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As it is well known, a quantum system depending on parameters exhibits the (geometric) Berry phase when parameters are varying
in the adiabatic limit. A generalization of the Berry phase is given in the present paper for a nonadiabatic change of parameters,
which leads to quantum transitions in the system. This generalization is applied to noninertial motions and it is shown that such
motions may induce quantum transitions for a system in an external field governed by Schrodinger’s equation.
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1. INTRODUCTION

As it is well known [1], a quantum system subjected to a
change of parameters exhibits the (geometric) Berry phase,
providing the change proceeds in the adiabatic limit. A care-
ful examination of the derivation of the Berry phase suggests
that a nonadiabatic change in parameters may induce quan-
tum transitions in the system. It is shown in the present paper
that the Berry phase can be generalized in such a way as to
describe quantum transitions for such nonadiabatic changes
in parameters. Moreover, it is shown that the displacement
vector in a (nonuniform) translation or the rotation angle in
a (nonuniform) rotation may play the role of such nonadia-
batic parameters, such that a noninertial motion may cause
quantum transitions for a system placed in an external field.

2. BERRY PHASE

Let the hamiltonian H , its (orthogonal) eigenfunctions ϕk,
and energy eigenvalues Ek depend on a parameter denoted
generically by R. This dependence is written explicitly in the
eigenvalue equation

H(R)ϕk(R) = Ek(R)ϕk(R). (1)

A time dependence R(t) is assumed for the parameter R, and
Schrodinger’s equation is written as

i�∂ψ(t)
∂t

= H(R)ψ(t). (2)

In the adiabatic limit Ṙ → 0, the original eigenstate ϕn(R) is
preserved during the temporal evolution, and the solution of
(2) reads

ψn(t) = exp
[
− i

�

∫ t
0
En
(

R(t′)
)
dt′
]
·eiγn(t)ϕn

(
R(t)

)
, (3)

where γn(t) is given by

γ̇n(t) = i
(
ϕn,

∂ϕn
∂R

)
Ṙ. (4)

The bracket in (4) indicates a scalar (inner) product. For a
circuit C described by the parameter R, this is Berry’s geo-
metric phase γn [1].

3. TRANSITIONS BY CHANGE OF PARAMETERS

This result implies that, in general, for nonvanishing Ṙ, the
quantum system may exhibit transitions between its various
states. Indeed, the general solution of (2) can be written as

ψ(t) =
∑
k

ak(t) exp
[
− i

�

∫ t
0
Ek
(

R(t′)
)
dt′
]
ϕk
(

R(t)
)
,

(5)
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where the coefficients ak(t) obey the equation

ȧn = i
∑
k

akγnk(t)Ṙ

· exp
[
i

�

∫ t
0

[
En
(

R(t′)
)− Ek(R(t′)

)]
dt′
]

,
(6)

γnk(t) = i
(
ϕn,

∂ϕk
∂R

)
. (7)

This γnk(t) is a generalization of the Berry phase; the lat-
ter corresponds to

γn(t) =
∫ t

0
dR(t′)γnn(t′), (8)

where the integration is performed along the path described
by the parameter R in its motion from R(t = 0) to R(t).
The γnk(t) are the matrix elements of the operator −P/�,
γnk = −Pnk/�, where P may be viewed formally as the mo-
mentum associated with the parameter R. Then (6) gives the
transition amplitudes caused by a perturbation H1 = VP,
where V = Ṙ is the velocity of the parameter R.

Equation (6) is solved in the first order of the perturba-
tion theory, with the initial conditions an(0) = 1, ak(0) = 0
for k /=n. The transition amplitudes

akn(t) = i
∫ t

0
dR(t′)γkn(t′)

· exp
[
i

�

∫ t′
0

[
Ek
(

R(t′′)
)− En(R(t′′)

)]
dt′′

] (9)

are obtained, where an additional label k has been given to
the coefficient an in order to indicate the transition from state
n to state k. At the same time,

ann(t) = 1 + i
∫ t

0
dR(t′)γnn(t′) = 1 + iγn(t). (10)

From (9) and (10), one can see that in the adiabatic limit
Ṙ → 0 the Berry phase γn = γn(T) is recovered in ann(T) =
eiγn(T) for a circuit C, where T is the period during which the
parameter R describes the circuit C.

