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Abstract

It is shown that anharmonic corrections to the elastic energy may lead to unphysical solutions for the elastic movements.
The equation of motion for longitudinal deformations with third-order anharmonic terms is identified as the continuum limit
of the Fermi—Pasta—Ulam equation. This equation is solved exactly by elementary quadratures, and the corresponding time-
dependence is shown to exhibit singularities at finite times. The first terms in the asymptotic series of the quasi-plane-waves
solution are also computed for this equation. It is also shown that resonances may appear in the elastic waves as a consequenc
of their mutual coupling through non-linearities, and an example is explicitly computed for a transverse wave coupled to a
longitudinal one, propagating along the same direction.
0 2003 Elsevier B.V. All rights reserved.
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1. Introduction ally quite different from the discrete lattice models.
A connection has also been discussed of non-linear

In spite of the great deal of work on non-linear phe- Wave equations with the well-known anharmonic os-
nomena, the wave equation with anharmonic correc- ¢illators [4]. A breakthrough has been recorded re-

tions has still received little attention in the continuum C€ntly [5] by applying Lie algebras of the equation
limit. Cubic and quartic anharmonicities have been SYMMetry group to the exact solutions of a class of
considered in a one-dimensional discrete lattice [1], NON-linear wave equations, which includes the well-
and exact solutions have been identified as sinusoidalK"OWn Fermi-Pasta-Ulam equation in the continuum
waves of finite amplitudes for certain wavevectors, and IMit. Herein, we discuss cubic anharmonic correc-

amplitude-dependent frequency, in general (see alsotions to the_ elastic waves equ_ation, and _identify the
Ref. [2]). Non-linear structures arising from modu- COrresponding equation of motion for longitudinal de-
lated strain in ferroelectrics have also been studied formations as the continuum limit of the Fermi-Pasta-

Ulam equation. The exact solution of this equation
is obtained by elementary quadratures, and shown to
be unphysical, in the sense that it is boundless for
finite times and space boundaries placed at infinity.
E-mail address: apoma@theory.nipne.ro (B.-F. Apostol). However, the non-linear term in this equation may

within a semi-discrete approach to Ginsburg—Landau
equations [3]. However, the continuum limit is usu-
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act as a perturbation on plane waves, and the corre-positionr of coordinatesy; (i =1, 2, 3). The elastic
sponding asymptotic series is relevant for waves prop- energy for an isotropic body is then written as
agating over finite space regions and time intervals.

The first terms in this asymptotic series are explic- g _ [ gr A2 2 2)
. . . Ujj + Mul/

itly computed. The transverse waves with cubic anhar- 2 '

monic corrections are also analyzed, and a resonance, the linear approximation, where and u are

is shown to appear as a consequence of the ”On'li”ear(constant) Lame’s coefficients. & —2/3, u > 0)

coupling of these waves to the longitudinal deforma- anduizi anduizj are the two second-order scalars under

tion waves. . . .
rotations (‘,-Zj =u;;uj;). Equations of motion

92u; a(divu)

v, =@A+nw ox;
As it is well known, terms of order higher than follow, where p is the density andA denotes the

second in the strain tensor must be considered in the Laplacian, which describe longitudinal and transversal
elastic energy for large values of the elastic defor- plane waves with velocities; = /(A +2u)/p and,
mations. These higher-order terms generate non-linearrespectivelyp, = /u/p.
equations of motion, and they are usually called an-  Non-linear contributions to elasticity appear first
harmonic corrections to the wave equation. The an- through the full expression
harmonic corrections to the elastic energy and equa-
tions of motion may change drastically the character of .. _ 1 [ ui | duj  Jug %] (4)

