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It is shown that the Jordan commutator has been overlooked so far in the theory of the one-dimensional two-fermion
model. The Jordan’s boson representation is generalized to this model and the proper use of the a cut-off parameter is
introduced.

The boson representation for the one-dimensional two-fermion model (Tomonaga—Luttinger model without
interaction) previously proposed by Luther and Peschel {1] and Mattis [2] was recently discussed by Haldane [3].
A major lack of the boson representation given in refs. [1,2] is the contribution of the zero-modes associated
with the particle-number operators. These zero-modes were consistently taken into account by Haldane [3] who
derived also the complete form of the bosonized kinetic hamiltonian of the system. The boson representation of
the fermion fields given in ref. [3] looks very much the same as that encountered in the field-theoretical literature
[4] and, in fact, it was derived many years ago by Jordan [5] for a single fermion field in one dimension.

An important feature of the boson representation of the fermion fields in one dimension is the prescription of
introducing the cut-off parameter a. As the particle density is infinitely large a proper cut-off procedure is required
which should ensure the correct commutation relations and provide a practical way of handling with the divergen-
cies. The boson representation given by Luther and Peschel [1] is not normal ordered in boson operators. When
normal ordering is attempted factors appear which contain divergent summations over an infinite range of
wavevectors. The cut-off parameter « was introduced by Luther and Peschel {1] in the boson representation in
such a way as to simply ensure the convergence of these sums. However, this cut-off procedure was proved to
lead to some inconsistencies in treating the one-dimensional two-fermion model [6]. Haldane [3] used a normal
ordered boson representation, as did Mattis [2], so that the cut-off parameter « is no longer needed in the boson-
ized expression of the fermion fields. However, products of two or more fermion fields have to be calculated (to
evaluate the anticommutators, correlation functions, etc.) and therefore the normal ordering problem arises again.
In order to make finite the summations over wavevectors appearing in the problems of this type Haldane [3]
pointed out an essentially similar cut-off procedure as that given in ref. [1], although the interpretation of the
parameter a in ref. [3] differs from that given by Luther and Peschel [1]. The absence of the cut-off parameter a
in the bosonized expression of the fermion fields given by Haldane [3] removes the aforementioned inconsisten-
cies of the two-fermion model. However there is a quantity not explicitly discussed in these previous works which
was pointed out long ago by Jordan [5] and which will be hereafter referred to as Jordan’s commutator. This
commutator plays the role of a supplementary condition which has to be satisfied by the boson representation
and its importance is directly connected to a consistent way of renormalizing the infinitely large density of fer-
mions. One can easily see that the cut-off procedures proposed in refs. [1,3] do not make the boson representation
satisfy the Jordan commutator. The proper cut-off procedure was suggested by Jordan [5]. The aim of the present
letter is to draw attention to Jordan’s commutator and to introduce the proper cut-off procedure as well as to
generalize the Jordan theory to the two-fermion model.
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Let us suppose that the fermion field in one dimension Y(x) = Z, eipxap ,p =27 X integer, is governed by the
kinetic hamiltonian

Hy= 20 pata, — 21 paja’ = 27 pa’a +Ep(a+a —-1). (1)
0 p>0ppp pgoppp p>0ppp bl

The ground-state of this system is infinitely filled with particles from p = —e° to p = k., k- being the Fermi mo-
mentum. Instead of working with the particle-number operator Ep a;ap which has infinite values when acting
upon the states of the system, Jordan [5] introduced the charge operator

B=2J dta, — 20 aat =27 ata

a
e S eyt e N

+ 2 (@ha, — 1), 2)

p<0

which counts the particles with p > 0 minus the holes with p < 0. Owing to the infinite filling of the states the
particle-density operator ¥*(x)y(x) has infinite values:

VX)) = pZ<;O 1+B+Qm)~ Fx) +Fr(x)], ¥(x)y*x)= EO 1 =B -Qn)  FE) +F* ()], (3)

where F(x) = 2nZ, elkx p(—k), p(—k) = p*(k) = Zp a;ap+k are the Fourier components of the particle-density

operator. In order to extract these infinities as c-numbers Jordan [5] introduced the cut-off parameter & > 0 by
V) Y() = lim [Wx — /)"y —iaf2), ) PH(y) = lim Vix+ ia/2)[¥(y +ia/2)]F, 4)
and found

[W(x — /)] ¥(x —ia/2) = 2ra)~! + B+ (2m) " [F(x) + F*(x)] + O(a) ,

Yx +ia/2)[U(x +ia/2)]* = (2me)~! — B — (2m) " [Fx) + F*(x)] +O(e) . ()

One can see from eq. (5) that «—! may be interpreted as a bandwidth cut-off. For a = 0 we get from eq. (5) the
Jordan commutator

[V (o), w(x)] = 2B + 7~ 1 [Fx) + F*(x)] . (6)

Jordan [5] proved that p(—k) satisfy rigorously boson-like commutation relations [p(—k), p*(—k")] = (2m) 1k&;y
and established the boson representation

Y(x) =cS~lexpli2m(B — 1/2)x] exp (—27r kZJO k—le‘ikxp+(—k)) exp(27r EO [k‘leikxp(—k)]), (7)
>

where ¢ is a constant with |c| =1 and S a unitary operator defined by SapS"1 =100 Sa;S“1 = a;+27r with
the properties