In the first order of the perturbation theory, the R-
dependence of the matrix elements γkn and energy eigenval-
ues in the exponential factor in (9) may be neglected. The
transition amplitudes can then be written as

akn(t) = − i

�

∫ t
0
dt′·V(t′)Pkn exp

(
iωknt

′), (11)

where ωkn(t) = (Ek − En)/�.
For a uniform change of parameters, that is, for V =

const, the transition amplitudes are vanishing (akn(t) = 0,
k /=n). The diagonal amplitude ann(t) = 1 − (i/�)VPnnt �
exp(−iVPnnt/�) given by (10) contains the correction
VPnn to the energy of the state ϕn in the first order of
the perturbation theory. The gauge transformation ψ′n =
exp(−iVPnnt/�)ψn leaves Schrodinger’s equation unchanged.

Let velocity V have a sudden variation from V = 0 for
0 < t < t0 to V = const for t0 < t, such that ∂V/∂t = Vδ(t−t0).
The transition amplitudes given by (11) become

akn(t) = −VPkneiωknt

Ek − En +
[

VPkn

Ek − En
]
ei(Ek−En)t0/�. (12)

The first term in the rhs of this equation corresponds to the
change in the wave function under the action of the constant
perturbation VP for t > t0. The transition amplitude is given
by the second term in the rhs of (12), so the transition prob-
ability is wkn = [VPkn/(Ek − En)]2.

If the velocity is periodic in time with frequency ω,
V(t) = Veiωt + c.c., the transition probability per unit time is
given by wkn = (2π/�)(VPkn)2δ(Ek − En ± �ω) in the limit
of the infinite time. The calculations are not restricted to
the discrete spectrum, so there may appear transitions in the
continuum. It is worth noting that frequencies ω in the vari-
ation spectrum of the parameter R must be comparatively
high of the order of the frequencies of the quantum system
in order to have such quantum transitions. For a quantum-
statistical system with a characteristic spectrum �ω× integer,
the quantum transitions described above may induce an in-
crease δT ∼ �ω in temperature. For a periodic change of
parameters, the frequency ω is proportional to the ratio of
the average acceleration a to the average velocity v, so the
increase in temperature is δT ∼ �v/a. It is similar with the
Unruh temperature [2].

4. SOME SIMPLE APPLICATIONS

Let a particle of mass m move in an infinite square poten-
tial well in one dimension. The eigenfunctions are ϕn(x) =√

2/a sin(πnx/a) and the energy eigenvalues are given by
En = π2�2n2/2ma2, where n = 1, 2, . . .. The width a of
this potential well is taken as parameter R. The wall of
the potential well, placed at distance a from the origin, is
subjected to an oscillatory motion of frequency ω as de-
scribed by a = a0 + ε cos ωt, where ε/a0 � 1. Mak-
ing use of (11), we get the transition probabilities wkn =
2π�[εωkn/a0(k2 − n2)]2

δ(Ek −En±�ω) per unit time in the
limit of the infinite time. The diagonal matrix element γnn is
vanishing in this case, γnn = 0.

Following Berry [1], we consider a spin S placed in
a magnetic field B. The hamiltonian reads H = −gμBS,
where g is the gyromagnetic factor and μ is the Bohr mag-
neton. The energy eigenvalues are given by En = −gμBn,
where n = −S, . . . , S. In order to calculate the matrix el-
ements entering (11), it is convenient to use the identity
(En − Ek)(ϕk, ∂ϕn/∂R) = (ϕk, (∂H/∂R)ϕn) for k /=n. We write
then BS = B(Sx sin θ cos φ + Sy sin θ sinφ + Sz cos θ) and
take the angles θ and φ as parameters R. First, we set φ = 0
and let θ describe a circuit according to θ = ωt, where
ω � gμB/�. Making use of (9), we get transition probabili-
tieswkn = (π�ω2/8)[S(S+1)−n(n±1)]δk,n±1δ(En−Ek±�ω)
in the limit of the infinite time. Since ω� gμB/�, these tran-
sition probabilities are vanishing, in fact, as we get by using
(11). We may also set θ = const and let φ = ωt describe a
conical circuit of semiangle θ. The results are similar, the am-
plitudes containing now the factor sin θ.

Another example is provided by the electronic terms of
the molecules, which depend parametrically on the nuclear
coordinates R. The interaction H1 = VP can easily be esti-
mated as H1 ∼ (m/M)Eel, where Eel is a characteristic elec-
tronic term of the molecule and m/M is the ratio of the
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electron mass m to the nuclear mass M. It is of the same or-
der of magnitude as the accuracy of the adiabatic decoupling
of the electronic motion from the nuclear motion, so it gives
a natural width of the electronic terms in molecules.