2. Anharmonic corrections

+ nAu;, 3

8Xj 3)(,‘ 3)(,‘ 3)6./'

the elastic movement. Indeed, the superposition of the Y2

solutions does not hold anymore for anharmonic cor- ¢ yhe srain tensor (finite strain theory), and secondly

rections, in general, and the elastic waves exhibit the through higher-order terms in the elastic energy. There

combmed:llirhequk?né:y p:jhenor?]enon qnd tempt_)ral '®S- are three scalars of the third order that must be added
onances. The third-order anharmonic corrections are to the elastic energy (2), which now reads

considered here for an isotropic elastic body, and the

equation of motion is solved exactly for longitudinal Ay s 1

deformations, by elementary quadratures. It is shown £ = /dr (E“ii T pug; + §A”i-/“/k“k"

that this equation is the continuum limit of the well- 1

known Fermi—Pasta—Ulam equation. The solution ex- + Bu,.zjukk + §Cuf’i>, (5)

hibits a singular time-dependence at finite times, be-
ing, therefore, unphysical. In addition, it is boundless where A, B, C are constant coefficients. Fourth- and
at the space boundaries placed at infinity. The contri- higher-order terms do not appear in Eq. (5) as only
bution of the non-linear terms in this equation is also third-order terms are retained. It is worth noting that,
treated as a small perturbation to the plane waves, andin general, the elastic energy given by Eg. (5) has not
the first terms in the asymptotic series are computed an absolute minimum value féw; /0x; = 0, so that
explicitly. The non-linear coupling of the transverse deviations of the strain tensor around vanishing values
waves to the longitudinal waves is also considered, and may lead to a non-equilibrium motion and to the
a resonance is shown to occur for a frequency which unstability of the elastic body. Therefore, additional

depends on the ratio of the waves velocities. restrictions are necessary to be imposed upon the
Linear elasticity [6] assumes a linear strain (or values of the deformation tensor, in order to describe
deformation) tensor a physically meaningful motion.
1/0ui  du; I_:irst, we note the_lt the third-order non-linear contri-
ujj = > <8x- ﬁ) (D) butions to the elastic energy (5) do not affect a trans-
J ! verse wave of the form, say(x1) = u(x), which
which has a weak spatial variation, whereis theith obeys the same equation of motion (3) as for linear

(Cartesian) coordinate of the displacement veatat elasticity.
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For a longitudinal displacement (x1) = u(x) the
strain tensor has only one component
U11= -—

ou 2_ ,+u’2
ox 2\ax) T" T 20

and the energy reads

1 1
E = /dr ,O(EUZZM/Z + évzu’3>,
wherev? = [3(A + 2u) + 2(A + 3B + O)]/p. The
density of energy has a minimum value fdr= 0 and

a maximum value &/3v* for u’ = —2v2/v2. For |u/|
larger than 22/|v|? the elastic deformation becomes

ou 1

(6)
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whereU = u' + v?/v? (U > —v?/|v|?). This equa-
tion has been analyzed in Ref. [5] by making use
of the symmetry approach and the prolongation tech-
nigue. The solution of this equation can be written as
U(t,x) =g() f(x) by the separation of the variables,
leading to

(10)
(f?)" = 3(/v)?f =0,

where »? is a (real) constant of integration. These
equations can be integrated by elementary quadra-
tures. Details of these computations are given in Ap-

(11)

unstable. We assume, therefore, that the initial strain pendix A. The temporal dependence is given by

tensoru’ is much smaller than this limiting value,

everywhere in the body. On the other hand, we also

assume that’ is sufficiently large ¢ ~ 1) so that

non-linear terms be considered in the elastic energy.

It is worth noting that even if the explicit third-order
contributions to the energy are absent, i+~ B =
C = 0, the third-order non-linearities do occur in
the energy, through the non-linear terms in the strain
tensor. The coefficient? becomes in this case? =
3v? (corresponding tot + 3B + C = 0).

For the elastic energy given by Eq. (6) the equation
of motion reads

%u 92 9
u M|:U]2+U2_ui|.
0x

This is the continuum limit of the Fermi—Pasta—Ulam

@)

312 9x2

equation [5,7]. It ensures the conservation of energy (0/2v)%x2 for x ~ 0, and f ~

(continuity equationpw/d¢ + div j = 0, where

w? v,zu/2 v2u'3
w = ;0(3 + 2 + 6 )
is the energy density (both kinetic and elastic) and
2..12
j= —p(v,zu’ + %)u

is the energy flow. It is easy to see that Eq. (7) can also

be written as

9% 92 1

—8[2 = ﬁ( ]Zu/ + Evzu/z), (8)
or

32 1,d% ,

a2V =2% V" ©)

