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The Sawada Hamiltonian model is generalized to include the back-
scattering interaction in a one-dimensional many-fermion system. The
collective excitations of the particle-density fluctuations and the back-
scattering dielectric function are obtained. It is shown that the giant
Kohn anomaly of the longitudinal phonon spectrum, observed in the
quasi-one-dimensional conductors, is qualitatively reproduced within the

present approach.

1. INTRODUCTION

THE LOW EXCITED states of the non-interacting one-
dimensional many-fermion system can be constructed
with particle—hole pairs which involve single-particle
states in the neighbourhood of the two + kr Fermi
points (kr being the Fermi momentum). In order to get
a precise description of these states we shall restrict
ourselves to those single-particle states whose wave-
vector p runs within the range —kp — k., <p <—kp
+keand +krp —k, <p <+kp + k., where k. is the
bandwidth cut-off, much smaller than k. A linear p-
dependence can readily be obtained for the unperturbed
energy levels of these single-particle states: €, = ep +
Ur(ipl — k), where e is the Fermi level and vF is the
Fermi velocity. Much theoretical work, recently re-
viewed by Sélyom [1], relied on this simple relation-
ship which is the essential feature of the model.

In the one-dimensional many-fermion system as
formulated above there are two types of interaction
processes. The first one is the forward scattering process
that involves a small momentum transfer. This process
excites one particle—hole pair in the neighbourhood of
+ kr and another one in the neighbourhood of —k .
The second one is the backscattering process, with
momentum transfer near 2k, that excites two particle—
hole pairs across the Fermi sea. One can see that the
excitation energies involved in both processes are very
small. Consequently, the dynamics of the system is
governed both by the forward scattering and back-
scattering process.

The forward scattering interaction has been treated
within the Tomonaga—Luttinger model [2—5]. The
backscattering interaction has been studied by means of
both the bosonization technique [6] and renormaliza-
tion group approach [7]. A remarkable exact solution
has been given by Luther and Emery [6] in the case of
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attractive interaction for a particular value of the back-
scattering coupling constant. Within the renormaliza-
tion group approach the vertex part (scattering
amplitude) has been calculated for a particular choice
of its external variables (£ k) [1] . This quantity is very
useful for treating the various instabilities of the system
but it is more difficult to be used for getting the dis-
persion relation of the particle-density excitations.

The aim of this paper is to study the backscattering
process with repulsive spin—independent interaction
[8] . Our approach is based upon the Sawada Hamilton-
ian model which has been employed [9] for treating
the long-range interaction in the three-dimensional
electron gas. This approach is slightly modified in order
to study the forward scattering in the one-dimensional
system and is generalized to include the backscattering
interaction. The dispersion relations of the particle-
density excitations as well as the backscattering dielec-
tric function are obtained. It is shown that the giant
Kohn anomaly, observed in the longitudinal phonon
spectrum of the quasi-one-dimensional conductors, is
reproduced by our approach. A possible connection is
discussed between our results and the optical data of
the quasi-one-dimensional conductors.

2. FORWARD SCATTERING

The system of interacting fermions is described by
the Hamiltonian

H = Ho +H,,
Hy, = Z €CpCp,
P

H 1 = "1—
2 Rp:P,
where ¢}, (cp) is the creation (annihilation) operator of

v(k)c;,+k0;,-hcp,cp, > @
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the p-fermion state and v(k) is the Fourier transform of
the interaction. Although the spin index is omitted in
equation (1) the spin contribution (a factor 2) will be
considered in counting the single-particle states.

It is well known [9] that the basic quantities in the
Sawada Hamiltonian mode] are the creation and anni-
hilation operators of the particie—hole pairs. These
operators are of the form cp,4cp, where p lies inside and
p + k outside the Fermi sea. As we shall restrict our-
selves to the low excited state the wave-vectors p and
p + k will be confined to small regions around the
Fermi points, defined by the bandwidth cut-off k..
Using the linear p-dependence of the unperturbed single-
particle energy levels it is easy to see that the excitation
energy of a particle-hole pair with small momentum
transfer (forward scattering) depends on the momentum
transfer only. Consequently, it is convenient to use a
superposition of particle—hole pairs operators defined
by

Al =g L Chencp, Alr =& L Chuco,

pEb, pEs, )
and the corresponding annihilation operators. In equ-
ation (2) the regions 8, and 8, are given by