SBS-1=B -1, S’HQS-1 =Hy—2n(B -1/2). (8)

All the properties of the fermion field Y(x) (commutators with o(—k), B and S, equation of motion, anticommu-
tation relations), Jordan’s commutator (6) included, are satisfied by the boson representation (7) provided that
Jordan’s prescription (4) is followed. Working with the boson representation (7) we encounter sums of the type
f@)=2nZ;4 k—le=kz Rez >0,z # 0 which are to be approximated by f(z) ~ —In(2nz) + nz. This approxi-
mation is valid for L—1{z| < 1, L being the length of the box the system is confined to (we put L = 1 in writing
down our equations for simplicity). The complete form of the bosonized kinetic hamiltonian is derived as follows:
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0 +
Y ePapgt _ 2 e + =—(Eep°‘a+a—zep°‘aa—l)
p>0e Pap%p p<0 Playap )a"‘p>0 P'P - p<o @ = 1)

=.5aaf dx [Y(x — ia/2)] " Y(x —ie/2), )

where we simply used the Fourier representation of the y/(x). By using eq. (7) we obtain

[W(x — ia/2)]* Wlx —ia/2) = (2na)~1 + B +(2m) "L [F(x) + F*(x)] + na: {B +(2m)~ L [F(x) + F*(x)]}2: + O(a?),

(10)
where : : means normal ordering, so that
f dx [¥(x — ia/2)]* ¥(x —iaf2) = (2na)~1 + B + na(32 +2 kEO p+(——k)p(—k)) +0(a?), (11)
>
and comparing with eq. (9) we get
Hy=lim ( 24 ePpata ~EPP°‘aa+)=7TBZ+21rE H—R)p(—k) . 12
0 01_’0([)>0 D p“p p<0 14 p“p k>0p ( )p( ) ( )

The boson representation (7) and the bosonized hamiltonian (12) are the same as those derived by Haldane [3] by
an entirely different method. However it is a matter of a simple algebra to show that the cut-off procedure used
in refs. [1,3] does not make the fermion field (7) satisfy Jordan’s commutator (6) [and eqs. (5)]. The proper cut-
off procedure is that given by eq. (4).

The generalization of the Jordan theory to the two-fermion model is straightforward. This model is described
in terms of the fermion fields x[/js(x) =Z, eil”‘ajps (j=1,2and s = #1 is the spin index) and the kinetic hamilto-
nian

L p@pstzps — 1) s (13)

H=Zpa+a +Z>p(a+ —1)—Z>pa+a -
0 1ps¥1ps 5 p<0 1ps%1ps 5 p<0 2ps“2ps 5p>0

5,p>0

the ground state being filled with j = 1 particles from p = —o° to p = +k and with j = 2 particles from p = -k to
p = +oo, The charge operators are

= + + _ = + + _
B pz>>0 21ps®1ps +I§0 (alpsalps 1), By pg% a3psops +p§>0 (a2psa2ps 1), (14)
and the operators Sis have the properties
S]'SB]"S’S].EI = 6ji’5SS'(BjS ¥ 1) +(1 — 6fj’5SS')Bf’S’ y S]SHOS];1 =HO + 27T(B]s ¥ 1/2) s (15)

the upper (lower) sign corresponding toj = 1 (2). The boson representation is

sz(x) = c]SS]J._;l exp [.t127r(B]s — 1/2)x]exp (—21[ kEO k_leI lk.Xp;‘;(-T.k)) exp (2” kzo k_leiikxpjs(_T_k)) , (16)
> >

where ¢ should satisfy the conditions
Chess = sl = 1, e g} = {en i} =0, G # (75, (a7

so that the Dirac matrices may be taken as a matrix realization of ¢;. The representation given by eq. (16) should
be used with the following prescription of introducing the cut-off parameter a:

Vi (») = lim (W5 Fi/D) (v Fief2),  Y(e)Vj(2) = Jim, Violx tia/2)[ Wiy i1 . (18)
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The bosonized form of Hy, given by eq. (13) is

Hy=n 20 BA+2m 20 ph(Fh)p(Fk) . (19)
js 78, k>0

All the properties of the field operators listed below

[Wjs(), g (FR)] = 8,58 o™ kXY (), [Wys(x), Byrgr] = 8589 ¥jelx)

Sjswj's'(x)sj;]- = (Sjj'ass'e_izmx w]s(x) + (1 - 6jj'5ss')lpj's'(x)s [w]s(x),HO] = ;1al//]s(x)/ax P

{dl;y(x)s w]'g'(y)} = Bjj'ass'ﬁ(x _y): {ll/]'s(x): ‘l/]'s’(y)} =0 ’ [w;_;(x)’ lp]s('x)] = 2B]s + 7T71 [Irjs(x) +F;:g(x)] P
(20)

where F;o(x) =21 Zy o etikx pjs(¥k), are satisfied by the boson representation (16) and the cut-off procedure
(18). The last line in eq. (20) is the Jordan commutator for the two-fermion model. The aforementioned inconsis-
tencies of the two-fermion model are also removed by the cut-off procedure proposed here, although this proce-
dure differs from that given in ref. {3]. These results will be published in a forthcoming paper.
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