1—cn(y/V/3s] |wt]) 5
g() =|s| V3 -1 Sgr(w )
1+ cn(y/V/3s] |ot]) 12)

(Eg. (A.5) in Appendix A), where cn is the Jacobi
elliptic cosine-amplitude, and = —g(0) is a con-
stant of integration. Functiop(¢) given by Eq. (12)

is a periodic function with perioQ/«/ﬁM |wt| = 4K,
where K is the complete elliptic integrak'(z/2, k)
(~ 4) for k2 = (2 + +/3)/4. It has also singularities

at \/+/3|s| |wt| = 4K (n + 1/2), wheren is an inte-
ger. These singularities make the solution of Eq. (7)
unphysical. The spatial dependenter) of the solu-
tion of Eq. (11) is given by the implicit equation (A.7)
in Appendix A. It goes like f ~ |h|sgnw/v)? +
(w/2v)%x? at infinity

(x = £00), whereh = f(0) is another constant of in-
tegration. It is worth noting thaf (x) is boundless for
spatial boundaries placed at infinity, which adds to the
unphysical character of the solution.

3. Exact solution

A general solution of Eq. (7) reads

C’

(13)
where time and space origimg and, respectivelyg
are introduced, andis another constant of integration.
These constants of integration, together with s and

u(t, x) = g(t — 1) / dx f(x — x0) — (v/v)x +
0
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h introduced previously, are determined from initial
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distributed in space and propagates (from the bound-

and boundary conditions. The movement described aries) with a non-uniform velocity given by

by Eq. (13) looks like a vibration rather than a
propagation. The density of kinetic energyi?/2
increases boundlessly in time, while the density of
elastic energy

2.3
= 5(F )
_pv? 2 s 3u'fe 2P
T 6 g v v

(which requiresfg > —v?/|v|? for avoiding the unsta-
bility of the body), decreases initially with increasing

time and thereafter increases boundlessly. This bound-
less increase in both energies is performed at the ex-

pense of the energy flow

v2u/2 )
u =
2

2( ;2.2 ”14
(e
v

j= —p(vlzu’ +

which, although acquires the same value at symmetric

boundariesc = +L (due to the fact thaf is an even
function of x), increases itself boundlessly in time.
Indeed, the main characteristic of the solution (13) is
its singular behaviour near the periodical times

4K ( 1)
= —— n+E
lwly/+/3ls]

as indicated by Eq. (12). These singularities are un-
physical, they lead to ruptures in the elastic body, cor-
responding to jumps of the solution from one tempo-
ral oscillating branch to another, with corresponding
singularities in the time derivative of the solution (an-

gular points of solution) at the singularities times, and
with corresponding loss of energy. This singular be-
haviour of the solutions of the non-linear elastic move-

ii1
ment indicates a main mechanism of energy transfer

and dissipation through ruptures. It is a general phe-
nomenon exhibited by non-linear equations of elastic
motion, because for large values @fin Eq. (8) the
r.h.s. of this equation reduces(@’/9x2)u’", wheren
(n=2,3,...) is an integer corresponding to the non-

linearity degree, and such an equation can be inte-

grated by separation of variables, leading to singular
solutions for finite times. The ruptures associated with
such non-linear elastic movements are non-uniformly

_dx _ du/ot
dt Qu/dx’
For third-order non-linearities discussed here the time
dependence is given by ~ 1/(w?(t — T)?) near a
singularity, where
4K

|lwly/~/31s]

is the period, and the spatial dependence is given
by [“dx f ~ (w/v)%x3 for large values of|x|. It
follows that ruptures appears during a time of the
order of a periodl" propagating with a velocity of
the order ofv. For A + 3B 4+ C = 0 this velocity is

v=1/30-F2m)/p=+3u.