5. NONINERTIAL MOTION TRANSLATIONS

A similar analysis can be carried out for noninertial motion.
Let r = r′ + R(t′), t = t′, be a translation, where r, r′ denote
the position of the system and R is the displacement vec-
tor. The hamiltonian, its eigenfunctions, and energy eigen-
values do not depend on the displacement R, so it can be
taken as the general parameter R in the previous sections.
Schrodinger’s (2) becomes

i�∂ψ(t′, r′)
∂t′

= H(r′)ψ(t′, r′) +
i�V∂ψ(t′, r′)

∂r′
, (13)

where V = Ṙ. The last term in the rhs of (13) can be viewed
as an interaction H1 = −Vp, where p = −i�∂/∂r′ is the mo-
mentum associated to the coordinate r′. The transition am-
plitudes are given by (11), where P is replaced by p.

For a free particle, the transition amplitudes are vanish-
ing since pkn = 0 for k /=n. Similarly, for an ensemble of
(in general interacting) particles, the momentum p is the
total momentum, that is, the momentum of the center of
mass of the ensemble, so there are no transitions as expected.
The coefficient ann(t) corresponds to a gauge transforma-
tion exp[i

∫ t
0 dt1V(t1)pnn] of the n-state, which, in general,

has no determined energy (it is not a stationary state in
general). For constant velocity V = const, the phase of this
gauge transformation is the first-order correction to the en-
ergy of the n-state. It is easy to check that the gauge trans-
formation ψ′(t, r′) = exp[−(i/�)(MV 2t/2 + MVr)]ψ(t, r),
whereM is the mass of the ensemble, preserves Schrodinger’s
equation in accordance with Galileo’s principle of relativity.
The unitary transformation ψ = exp(−iRp/�)ψ′ takes the
Schrodinger equation i�∂ψ/∂t = Hψ into i�∂ψ′/∂t = Hψ −
Vpψ′ + R(∂H/∂r)ψ′ + · · · . Making use of (ϕk, (∂H/∂r)ϕn) =
(En−Ek)(ϕk, ∂ϕn/∂r), one can show by direct calculation that
the additional interacting term in the hamiltonian has no rel-
evance. Such a unitary transformation is different from the
coordinate change.

The situation is different for particles in an external field.
There, in general, the offdiagonal matrix elements pkn of the
momentum of the particles are nonvanishing, and they may
cause transitions. For instance, if one or more particles in an
ensemble of interacting particles acquire a large mass, then
they may be viewed as being at rest during the motion of the
rest of particles. Their interaction with the rest of particles
becomes now an external field for the latter, whose motion
depends parametrically on the positions of the former. The
coordinates of the heavy particles do not appear anymore
in the momentum, so there may exist nonvanishing matrix
elements of this momentum between states of the moving
particles. It follows that noninertial motion may give rise to
quantum transitions for particles in an external field.

6. NONINERTIAL MOTION ROTATIONS

A similar result holds also for rotations. Let ri = αi j(t′)r j ,
t = t′, be a change of coordinates (i, j = 1, 2, 3), where αi j
is a rotation matrix of angle φ and angular velocity φ̇ = Ω
about some axis, such that r′i = αji(t)r j , αjiαjk = δik. Making
use of αliα̇l j = εi jkΩk, where εi jk is the totally antisymmetric
unit tensor, we get easily that an interaction H1 = Ωl ap-
pears in hamiltonian, similar with the interaction given by
(13), where l is the total (orbital) angular momentum. The
parameter R introduced in the previous sections is the rota-
tion angle φ in this case. The discussion is similar with the
one given above for translations. For a free particle, or an
ensemble of interacting particles, the total angular momen-
tum has no offdiagonal matrix elements. The coefficient ann
may generate a gauge transformation, which reflects, in gen-
eral, the nonstationarity of the rotating state. For uniform
rotations, that is, for Ω = const, the gauge transformation
ψ′(t, r′) = exp[−(i/�)(mρ2Ω2/2 −mρ2Ωφ/�)]ψ(t, r), where
ρ is the distance of particles to the axis of rotation, leaves
Schrodinger’s equation unchanged, in accordance with its in-
variance under uniform rotations. In this gauge transforma-
tion, mρ2 denotes the total momentum of inertia I and the
first term in the phase is the kinetic energy l2/2I .

For particles in an external field, the angular momen-
tum may have nonvanishing offdiagonal matrix elements,
so nonuniform (accelerated) rotations may induce quantum
transitions.

7. CONCLUSION

The main conclusion of the results described herein is that
noninertial motion may cause quantum transitions for sys-
tems in external fields governed by Schrodinger’s equation. It
follows that an observer who is set in noninertial motion may
record such quantum transitions. Similar transitions may
be caused by changes of parameters associated with Berry’s
phase. The acceleration of the change of coordinates or of
parameters must be fast enough in order to match the exci-
tation spectrum of the quantum system and have such tran-
sitions.

Similar problems appear also in the field theory. For sim-
ilarities with quantization in gravitational fields, we refer to
[3–8].
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