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Abstract

Universal power laws are derived directly from their scaling properties. Though the results
are generally valid, we make the discussion herein in connection with the pair distribution of
the nearest-neighbouring seismic events in temporal series.

PACS: 89.75.Da; 91.30.Dk; 64.60.Ht; 05.65.+b

Recently, a great deal of attention is being given[1]-|6] to the pair distribution D(7) of nearest-
neighbouring seisms separated by time 7. In general, the probability density of NV serial events
denoted by ¢, occurring at time ¢;, can be written as

1
p(t) = N 25@ —t), (1)
and, similarly, the pair distribution of nearest-neighbours separated by time 7 is given by
1

A seismic event occurring at time ¢; has a magnitude M;, and much attention has been given to the
effect of the lower-bound cutoff magnitude M, upon the form of such distributions. In particular,
it was recently claimed|2, 3| that the pair distribution D(7) can be represented as

D(r) = Rf(R7) (3)

where R = t;'e M- is the rate of seisms with magnitude greater than M,, and f is a universal
function, in the sense that it does not depend on M., at least. The parameters ¢, (which
may be viewed as the seismicity rate) and [ in the cutoff parameter R given above are well
documented from various statistical analysis of earthquakes,[7]-[9] their particular values being,
however, immaterial for the present discussion.

It is easy to see that the pair distribution given by (3) satisfies the scaling relationship
D(r) = e e f(e"Mer) = pD(pr) (4)

where D(7) is the transform of D(r) under the change of the cutoff, as given by parameter
p = e PMe=Me) - Renormalization group arguments have been put forward recently[1] in order to
determine the function D(7). We show herein that it can be derived directly from the scaling
equation (4), whose elementary solutions for its Laplace transform are universal power laws.
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Indeed, 5(7) may actually be viewed as a function E(p, 7) of both p and 7, and equation (4) can
also be written as

p~'D(p,7/p) = D(7) . (5)
It is more convenient to write the above equation by its Laplace transform as
D(p,ps) = D(s) . (6)

According to equation (6) the derivative of D with respect to p must vanish. Making use of the
new variable u = ps we obtain

pdD(p,u)/dp + udD(p,u)/Ou =0 . (7)

By separation of variables we get the elementary solution

: (8)

D(p,u) = p’u"

or, by (6),
D(s)=s", (9)

where (3 is a real exponent. This is a universal power law. It corresponds to a power-law function
D(1) ~ 1/7'P for 3 > 0.

In general, the solution of equation (7) is a superposition of elementary solutions of type s~*. Such
a particular superposition for integer 5 < 0 (which is related to the hypergeometric function) may
give D(s) = (1 + s)™*, which corresponds to D(7) ~ (1/717®)e™". The normalizing constant
for this probability distribution is 1/I'(«), where I' is Euler’s gamma function. This probability
distribution corresponds to D(7) = RC-[1/(R7)'~*]e /B discussed in Refs.1-3, where B = 1.58,
C' = 1/2 and a = 0.66, such that CB°T'(a) = 1. The exponential form for large values of 7 is
in fact expected from the uncorrelated seismicity,[10] while the power law for small values of 7
indicates a clustering process.|[11]

Apart from the scaling law (3),[4] another main issue in this connection|1]-[4] resides in the par-
ticular values assumed by the exponent o and constant B in the universal function f(r) =
(1/7'=%)e~7/B. Tt was shown[12] that seismic energy E can be accumulated in a seismic focus
over time ¢, such that ¢ ~ E", where r is a parameter related to the geometry of the focal zone
and the focal mechanism. For a uniform mechanism of accumulating energy in a localized, point-
like seismic focus the parameter r acquires the value » = 1/3. This parameter contributes to the
exponent § = br in the magnitude distribution of the earthquakes, for instance in the excedence
rate N,/T = t;'e M of earthquakes with magnitude greater than M (recurrence law), where
ty! is the seismicity rate over period T and b = 3.5 is the Gutenberg-Richter coefficient in the
energy-magnitude relationship. For M = M, this excedence rate is the cutoff parameter R. If
energy E is released in time 7, then its rate is given by F ~ 1/7 for short times 7, according to
Omori’s law,[13]-[15] so that the above relationship implies t ~ E" ~ 1/7". On the other hand, it
is natural to assume that the pair distribtion is proportional to time ¢, so we are led to conjecture

the form .
D(1) ~ — 10
(1)~ (10)
for the pair distribution for small values of 7, which implies the exponent parameter = 1 — r in
the universal function f(7). For r = 1/3 (8 = 1.17) we get a = 2/3 in agreement with the value

indicated in Refs. 1-3.

The excedence rate given above is well documented for a variety of regions, time intervals and
magnitudes. For instance, a worldwide analysis for 5.8 < M < 7.3 indicates r = 0.39 (3 = 1.38;
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and — Inty = 12.65 for t, measured in years).|[16] Data for Southern California|5| seem to indicate
r = 0.66 (8 = 2.3; and —Inty = 17.25 for ty in years). Similarly, a recent analysis for Vrancea
earthquakes|17| indicates r = 0.54 (8 = 1.89; and — Inty = 9.68 for ¢, in years). This rather limited
variability in the exponents of the pair distribution for small values of 7 seems to be supported by
data.[2]-[4] In particular, the analysis of the pair distribution for 1999 earthquakes with magnitude
M > 3 recorded in Vrancea between 1974 and 2004 indicates an exponent o« = (.75, corresponding
to r = 0.25, in fair agreement with the exponent r = 0.33[|1]-[3]. The exponent r in (10) exhibits
a tendency toward higher values in the limit R7 — 0, where Omori’s law with exponent unity is
more effective. For instance, Vrancea data indicate r = 0.57 in fair agreement with the value of
this exponent obtained from fitting the recurrence law (r = 0.54).[17]

The origin of the parameter B in the universal function f(7) seems to reside in the fact that for
large values of 7 (where this parameter is effective), i.e. for small values of ¢ (and E), the actual
relatiosnhip between ¢ and E is 1 + t/ty = (1 + E/Ey)", which gives a recurrence law N., /T =
to (14 e*M)~" (where Ej is the threshold energy in the Gutenberg-Richter relationship).[12] This
modified recurrence law implies an apparent decrease in the cutoff parameter R from R = t; e M
to R =t;'(1 4+ ¢®)~" (where 3 = br), which amounts, for M = 0, for instance, to a correction
factor ~ 1.26. It is this parameter B which may account for such correction factors. For instance,
the data analysis for Vrancea indicates B = 1.17 (C' = 0.71), which indeed compares well with
2" = 1.19 corresponding to r = 0.25. In general, it is worth noting that exponent 1 —a = r in the
class of functions D(7) = RC - [1/(R7)'~*]e#7/B is a fitting parameter.

In conclusion, the scaling equation (3) indicates the general form of the universal function of
the pair distribution for the nearest-neighbouring earthquakes, which consists of a certain super-
position of elementary power laws, while the parameters in this universal function, namely the
exponent parameter o and parameter B, are related to particular seismicities, exhibiting a rela-
tively limited variability, such that it may be said that the pair distribution is rather represented
by a quasi-universal function.
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