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Abstract

A method is described for treating small-eccentricity orbits in Kepler’s problem. The
method can be generalized to bound states in other central-field potentials.

Kepler’s problem is the description of the motion of a particle of mass m in the gravitational po-
tential —«a/r, where o > 0. Like any other central potential, the gravitational potential conserves
the angular momentum L, so the motion is confined to a plane, and

L = m7’2gb , (1)

where ¢ is the angular coordinate. Equation (1) shows that the motion sweeps equal areas in
equal times (Kepler’s second law).

The energy of the motion reads
E=mi?/2 +mr?p?/2 — afr = mi?/2 + L?)2mr® — a/r (2)
as if the particle moves in an effective potential
U=L?2mr?—a/r (3)

exhibiting the centrifugal 1/r*- energy. The closed orbits proceeds between r = a(1 — ¢) and
r9 = a(l + e), where a = /2 |E| and

e =/1 —2L2|E| /ma? (4)

is the eccentricity, for negative energies above E,,;,, = —ma?/2L2.

The effective potential (3) reaches its minimum value E,,;, for
ro = L?/ma | (5)

where the eccentricity vanishes and the orbit is circular with radius ro. By (4), the energy can

also be represented as
Q@
E|=—(1—-¢%) , (6)

27"0

or ro = a(1l — €?).
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The expansion of the effective potential U given by (3) around its minimum value gives

(% « (%
U=——+—(r—rg)— —(r—r)®+ ... 7
27,0 + QTS (r TO) 7,3 (T TO) + ; ( )

i.e. a small-oscillations expansion valid for |r — ry| < 7.

It is convenient to write  — g = Au, where u is dimensionless, and cast the energy given by (2),
(3) and (7) into the form

E = —a/2rg+mA*i?/2 + (aA?/2r)u® — (aA® /ri)u’ + ..., (8)

or
E = —a/2rg + mA%[i?/2 + wu?/2 — (A)ro)wu® + .., 9)

where w? = a/mry and A/ry = € can be viewed as a small perturbation parameter. Equation (9)

can also be written as
,  2e?

el = —
w2

(1?2 + w*u?/2 — ew®u® + ...) | (10)

which tells that the eccentricity e is related to the perturbation parameter €. Equation (9) leads
to the motion of an anharmonic oscillator

i +w’u — 3ewu® + ... =0 . (11)

Within the harmonic approximation the solution of equation (11) can be represented as u(® =
— coswt, and
70 =y — Acoswt . (12)

The amplitude A can be derived from energy F = —a/2ry+mA*w? /2 given by (9) or, equivalently,
from equation (10). It leads to
e=Alrp=e<x 1, (13)

i.e. the eccentricity e of the orbit is the ratio ¢ of the amplitude A of the harmonic oscillation to
the original orbit radius ry. The small-oscillations treatment is valid for small eccentricities.

Therefore, the solution of the motion given by (12) can be written as

r© =ro(1 —ecoswt) | (14)

and, by (1),'
¢ = wt+ 2esinwt . (15)

It describes a circular motion, shifted by rpe. Indeed, z = roe + ¥ cosp and y = r@ sin g,
such that z? + y* = r2 within the harmonic approximation. In addition, w? = a/mr} shows that
the square of the motion period is proportional to the third power of the linear size of the orbit
(Kepler’s third law).? By (15), wt = ¢ — 2esin .

The first-order cubic correction to equation (11) leads to

uw=u" +euV = — coswt — e coswt + %(3 — cos2wt) (16)

and equation (10) gives £ = e(1 — ¢). The corresponding radius reads

2
r=ro[l — ecoswt + 65(3 — cos 2wt)] (17)

'Noteworthy, L = wl, where I = mr3 is the moment of inertia.
2J. Kepler, Harmonices Mundi, Linz (1619)
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which, by (1), leads to
2

)
© = wt+ 2esinwt — %(?wt b sin 2wt)] . (18)
Equation (18) can easily be inverted to give

, 3e? 1.
wt:g0—2681ng0+7(<p+§sm2<p) : (19)

which transforms (17) into

r=ry(l —ecosp+elcostp+...) . (20)

Within this approximation, equation (20) describes an ellipse,

r/ro=1—ecosp+e?cos’p+..=1/(1+ecosyp) , (21)
with the semi-major axis a = ro/(1 —e?) = ro(1+€?+...), the semi-minor axis b = ro/(1—e?)1/? =

ro(1 4 €?/2 + ...) and the origin displaced by ae = roe + ... in the focus ae (Kepler’s first law).?
According to equation (19) the period T of the motion is given by

wT =27(1 + 3¢/2) , (22)

which shows that the frequency w is shifted to Q = w(1 — 3¢?/2) = (a/ma®)'/?. The frequency
shift Aw/w = —3e?/2 ensures the cancellation of the resonant contributions to the second-order
cubic correction and first-order quartic correction to the anharmonic motion.

