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A model of seismic focus and related statistical distributions of earthquakes
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Abstract

A growth model for accumulating seismic energy in a localized seismic focus is described, which introduces a fractional parameter r on
geometrical grounds. The model is employed for deriving a power-type law for the statistical distribution in energy, where the parameter r

contributes to the exponent, as well as corresponding time and magnitude distributions for earthquakes. The accompanying seismic activity of
foreshocks and aftershocks is discussed in connection with this approach, as based on Omori distributions, and the rate of released energy is
derived.
© 2006 Elsevier B.V. All rights reserved.

PACS: 91.30.Bi; 91.30.Dk; 91.30.-f; 91.35.Cb

Keywords: Seismic source; Recurrence time; Statistical distributions; Omori’s law; Gutenberg–Richter law
1. Introduction

The physical mechanisms of the seismic sources are still
unknown to a large extent, and the patterns exhibited by earth-
quakes in space and time are a matter of debate. The present
Letter introduces a model of accumulating seismic energy in
a localized critical focal zone, and derives statistical distribu-
tions of earthquakes in time, energy and magnitude which seem
to enjoy a certain consensus. The focus model includes a frac-
tional parameter r , derived on geometrical grounds, which turns
out to be an Omori-type parameter in the power-law distribution
of earthquakes with respect to energy. It affects also the dis-
tribution in magnitude, the Gutenberg–Richter recurrence law
and the mean recurrence time of the earthquakes. The associ-
ated regime of seismic activity in the neighbourhood of a main,
“regular” seismic shock is also discussed in connection with
Omori distributions in time, magnitude and energy, and the rate
of released energy is given.

It is widely agreed that the seismic energy E released in an
earthquake is related to the earthquake’s magnitude M by the
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Gutenberg–Richter-type relationship [1–3]

(1)lnE = a + bM.

Statistical analysis of moderate and strong earthquakes (5.8 <

M < 7), which are probably most prone to represent a statis-
tical ensemble, indicates values a � 10 and b � 3.5 (in dec-
imal logarithms a � 4.4 and b � 1.5) for energy measured
in J [4]. (The error in seismic energy may be up to a fac-
tor of 10.) These numerical values may be adopted for the
present purpose,1 although the considerations made herein do
not depend critically on such numerical values. Parameter a

in (1) indicates the existence of a threshold energy E0 = ea

(E0 � 4.4 × 104 J), corresponding to M = 0, so that Eq. (1)
can be recast as E/E0 = ebM .

It is customary to assign a region of characteristic length R

to the seismic energy E, through E ∼ R3, and, similarly, a char-
acteristic threshold length R0 can be associated to the threshold

1 There are various representations for energy E and magnitude M in the
Gutenberg–Richter relationship (1), as depending on various practical conven-
tions, the most used being related to the seismic moment. All of them obey a
general relationship of the form given by (1), and their specific definitions are
immaterial for the present purpose.
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energy E0 ∼ R3
0 , leading to

(2)ln(R/R0) = βM,

where β = b/3 = 1.17. The two characteristic lengths R and R0
have a twofold interpretation: On one side, they may be associ-
ated to the central core of the critical focal zone where the seis-
mic energy accumulates, and, on the other, R may correspond to
the characteristic length of the seismic region disrupted by the
earthquake, R0 being in this case a scale length. The empirical
evidence [5,6] in the latter case seems to support an equation of
type (2).