T =

4. Asymptotic series

It is useful to compute the asymptotic series of the
solution of Eg. (7) by viewing the non-linear term
as a small perturbation. To this end, we introduce
the parameters = (v/v;)?, so that Eq. (7) reads
now

2 2.1

i —viu" =eviu'u”. (14)

The solution of Eq. (14) can be written as an expan-
sion

u=uo+eus +e%up+ -

in powers ofs, whereug = a cogwt — kx) is a plane
wave of amplitude: and frequency = vk, k being

the corresponding wavevector. The first-order approx-
imationu1 obeys the equation

2.1

—viug = _Evl 2k3 sm[Z(a)t — kX)], (15)

whose solution is of the forma; = f co42(wt — kx)],

with f a linear function of time and space. Similarly,
the second-order approximation includes a second-
order f-function of time and space. Straightforward

computations lead to
u =acoSwt — kx)

1
+ 1—68(12k2(x + uit) co 2(wt — kx)|
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1 5324 2
ﬁea k™ (x + vt)

x [cog3(wt — kx)] — coswt — kx)]+ -+,

+

(16)
which is, in fact, a triple expansion in powers of
ak and lk, wherel = x + vt is a characteristic
length. It is worth noting the expansion parameter
ak ~ a/) in Eq. (16), wherex is the wavelength,
which shows indeed that the non-linear contributions
are controlled by the ratio of the wave amplitude to
the wavelength, as expected. The asymptotic charac-

ter of the solution, however, makes these contribu-

tions boundless over the characteristic lenptiwe
note here the higher harmonics appearing in the as-
ymptotic series (16), as well as various amplifica-
tion factors of the order of ¥ eal/4A? in the am-
plitude, velocity and acceleration of the asymptotic
solution. A similar asymptotic series can be com-
puted for higher-order anharmonic corrections to the
elastic waves equation. It is worth noting that the
plane waves are a good approximation to the solu-
tion as long as the inequalit§f = sal /1% <« 1 is sat-
isfied, whereF can be seen as a non-linear effects
factor. The characteristic lengthis generally much
longer than the wavelength, so that the amplitude
must be much smaller than the wavelength for this
inequality be satisfied. At the same time, the charac-
teristic length/ must be bounded, which means that
the quasi-plane waves are a satisfactory approxima-
tion over finite distances and time intervals. Indeed,
for instance, the time interval must be such that

t < T(M/a), whereT is the wave period; otherwise,
the non-linearities become important, and their contri-
butions cannot be treated as a small perturbation any-
more. TheF-factor introduced above can, therefore,
be viewed as characterizing the non-linear effects on
the plane waves.

5. Coupled equations

Let us assume both a longitudinal displacement
u1(x1) = u(x) and a transverse displacemeptx;) =
v(x). The strain tensor has then the componemnts=
u +u'2/24v'2/2 andu1s = up1 = v’ /2. Making use
of Eq. (5) the equations of motion are obtained as

2
1

2. 7.1

ii —viu" = ev?u'u” + oAy,
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2.1 2./,

V= v =Cvun,

17)

where¢ = 1+ (A + 2B)/2pv?. The solutions can be
written as a double expansion in powerssond¢.
The zeroth-order approximation are plane wavgs
acoSwit — k1x) and vg = bcogwat — krx), where

a and b are amplitudes ana; > = v; k1 2. Apart
from the asymptotic character, the solution exhibits
a new feature originating in the combined-frequency
phenomenon. Indeed, the first-order approximation to
the transverse wave obeys the equation

1 .
i1 — v2v] = —Evlzabklkg sin(2t — Kx), (18)
wheres2 = w; + w? andK = k1 + k». The solution of

this equation isi1 = B sin(2¢t — K x), where

v vik2
v — v (v + vk £ 2vko

Itis worth noting here that a resonance may appear for
(v; 4+ vs)k1 — 2v.k2 = 0, which corresponds to
w2 = —

2

Similar resonances may also appear in higher-order
approximations to both longitudinal and transverse
waves, as a consequence of the combined-frequency
phenomenon originating in the non-linear coupling.
The damping can be considered here, by introduc-
ing the termn (i — vu’) in the original wave equa-
tion, wheren is the damping coefficient (it leads to a
damped plane wave of the form= ae™" coqwt —

kx) for r > 0; a similar term holds also for the
transverse waves). The resonance singularity is then
smoothed out by the small damping coefficient
while the asymptotic series (16) is not changed sig-
nificantly.