{kp—k<p<kp, 0<k <k,
' lkp—ke<p<kp+ke—k, ke<k<2k,
_{—kp<p<-—kp+k, 0<k <k,
P\ —kr—ke+k<p<—kp +ke, ke <k <2ke,
3)
and the normalization factor
(k/m)'72, 0<k<k,,
& = v )
[(2k. — k)] V2, k. <k <%k,

is chosen 50 as (0|41, A1x10) = (0| 42,4510 =1, |0)
being the ground state of the non-interacting system.
For commutation relations of the 4-operators the
averages will be used of their commutators on the non-
interacting ground state |0). This approximation, which
is the characteristic feature of the Sawada Hamiltonian
model, is valid in the limit of weak coupling strengths
when the interaction does not distort appreciably the
Fermi sea of the system [4, 5, 10]. Using this approxi-
mation we get boson-like commutation relations [A4,,

'] = [Aan, A2x'] = 8pi and [A1, A20'] = 0.

With the linearized form for €, we obtain the com-

mutators of the kinetic Hamiltonian H, [equation (1)]
with the operators A}, and A%:

[Ho, Alx] = vrkAix, [Ho,A%k] = vrkA%k, (5)

so that the following expression can be used instead of
H, 0-
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Hop = Y vpk(AieAx + A%xAak).
0<k<ak,

Looking for the forward scattering processes the inter-

action Hamiltonian H; [equation (1)] can be written

as (up to a constant term)

©)

Hyiy=v Y  gi(Aixdix + ApAs

0<k<2k,
+ AlxAGk + A1xAas), )

where the interaction has been taken as constant v(k) =
v, for small k, 0 <k < 2k.. The full Hamiltonian H, =
Hyy + H, g of the forward scattering can straightfor-
wardly by diagonalized by means of the Mattis and Lieb
unitary transformation [4]. We get the dispersion
relation of the particle-density excitations associated
with the forward scattering process:

vpk(1 + 20/mvp)'?,
(.J(k) = 1/2

2
vik® + =~ wrk(2k, — k)

0<k <k,

s ke <k <2k.

®
For 0 <k <k, this dispersion relation has previously
been derived [2, 4, 5] by various techniques.
3. BACKSCATTERING

We introduce the excitation operators of the back-
scattering particle—hole pairs

bip(k) = C;O-th'l-kcp, PES;,
bip(k) = Cp-2kp-kCp» P Eda,

(and the corresponding annihilation operators) where
the regions

6]

5 {—kp<p<—kp+kc—k, 0<k <k,
>\ —ke—k<p<—kp+ke, —ke<k<O,
0<k <k,

5 {kp—kc+k<p<kp,
Y T kp—ke<p<kp+k, —k.<k<0  (10)

have been chosen so asto have —kp <p <—kp + k.,
kp<p+2kg+k <kf + k for the first set of oper-
ators [bp(k), b1p(k)] and kr — ke <p <kr,—kr—
k. <p —2kr —k <—kF for the second one [b3p(k),
bap(Kk)] . The approximate commutation relations of
these operators are obtained, as in the case of the for-
ward scattering, by taking the averages of their com-
mutators on the non-interacting ground state | 0). We
get boson-like commutation relations

b 1p(k), b‘,,'(k')] [b2p(k), b;p'(kl)] = Opp'San’,
[b1p(k), bap'(k)] = 0 1)
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Fig. 1. The 2k p anomaly for KCP reported by Carneiro
et al. [11] (dashed curve) and given by equation (20)
(full curve). The parameters in equation ?20) have been
taken from the experimental data [11] at 7= 160K
(wy =8 meV, wr =3.1 meV, k. =6.68 x 103 A7,
theslopeatk, =0.7x 10°msec !, vp =11 x10°m
sec™'). With these data we get for the electron—electron
interaction u/2nvp = 2.82 and for the parameter a =
exp (— 2nvp/u) the value 0.7.

and all the b-operators commute with the A-operators.
The commutators of the kinetic Hamiltonian H,
with the operators b1, (k) and b3,(k) are

[Ho, bip (k)] = wpk)b1p(k),
[Ho, b3p (k)] = w-p(k)b3p(K),

where wp(k) = vr(2kr + 2p + k) was obtained by using
the linearized form of the unperturbed single-particle
energy levels. It results that the backscattering kinetic
Hamiltonian can be written as