2. A model of seismic focus

It is assumed that the characteristic lengths R and R0 cor-
respond to a localized critical focal region where the seismic
energy builds up by mechanical tension. It is also reasonable to
assume that the process of accumulating energy in the seismic
focus exhibits a uniform velocity v, so that the accumulation of
the seismic energy in focus obeys the continuity equation

(3)
∂E

∂t
= −v gradE,

where t denotes the accumulation time. In Cartesian co-
ordinates the rhs of Eq. (3) can be written as v gradE =
vx(∂E/∂x) + vy(∂E/∂y) + vz(∂E/∂z), and we may assume
that a localized process of uniformly accumulating energy is
characterized by vx = vy = vz = v and ∂E/∂x = ∂E/∂y =
∂E/∂z = ∂E/∂L, where L is a generic coordinate. Under such
circumstances we can write v gradE = 3v(∂E/∂L). It is worth
noting the occurrence of factor 3 in the rhs of this equation.
However, if the process is not uniform, this factor changes, in
general. For instance, if vx = vy = v and vz = 0, the result-
ing factor is 2, and, in general, it depends on the particular
geometry of the critical focal zone and the particular mecha-
nism of accumulating seismic energy. Therefore, in order to
preserve the generality we may represent the rhs of Eq. (3)
as v gradE = (1/r)v(∂E/∂L), where r is a geometric factor
accounting for such a non-uniform process of accumulating en-
ergy. In the former instances r = 1/3 and r = 1/2, respectively.
Further, since the region of interest is localized and energy is
very high (E � E0), the spatial variation of energy can be rep-
resented as ∂E/∂L � −E/L, such that Eq. (3) becomes

(4)
dE

dt
=

(
1

r

)
v
E

L
.

Eq. (4) leads also to consider the accumulation time t = L/v

(as well as a threshold time t0), such that it can also be written
as

(5)
dE

dt
=

(
1

r

)
E

t
.

A similar representation can be obtained directly from E ∼ R3,
which leads to dE = 3E dR/R = 3E dt/t , i.e. Eq. (5) for r =
1/3. In this respect, parameter 1/r may be viewed as a “fractal
dimension” [7].
Eq. (5) can be integrated straightforwardly, by making use
of the cutoff parameters E0 and t0. We obtain

(6)
t

t0
=

(
E

E0

)r

,

which is the basic equation for the present model of seismic
focus. Making use of the Gutenberg–Richter equation (1) we
obtain also

(7)t = t0e
βM,

where β = br . For r = 1/3 the parameter β acquires the value
β = b/3 = 1.17 (b = 3.5).

According to Eq. (5), such a model looks like a growth
model, with a typical power-law as given by (6).

3. Statistical distributions

Let N0 be the number of earthquakes during a long time T ,
characterized by the average threshold time t0 = T/N0, where
N0 is very large. The cutoff parameter t0 may be viewed as
the inverse of the seismicity rate. Similarly, the frequency of
N earthquakes in this series, characterized by time t can be
written as N/N0 = (T /t)/(T /t0) = t0/t . Hence, it follows the
temporal probability distribution

(8)P(t) dt = −d(t0/t) = t0

t2
dt.

Eqs. (6) and (8) give the probability distribution in energy

(9)P(E)dE = rEr
0

E1+r
dE,

providing the mean recurrence time is identified with the accu-
mulation time. Similar power-law distributions in energy have
been derived recently [8] by employing Tsallis entropy for the
fragmentation of a dynamical fault-planes model. Such distrib-
utions are sometime called Omori-type distributions, where r is
an Omori parameter.

Making use of the energy distribution (9) and the Gutenberg–
Richter equation (1) the magnitude distribution

(10)P(M)dM = βe−βM dM

is obtained straightforwardly. The number �N of seisms with
magnitude between M and M+�M is given by �N/N0�M =
P(M), or

(11)lg

(
�N

T

)
= A − BM,

where A = lg(β�M/t0) and B = β/2.3. Such a linear relation-
ship, known as the Gutenberg–Richter law, has been checked
for a large amount of earthquakes, and A � 4.6 and B � 0.6
were obtained, for instance, for 5.8 < M < 7.3 (and �M = 0.1)
[4]. These values may be adopted here for the present purpose,
though the numerical values of such quantities do not affect the
results presented herein. Making use of B = 0.6 one obtains
β � 1.38, in fair agreement with β = 1.17 (corresponding to
r = 1/3). Similarly, a global rate of seismicity 1/t0 ∼ 105.5 per
year is obtained from A = 4.6, which is consistent with estima-
tions of cca 105–106 earthquakes per year, on average [4]. There



464 B.-F. Apostol / Physics Letters A 357 (2006) 462–466
are appreciable deviations from the Gutenberg–Richter linear
relationship (11) for extreme values of the magnitude.2 Such
deviations may indicate either that the corresponding seismic
events are not statistical events, or the deviations may be as-
cribed to a magnitude saturation phenomenon for large values
of the magnitude.