abk>

(19)

6. Conclusion

The main conclusion of this Letter is that anhar-
monic corrections to the elastic energy may lead,
in general, to unphysical solutions of the elastic
movement, which involve singularities in the time-
dependence at finite times and boundless movement



550 B.-F. Apostol / Physics Letters A 318 (2003) 545-552

at the space boundaries placed at infinity. This phe- Therefore, a statistical model of distribution of the

nomenon is illustrated in the present Letter by solving elastic energy among plane waves is consistent with

exactly the equation of motion for alongitudinal defor- small effects of the non-linear contributions. In addi-

mation with third-order anharmonic corrections to the tion, this result can also be cast in a slightly different

elastic energy. It is shown that this equation is the con- form. Making use of the critical-point theory [8] of the

tinuum limit of the Fermi—Pasta—Ulam equation, and distribution of the elastic energy through the scaling

a solution obtained by elementary quadratures is pro- hypothesis [9], the energy propagating by the waves

vided. This phenomenon is rather general, it appearsis written usually asZ = 1(A/Ro)?R® = Eo(R/Ro)°,

also for higher-order non-linear equation of motion, where Eg = £A2Rg. In general, the second equation

which makes unphysical the solutions of these equa- introduced here, namel\Z = Eo(R/Ro)3, is more

tions. It follows that, for a consistent physical picture, general, pointing out the existence of a scale energy

the elastic energy both for small and for large deforma- Eg corresponding to an elastic disturbance localized

tions is distributed among wave-like solutions, which over a scale lengtRg. For our non-lineaf'-factors, it

obey linear equations of motion with a satisfactory ap- follows

proximation over finite spaces and times, while the

non-linear contributions act as a small perturbation. 12 5172

The first terms in the asymptotic series of the quasi- .. _ A _ (L) _ i(@)

plane waves solution are computed here for longitu- ~© Rg wR3 | uRI\ R

dinal deformations with third-order anharmonic cor-

rections, and their effect is estimated through the non- |: E (R°)3i| 1/2
<

linear factorF introduced previously. =1
It is interesting to introduce at this point the dis-
tribution of the elastic energy among various plane )
waves. Indeed, for an initial elastic disturbance con- SiNc€A < Ro. Therefore, one may conclude that in-
centrated in a spatial region of radii the density ~ d€€d, under the conditions given above, the assump-
of elastic energy can be written agA/Ro)?, where  tion that the non-linear effects are small is a consistent
1 stands for a generic elastic modulus afidg Ro assumption, leading to quasi-plane waves as a satis-
is the amplitude of the disturbance. This energy is factory approximation to the solution of the non-linear
distributed among plane waves of amplitudeand ~ €guations of motion. _
wavevectors with a distribution functiorp given by The transverse waves are not affected by the third-
pdk = Ce*/’Azkzdk, whereC ~ B/BA3 andg is a order non-lmeqntn_es, though a ;uperposmon.of trans-
constant to be determined. Equating the initial density verse and I(_)nglt_udlnal d_e_formatlons propagating glong
of energy with the average density of enejgg2i? the same direction exhibits resonances for certain fre-
in the plane waves we ggt~ R2/A2, so that the dis- quencies that depend on the ratio of the waves velqc—
0., 0T ities, as a consequence of their mutual coupling via
tribution readso ~ R3e™%0/*", where the wavelength  non-linear terms. Such non-linear couplings between

A has been introduced. One can see that it does notywaves propagating along different directions is worth
depend on the amplitude, as expected, and almost  of 3 more detailed investigation.

all the energy is concentrated on wavelengths much
longer than the average wavelength~ Rg. There-
fore, in estimating the non-linear factdt = al/?

we limit ourselves to the most relevant wavelengths Acknowledgements
A > Ao = Ro. In addition, the quasi-plane waves are
in fact spherical waves with a good approximation at
large distances= R, so that their amplitude is given
by a = AL/R. Under these circumstances we get
al/22~ A/r < A/Ro = F. < 1 according to the con-
ditions imposed above upon the original disturbance.
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Appendix A
A.1l. Time dependence
Equation given by (10) leads straightforwardly to

