has
Mso a formal resemblance to Dyson’s equation in the theory of
interacting many-body ensembles. Ef) can also be viewed

Distributions P ; by Euler's t ¢ b as a generalized Omori’s law.
istributions P (1) as given by Eulers transforif8) can be In conclusion, it may be said that self-replication processes

considered for a general form of generating distributipiis, at a rater (1) = p(1)/ po for a generating distributiop(7) of

which amounts to _mcludlng only the self-replication Process, ants accompanying the main events placed-a0 lead to
for the accompanying events produced y) = por(z). For

hi | h . eadd Omori-type singular distributions as given by Euler’s trans-
this general case, the series expanspan) = po — pil--- g5 (3). Such distributions include power-type distributions of
can b_e considered in the neighbourhood &£ 0, leading 10y, t5y, ¥t#, wherep > 0. The self-consistency of the gener-
Omori's law P (1) = poto/t for t < to = po/p1. Euler’s trans-

ti i If- ting distribugign, which
form (3) provides a general representatiBiy) = po/ h(r) for ating process requires a sefi-generating distribufion, whic

/ G is given by an exponential law, and which leads to the original
such singular distributions, whedg0) = 0 andz(c0) — oo Omori's law 18, with g = 1+.

(such that, preferablyP () is integrable at infinite). It implies

p@) = po/(L+ h) >~ po(1 — h) for t — 0. Such a representa-

tion may be regarded as a generalized Omori-type distributionacknowledgements

Forh(r) ~t#, B > 0, power-law distributiong (r) ~ 1/# are

obtained (an upper-bound cutd¥ is necessary for & 8 < 1,

as well as a lower-bound cutaff for 1 < 8). The author is indebted to the members of the Institute of
Since the accompanying events are produced by the ma#arth’s Physics, Magurele-Bucharest for enlightening discus-

events at a rate(r) = p(t)/po, and since the events are not Sions.

differentiated otherwise except by their occurrence timé

follows that the distributiorp may also be produced for+

by its value forr multiplied by rater(z), i.e.

pt+1)=pt)r(r), (4)
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T : . = o
—p1=p'(0) < 0 is the first derivative ofp(1) at origin. It |71 5 gomette, G. Ouillon, Phys. Rev. Lett. 94 (2005) 038501.

which is Euler’s transform betweepn(r)/po and —P(¢)/ po.
The distributionP (¢), as given by(3), corresponds to all the
events generated in the process of producing accompanyi
events by the main events placedrat 0. It is worth noting
that P(¢) is singular at origin.
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