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The Ward identity, relating the three-legged vertex function to the Green function, is derived for non-relativistic fermions
interacting through a two-body force by using the equation-of-motion technique.

The Feynman—Dyson perturbation theory for
non-relativistic fermions can be formulated in terms
of three fundamental quantities [1]: the one-particle
Green function, the effective interaction and the three-
legged vertex function. The three-legged vertex function
represents all the diagrams with three external lines
(one interaction line and two particle lines). The Green
function and the effective interaction are related to the
vertex function by the Dyson equations (via proper
self-energy part and irreducible polarization, respec-
tively) *1. In order to get the third equation one can
look for the Ward identity which, as known from
quantum electrodynamics [2], relates the three-legged
vertex function to the Green function. The Ward iden-
tity has been derived by diagrammatic methods [3]
and the equation-of-motion technique [4] for the one-
dimensional Fermi system, when the unperturbed one-
fermion energy levels are linear in the wavevector, We
obtain here the Ward identity for the general case of
non-relativistic fermions moving in three-dimensional
space and interacting through a two-body force.

The hamiltonian of the system is given by

H=H0 +H,, (13)
Hy=—5 [ax y*() AU(), (1b)
Hy =5 fax dy Vix—y) () ¥*0) ¥0) v,

. ic

*#1 The zero-momentum component of the interaction is set
equal to zero, so that the tadpole diagrams are excluded.

where ¥(x) and ¥ *(x) are the field operators of the
fermions with mass m interacting through the potential
(|x — y|) (spin index is omitted for simplicity). We
use the plane wave representation for these operators,

V=D, ePr, y)=Lchewx, (2
P p

p and ¢}, being the annihilation and creation opera-
tors of the one-fermion state labelled by the wavevec-
tor p. Let us define the three-point vertex function

K(xq,%9,x3) = —0[Tn(xy) Y(x,) ¥+ (x3)I0/0I0) ,
3)

where the operators are written in the Heisenberg pic-
ture, the space—time coordinate x; denotes the pair
(x;, ) (1=1,2,3),n(x) is the particle density opera-
tor,

n(xy) = W'(xl) Yixy), C))

}0) is the Heisenberg ground state of the system and

T represents the time-ordering operator. Due to the
space—time invariance of the system the function
K(xy,x,,x3) depends on the difference of its variables
only. Choosing x, — x5 and x5 — x as independent
variables this function can be Fourier transformed as

K(X2 —X3,X3 -x1)=(21r)‘8 (5)
X fdp dk K(p, k) explip(c, — ¥ 3)] explik(x3 —x,)] ,

where the variables p and k denote, respectively, the
wavevector-frequency pairs (p, €) and (k, w). The scalar
product in eq. (5) is taken, as usually, px =px — et.
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Fig. 1. The skeleton diagram of the three-point vertex func-
tion K(p, k). The Green functions and the effective interaction
are represented by full lines and wavy line, respectively. The
dashed triangle represents the three-legged vertex function

I'(p, k).

Using the interaction picture and the evolution opera-
tor of the perturbation theory it is easy to see that all
the connected diagrams which contribute to the func-
tion K(x,, x,,x3) can be represented by the skeleton
diagram shown in fig. 1 (in momentum space). The
analytic expression of this diagram is

K@, k) =G@) G - k) T, k) , (6

where G(p) and G(p — k) are one-particle Green func-
tions and ['(p, k) is the three-legged vertex function.
Taking the time derivative of the three-point vertex
function with respect to the variable 7, we get

(@0t K(xy —x3,x3—x)) = i(2m)-8 @)

xfdp dk wK(p, k) explip(x, —x3)]explik(x3—x1)] .

The time-ordering operator in eq. (3) can be expressed
with the step function 8(r) =1 fort >0and () =0
for t <0. Taking the time derivative of eq. (3) with
respect to ¢, and using the fermion anticommutators
of the equal-time field operators we get

(3/0t1) K(x1, %5, %3) ®
= —QIT(3/dty) nlx;) Yix5) ¥*(x3)I0YOI0)
+i8(x) —x5) G(xy — x3) —i8(x; —x3) Glx5—x1) .

The time derivative of the particle density operator is
given by the Heisenberg equation of motion

—i(3/07) n(x) = [H, n(x)] = [Hy, n(x)]

=703 v - [sm av v . ©
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Introducing this result in eq. (8) and Fourier trans-
forming the right-hand-side of this equation we get,
after straightforward calculation,

(08/0t) K(xq, x5, x3) =i(2m)~8 (10)
X [dp dk (e, — €, 1) G(p) G(p — K) T, k) — G(p)

+ G(p — k)] explip(x5 — x3)] expik(x3 —xy)] ,

where €, = p?/2m are the energy levels of the free fer-
mions.

Comparing eq. (7) with eq. (10) we obtain the
Ward identity

[G-1(®) -Gl (p~ k)]
(ep_k —€t w)

Np, k)= ; (11

which is similar to that from quantum electrodynamics.
In the case of spin-dependent interaction eq. (11) can
be directly generalized to

G oo (P) Ty 0p(P, K) Gp (P — )

= 8pva}\(p - k) - ay)\Gpp(p)
€p_k—€ptw ’

(12)

For one-dimensional Fermi systems the unperturbed
spectrum ¢, becomes linear in the wavevector p and eq.
(11) reduces to a result previously derived in refs. [3,4].
The usefulness of the relation (11) in the study of the.
one-dimensional Fermi systems will be discussed else-
where.
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