Let v(r) be an attractive central-field potential, such that the radial motion proceeds between
riand 75 given by?
L?/2mri, +v(r2) =E <0. (23)

The effective potential U(r) = L?/2mr?+uv(r) has a minimum value —ug = rov; (1/24vo/rov1) < 0

for ro given by L? = mrdv;, where vy, vi, vs, ... denote the potential and, respectively, its

derivatives at 9. making use of r — ry = Au and A/rq = ¢ the energy E can be written as

E = —ug+mA?[i?/2 + wu? /2 — efuwu® + 2qwut.] | (24)

where mw? = 3v; /1o +va, = (21 — rdv3/6)/(3v1 +rove) and v = (5v1 /2 + rivy/24) /(3vy + rovs).
Making use of the eccentricity e defined by ¢* = §(1 — |E| /ug), where § = —(vy + 2vy/79)/(3v1 +
rov2), equation (24) can be rewritten as

2e%
¢ = (022 4+ w2 — e’ + Pt + ) (25)

The equation of motion given by (24) reads
i + w?u — 3efwu® + 4w =0 | (26)

and the solution is given by

e
r:'ro[l—ecoswt+7(3—0082wt)} : (27)

3Indeed, from (21), cos p = x/(ro — ex) and sinp = y/(ro — ex), hence the ellipse equation.
“In order to avoid the fall on the centre the potential v(r) must be less singular at the origin than —L?/2mzr2.
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to the first-order of the cubic anharmonicity, where e = ¢(1 + ¢). Similarly, the angular variable
is given by

2
2
Y= \/vl/(?)vl + rove){wt + 2esinwt — %[3(25 — Dwt —

5 in 2wt]} . (28)

One can see that, in general, the trajectory of the motion is not closed, except for

\/Ul/(?)vl + 1rov2) = p/q (29)

where p/q is a simple fraction. The gravitational potential v(r) = —a/r gives p/q = 1, while the
spatial-oscillator potential v(r) = const + ar? gives p/q=1/2 (8 =1/2, v = 5/8).

Denoting 1/v = \/vl/(3v1 + rovy) and introducing the new phase x = vp equation (28) can be
rewritten as

X = wt + 2esinwt — %2[3(2ﬁ — Dwt — 2P+ 3 sin 2wt] , (30)
and it can easily be inverted to give
wtzx—Qesinx+€;[3(2ﬁ—1)X—2 _SSin2x] : (31)
Making use of (31) the equation of the trajectory (27) becomes
r =71yl —ecosx + (2 — B)e*cos’x] , (32)

where 1}, = ro[1 —2(1 — 3)€?]. For the gravitational potential 5 = 1 and equation (21) is recovered
from (32), while for the spatial oscillator # = 1/2, x = 2¢ and (32) becomes

3 2
r=ry[l —ecos2p + % cos? 2¢] . (33)

Since (33) is equivalent to 72 = r{/(1 + 2e cos 2¢), it is easy to see that the trajectory described
by (33) is an ellipse centered at the origin. One can see from (30) that the spatial oscillator does
not shift the frequency, but reduces it to w/2.

Higher-order contributions of the anharmonicities may lead, in general, to a shift in frequency,
in order to avoid, at each step of the perturbation calculations, the resonant terms.> Equation
(27) for the radius gets thereby a shifted frequency «’, and equation (1) for the phase motion
reads now ¢ = (L/mwr?)(w/w')w’, which changes, in general, the prefactor 1/v in equation (28).°
This is valid as long as the calculations are confined to finite orders of perturbation series, as
for small oscillations and eccentricities, for instance. In the limit of the series summation the
orbits are closed only for two power-law potentials: the gravitational potential —«/r and the
spatial-oscillator potential const + ar?. Indeed, this can be seen easily on the equation of motion

5Such terms are also called "secular terms", and the shift in frequency is also known as the Poincare-Lindstedt
expansion (H. Poincare, Les Methodes Nouvelles de la Mecanique Celeste, Gauthier-Villars, Paris (1892); A. Lind-
stedt, Uber die Integration einer fur die Storungstheorie wichtigen Differentialgleichung, Astron. Nach. 103 211
(1882)).

6Equation (29) is the first term of the series expansion of the well-known closure condition

Bg/2 = (m) [ ar (L4 \ERE 0]~ T = bl
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for the trajectory r(y), as given by (1) and (2), whose integration requires a quadratic form of
the integrand, the only one able to lead to circular functions.” In general, the trajectories are
closed provided the potentials are such as to cancel recurssively the frequency shifts in the formal
perturbation series. However, for sufficiently large p and ¢, and a large number of cycles, the
orbits are practically closed for any potential.
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"Making use of the substitution » = 1/u the equation for the trajectory u(y) reads v’ +u = —(m/L?)0v/du,
whose solution is given by circular functions only for the gravitational potential v ~ u and the spatial oscillator
potential v ~ 1/u2. This observation is called sometime "Bertrand’s theorem" (J. Bertrand, Mecanique Analytique,
Comptes Rendus, Acad. Sci. 77 849 (1873)).