It is also convenient to introduce the so-called recurrence
law, or the exceedance rate, which gives the number Nex of
earthquakes with magnitude greater than M . The correspond-
ing probability is readily obtained from (10) as Pex = e−βM , so
the exceedance rate reads

(12)ln

(
Nex

T

)
= − ln t0 − βM.

This relationship, also known as the Gutenberg–Richter law,
is currently employed for analyzing the earthquake statisti-
cal distributions in magnitude. A recent analysis [9,10] seems
to indicate a certain universality in the value of the β slope
(B = β/2.3 � 0.6). However, there is a great regional vari-
ability in the values of the coefficient B (and correspondingly
in the values of the coefficient β and parameter r), as well
as a variability associated to the data sets analyzed. For in-
stance, B = 1, which seems to correspond to Southern Cali-
fornia [11], leads to β = 2.3 and r = 0.66 (and a seismicity rate
given by − ln t0 = 17.25 for t0 measured in years). Statistical
analysis for 1999 earthquakes with magnitude M > 3, recorded
in the seismic region Vrancea (Romania) between 1974 and
2004 [12], indicates B = 0.82, β = 1.89 and r = 0.54 (and
a seismicity rate given by − ln t0 = 9.68 for t0 measured in
years).

It is worth noting that Eq. (7) may be viewed as provid-
ing the mean recurrence time tr = t0e

βM for the occurrence of
earthquakes of magnitude M . In fact, the mean recurrence time
of earthquakes with magnitude in the range M to M + �M

is of interest (for �M � M). According to (10) the rate of
such earthquakes is given by �N/T = (β�M/t0)e

−βM , so the
mean recurrence time can be obtained as

(13)tr =
(

t0

β�M

)
eβM.

If the seismicity rate t0 is known, this equation may be used
to estimate the mean recurrence times. However, it must be
noted that the relevance of such estimations is, in fact, very
limited. Indeed, imposing a mean recurrence time tr , the tem-
poral distribution (1/tr )e

−t/tr is obtained immediately from the
maximum of the entropy, for instance (Poisson distribution).
The root mean square is then 〈t2〉1/2 = √

2tr , which, compared
with the mean recurrence time tr , gives a relative deviation√

2 − 1 = 41%, that may be taken as a measure for the uncer-
tainty in estimating the recurrence time (the variability in the
recurrence time).

2 For instance, parameter B in (11) may double its value, becoming B ∼ 1,
for very strong earthquakes.
4. Accompanying seismic activity. Omori’s law

The above description may be viewed as pertaining to “reg-
ular” earthquakes, characterized by a mean recurrence time.
Such “regular” seismic events may be accompanied by an as-
sociated seismic activity, like foreshocks and aftershocks, in
which case a “regular” earthquake is referred to as the main
shock. Since 1894, when Omori suggested that seismic after-
shocks are distributed according to ∼ 1/τγ , where γ = 1+ and
τ denotes the time elapsed from the main shock [13], the seis-
mic activity accompanying a major earthquake is a matter of
debate. One of the major difficulties in advancing knowledge in
this subject is the lack of means for distinguishing between seis-
mic events genuinely accompanying a main shock and other,
“regular” seisms, superposed over the associated seismic ac-
tivity, which may possibly belong to other “regular” time se-
ries of seismic activity, without any relationship with the main
seismic shock. Statistical distributions of such events, both in
time, magnitude and energy, may help in operating such a dis-
tinction, and it was precisely in this direction where progress
has been recorded recently, especially in connection with the
critical-point theory of foreshocks and aftershocks, as based on
self-organized criticality [14–17].