= wt, (A1)

=
o3+ 53
-
where s3 is another (real) constant of integration,
w?s3 = $2(0) — w?g3(0) (the origin of time has been
put equal to zero, andcan assume both positive and
negative sign). First, we assume- 0 andwt > 0, S0
that Eq. (A.1) becomes

£
dx

/31

where¢ = g/s > 0. It corresponds to initial conditions
g(0) = —s, 2(0) = 0 (for more general conditions
we may change the origin of time). The integration
in Eq. (A.2) can be performed straightforwardly by
the substitutionx + 1 = v/3tarf(«/2), leading to the
elliptic integral of the first kind

:a)t\/ﬁ,

=.sot, (A.2)

4
da
F( ,k):fi A3
Y ) V1—k?sirfa (A3)
where
k2= 2+ﬁ’( 1) and &+ 1=+/3tarf(¢/2).

Introducing the notationr = wrv/+/3s we obtain
immediately the Jacobi elliptic sine-amplitude [10,
p. 910] sinp = snt, or

1-cnt

§= \/_1+ch

where crr is the cosine-amplitude; the functigrcan
also be written as

£ =/3[sn(z/2) dn(x/2)/ en(z/2)]° —

where driz/2) is the delta-amplitude of/2. It can
also be expressed in terms of the elliptic Weierstrass
function [5,10]. A similar substitution allows the
integration fors < 0 (as well as fow? < 0; we note
that sgriw?) = sgn(g + s) = sgr(s)). Noting also that
g(®) is an even function of time, we can finally write

1, (A.49)
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down the solution of Eq. (10) as

|: 1— cn(\/f37M|wl|)
g(t) =|s| V3
1+ cn(\/\/_TISIVO”) (A.5)

This is a periodic function with periog v/3|s| |wr| =
4K (A¢ = 2r), whereK is the complete elliptic in-
tegral F(r/2,k) (~ 4). It has also singularities at

VV3ls||lwt| = 4K (n + 1/2), wheren is an integer
(corresponding tap = (2n + 1)), as expected di-
rectly from Eqg. (A.1). These singularities make the so-
lution of Eqg. (7) unphysical. We note here that a sim-
ilar treatment is applicable to the classical cubic an-
harmonic oscillator, leading to an exact (oscillatory)
solution which can be expressed in terms of elliptic
functions [11].

- 1:| sgr(a)z).

A.2. Spatial dependence

We note that solutiorf of Eq. (11) changes sign as
(w/v)? does and it is an even function of Making
use of the substitution f/h)2 = F, whereh is a
(real) non-vanishing constant of integration, the spatial
equation (11) becomes
4602

= (F3/2_
v2|h|(F 1)’

which leads to

/2=

Z

_ _ 3lwx /v|

1/2 1/3 _

tt A+ =, (A.6)
Vih]

whereF%?2 —1=1=|f/h|®—1> 0. It corresponds

to the boundary conditiory(0) = 4 and f/(0) = 0
(the origin of space is set equal to 0). Using> —¢
one can see that the integral in Eq. (A.6) is an analytic
continuation of the incomplete beta function

B33 =2/ oR(3 3 3 —2),

where 2 Fy is the Gauss hypergeometric functidgh
[10, pp. 950, 1039]. Therefore, the spatial functipn
is given by the implicit equation

VIf/hB=1F(3,3, 3

11 3.
2> 32

3lwx /v|

NI
(A7)

32

—1f/nP) =
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up to a constant of integration (which can be chosen as

the origin of space). Making use of the transformation
formulas of the hypergeometric function [10, p. 1043],
or using directly the integral representation (A.6), we
find the solution of this equation

f ~ |k sgw/v)? + (w/2v)?x?, x~0 (A.8)
near the origin, and
f~(w/2v)%x?, x— +o00 (A.9)

for large x. The remarkable particular cage= 0,
corresponding tg = (w/2v)%x? has been pointed out
in Ref. [5].
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