(12

Hop = § [wp (k)35 (k)b 1p (k) + w_p ()53, (K)).
P

13
In the interaction Hamiltonian H, we shall pick out (13)
those terms which describe the backscattering process,
that is the terms with momentum transfer near + 2k .
Then the interaction Hamiltonian becomes (up to a
constant term)

Hyp =u Y
”]’z

[615,(K) + b2p, (k)]

X [b3p,(k) + bip, ()], (14)

where the interaction has been taken as constant, ¥(2kp
+k)=v(—2%kp—k)=u, forsmall k, — k., <k <Kk,.
We emphasize here that the p-subscripts of the b, - and
b,-operators in the Hyp, and Hy,, should be taken inside
the regions 55 and &4, respectively. The full Hamilton-
ian Hy, = Hyy + Hy, of the backscattering process can
easily be brought into the diagonalized form
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H, = i (k) (BixB1x + BirBax)
*

(15)

by means of the well-known [9] unitary transformation

1 = const { Y [w—wp(®)] b, k)
PES,
+ 3 [w"‘w-p(k)]"bzp(k)] , (16)
PES,
Bl = const{ T fw— w5500
PES,
+ 3 [w+wp(k)1"bu.(k)},
PES,
if w obeys the condition
e, ) = 1—u{ T (-]
pPES,
an

- X [w+w-p(k)i-1} = 0,
pES,

€(k, w) being the backscattering dielectric function. By
performing the summations in equation (17) we get

ek,w) = 1+~ of _”,;(Zk};,ﬂ,
Wkl <k, (18)
whence
w(k) = vp[k? + dkc(k. — kD)1 F )12, |kI<k,
(19)

with a = exp (— 2mvg/u). This is the dispersion relation
of the particle-density excitations induced by the back-
scattering interaction. For repulsive interaction <1
the frequency given by equation (19) exhibits a gap at
k = 0 (momentum transfer 2k r) of magnitude 2ok,
(1 Fa)™V2_ For attractive interaction a > 1 the branch
of the frequency which contains 1 — a becomes imag-
inary at wavevectors smaller than 2k.(v/a + 1)™. This
result points out an instability of the system against
attractive backscattering interaction.

4. KOHN ANOMALY

The neutron scattering experiments performed on
KCP {11] and TTF~TCNQ [12] revealed the softening
of the 2k r phonons in these quasi-one-dimensional
conductors above and below the metal—insulator tran-
sition temperature. This anomaly is caused by the
electron—electron backscattering process (via electron—
phonon coupling) and it has been shown [13] that the
dip around 2kp in the dispersion relation of the longi-
tudinal acoustic phonons should be considerably
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pronounced in the one-dimensional system (giant Kohn
anomaly). The experimental curve obtained by Carneiro
et al. [11] for KCP is shown in Fig. 1 (dashed line),
where wjy is the unperturbed phonon frequency and
wr is the minimum frequency of the distorted phonons.
The screened frequency of the longitudinal acoustic
phonons with wavevector near 2k may be written as
[14]

wpr(k) = wr{l + [(wy/wr)® —1]€7 (K, 0)}'2, (20)

where e(k, 0) is the backscattering dielectric function of
zero frequency given by equation (18). This formula
reproduces qualitatively (full line in Fig. 1) the experi-
mental curve if the electron—electron interaction u in
equation (18) is taken so as the both curves have the
same slope at k.. The finite phonon life-time is respon-
sible for the flat bottom of the dashed curve and we
expect that a consistent theory of the electron—phonon
interaction (including the backscattering electronic pro-
cess) in these materials will be able to account for this
feature of the experimental curve and for its slight tem-
perature dependence as well.

Using the experimental data for KCP [11} at T =
60K and T = 160 K we get for the two gap values of the
backscattering electron-density excitations [equation
(19) for k = 0] the values 0.23 and 0.12 eV and,
respectively, 1.12 and 0.47 eV. We suggest that these
backscattering excitations of the electrons might be
responsible for the optical gap of 0.2 eV and for the low-
lying optical mode of 1.9 meV observed in this material
[15] . We also mention here that the experimental large
low-temperature dielectric constant in TTF-TCNQ {16]
is consistent with our equation (18) at low frequencies.
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