It is assumed here that there may exist an associated seis-
mic activity accompanying a main seismic event, as seismic
foreshocks and aftershocks, and this whole “secondary” seis-
mic activity forms a statistical ensemble, i.e. is described by
probability distributions.

Let the main shock occurs at a critical time tc = 0, and mea-
sure time τ of the accompanying seismic activity with respect
to this initial moment of time. Time τ takes both positive val-
ues, for aftershocks, and negative values, for foreshocks. As
this seismic activity corresponds to pairs of events separated by
time τ , then the corresponding statistical distributions are func-
tions of the absolute value |τ | of time τ , as pointed out in earlier
studies [18]. It was shown recently [19] that the associated
seismic activity proceeds by the self-replication of a generat-
ing distribution of accompanying events, the self-consistency
of the process requiring an exponential form for the generat-
ing distribution. It amounts to viewing the accompanying seis-
mic activity as a relaxation to equilibrium of the seismic zone,
and the corresponding statistical distribution p(τ) can be ob-
tained formally by using the principle of the maximal entropy
S = − ∫

dτ · p(τ) lnp(τ). In order to fully characterize this as-
sociated seismic activity, a mean value t ′c of its duration may
be introduced, where t ′c may be viewed as a characteristic scale
time. By standard procedure the temporal probability distribu-
tion

(14)p(τ) = αe−α|τ |, α = 1/t ′c
is obtained straightforwardly, as the generating distribution for
seisms accompanying a main shock. In general, the character-
istic time t ′c may depend not only on the nature of the seismic
source and the seismic zone, but also on the magnitude of the
main shock. On the other hand, the distribution of the accompa-
nying events can be obtained directly from (8) by expanding the
temporal probability of the main shocks in powers of |τ | in the



B.-F. Apostol / Physics Letters A 357 (2006) 462–466 465
neighbourhood of a main shock with mean recurrence time tr .
It is easy to see that replacing t = tr by t = tr +|τ | in (8), where
|τ | � tr , the time distribution p(τ) ∼ (1+|τ |/tr )

−2 ∼ e−2|τ |/tr

can be extracted, as corresponding to the accompanying seismic
activity. It follows that parameter α in (14) is given by α = 2/tr ,
and the characteristic time t ′c = tr/2, where tr is the mean re-
currence time of the main shock, as given by (7) or (13). For
large values of time tr the distribution of the accompanying
events has a long tail, but the corresponding time probability
is very low. In contrast, the accompanying seismic activity ends
quickly for small main shocks, characterized by a small value
of the mean recurrence time tr .

It was shown [19] that the self-replication process of the
generating distribution given by (14) leads to the distribution
P(τ) = α/(eα|τ | − 1) for the seismic events accompanying
a major earthquake, which is Omori’s law P(τ) = 1/|τ | for
ατ � 1. It may be extended to τ → ∞ as P(τ) = τ

γ−1
c /|τ |γ ,

where γ = 1+ and τc is a lower-bound cutoff. This result is
valid in general, for any finite generating distribution p, the two
distribution p and P being inter-related by Euler’s transform.
This relationship provides also a generalized Omori’s law [19].
According to Omori’s law, the accompanying events are con-
centrated in the neighbourhood of the lower-bound cutoff τc. It
might also be noted, according to Omori’s law, that number n

of associated seismic events goes like dn/dτ ∼ 1/|τ | [14,20].
A distribution similar to (14) holds also for the difference

in magnitude of the associated seisms with respect to the main
shock. Indeed, according to (10), the magnitude distribution can
be written as ∼ e−βme−βM for a main shock of magnitude M0,
where m = M0 − M is the difference in magnitude between
the main shock and an accompanying seismic event of magni-
tude M . Negative values for the statistical variable m = M−M0
must be allowed in such a distribution, which leads to βe−β|m|
for the distribution in magnitude difference, as suggested previ-
ously [21]. It may also be noted that such a distribution can be
obtained by the principle of the maximal entropy as β ′e−β ′|m|,
and, since this probability is equal to the probability of the main
shock at m = 0, it follows that β ′ = β . Another remark might
also be that associated earthquakes do follow the same expo-
nential distribution in magnitude like the “regular” earthquakes.

It is worth noting that, by making use of the exponential
distribution in magnitude difference and the temporal distrib-
ution given by (14), the time dependence |m| = (α/β)|τ | is
obtained, or dm/dτ = α/β , or, equivalently, the time depen-
dence M = M0 − (α/β)|τ | of the magnitude of the accompa-
nying seisms. It may be estimated that the associated seismic
activity is extinct in time τ0 = βM0/α = βM0t

′
c , though the

long-tail values of the probability distributions of the accom-
panying seismic activity are very small. As described above,
for small values of m (|m| < 1/β) the distribution in magni-
tude difference obeys the same Omori-type law ∼ dm/|m| (the
lower bound corresponding to mc = (α/β)τc). The mean dif-
ference in magnitude 〈m〉 vanishes for the distribution βe−β|m|
(〈m〉 = 0), so it is reasonable to employ the standard deviation
δm = 〈m2〉1/2 = √

2/β as a measure of the mean deviation in
magnitudes of the accompanying seismic activity. Such an esti-
mation is also consistent with the assumption that the associated
seismic activity represents a relaxation regime of the seismic
activity. Making use of β � 1.17 the value δm = √

2/β � 1.2 is
obtained, which is suggestive for the numerical value indicated
by Bath’s empirical law [22]. A similar analysis, though on a
different conceptual basis, was made recently for the accom-
panying seismic activity [16,17,23]. It might be noted that the
self-replication process is not included in estimating the stan-
dard deviation of the magnitude, and the variance δm = √

2/β

occurs in time τB = (β/α)δm = √
2t ′c.

The probability Π(�E) for two earthquakes separated in en-
ergy by �E is given by P(E)Π(�E) = P(E + �E), where
P(E) is the probability (9). One obtains Π(�E) = E1+r/(E +
�E)1+r = (1 +�E/E)−1−r , and for fixed �E we can see that
the resulting decomposition indicates that the statistical vari-
able corresponding to the energy for the accompanying seisms
is actually x = 1/E. For small values of �E one may take
�E = E0, so that the “energy” distribution (1 + E0/E)−1−r =
exp[−(1 + r) ln(1 + E0/E)] can be written down for the asso-
ciated seismic activity, or

(15)p(x) � E0(1 + r)e−(1+r)E0x, x = 1

E
.

It may be noted that this distribution is similar to the expo-
nential distributions in time, or magnitude, with a characteristic
scale energy (1 + r)E0. By comparing (15) and (14) the time
dependence E = (1 + r)E0t

′
c/|τ | of the released energy is ob-

tained straightforwardly, which corresponds to the rate

(16)dE/d|τ | = −(1 + r)E0t
′
c/τ

2

of the energy released in the accompanying seismic activ-
ity. Such an ∼ 1/τ 2-law seems to be supported by empirical
data [14,20]. Similarly, the magnitude dependence E = (1 +
r)E0/β|m| is obtained for the released energy, as well as an
Omori-type law ∼ dx/x = −dE/E.

In conclusion, a model is introduced here for the accumula-
tion of the seismic energy in a localized focus, which implies
a geometric parameter r , and statistical distributions in time,
energy and magnitude are derived on this basis for regular
earthquakes. Omori’s distributions are discussed for the seis-
mic activity accompanying a main seismic shock and the time
dependence (16) is given for the released energy in an accom-
panying seismic activity.
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