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Abstract

The motion of two bodies moving around a third one kept at rest, all interacting by
gravitational forces, is solved from a practical standpoint, by assuming that the two bodies
stay close to each other, but far away from the third.

Let r; and 1y be the positions of two bodies of mass m; (Earth, m; ~ 6 x10?*K g) and, respectively,
my (Moon, my >~ 7 x 102 Kg), subjected to gravitational potentials —Gmqom,/r1, —Gmgoma/ro
and interacting through —Gmimy/ |r; — 13|, where G ~ 6.7 x 10~ "'m? /K g- s* is the gravitational
constant. The body of mass mg (Sun, mg ~ 2 x 103°Kg) is at rest. The energy is given by

E = my1t7/2 + maots /2 — Gmomy /11 — Gmomsy/ro — Gmimy/ |r1 — 1o (1)
and the angular momentum reads
Ltot = mqry; X I"l -+ Mmory X I"Q . (2)

It is easy to see that Ly, is conserved. Making use of the center-of-mass coordinate R = myr; /M +
mary /M, where M = my + my, and the relative coordinate r = ry — ry, the angular momentum
becomes

Lit = MR xR+ mr x 1, (3)

where m = mymgy/M is the relative mass. Similarly, the energy can be written as
E = MR?/2 4+ mi?/2 — Gmomy/ |R — mar /M| — Gmomy/ |[R + mqr/M| — Gmymy/r . (4)

Since 7 < R (Sun-Earth distance r; ~ 15 x 107 K'm, Moon-Earth distance r ~ 380 000Km) it is
convenient to expand the gravitational potentials in (4) in powers of rR/R? Keeping only the
quadrupolar contribution the energy becomes

E = MR?*/2+mi?/2 —a/R— 3/r —~v[3(rR)?/R? — Y]/ R® | (5)
where o« = GmoM, f = GmM and v = Gmom/2, or
EIE1+E2+’}/U, (6)

where '
E, = MR?*/2—a/R , Ey=mi*/2—8/r, (7)
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and
v=—r?(3cos’x —1)/R* . (8)

The angle y in (8) is the angle between the two vectors r and R. Since r/R ~ 3 x 1073 for
Moon-Earth-Sun (and (r/R)? ~ 107°) the interaction v may be viewed as a small perturbation,
and v in (6) may act as a formal perturbation parameter. The solutions of the equations of motion
corresponding to (6) to (8) are looked for in the generic form u = u® +~u) + ... Tt is convenient
now to employ polar coordinates and rewrite (7) and (8) as

Ey = MR?/2+ MR*(©% + $*sin’0)/2 — a/R | (9)

and, similarly, ‘
Ey = mi? /2 + mr? (6% + ¢*sin®0) /2 — B/r (10)
where cos x = sin © sinf cos(® — ¢) + cos O cosf in (8). The angular momentum of the relative

motion reads

l. = —mr?(@sing + ¢sinfcosfcos ) , 1, = mr(f cos — psinf cosfsing) |

(11)

l. = mripsin?é |

orl, =0, lp = —mr?¢sinb, I, = mr20. Similar expressions hold for the angular momentum L of
the center of mass, and L;,; = L + L.

Leaving aside for the moment the interaction v, equations (3), (9) and (10) describe two inde-
pendent motions, each in its own gravitational potential, i.e. two independent Kepler’s problems.
Denoting by superscript (0) their relevant coordinates, the solutions of these problems can readily
be written.|[1] Indeed, choosing ©*) = /2, the radius R® and the phase ®© are given by

2

RO — Ry[1 — ey cos 4 + %(3 —cos20) +..] | (12)
and, respectively,
2
5
) = Qf + 2e sin O — (304 — Zsin20¢)...] (13)
or
RO = Ro(1 — eq cos o0 4 e% cos? ) ...) = Ro/(1+ e cos (I)(O)) ) (14)

where Ry = L92/Ma, O = a/MR3 and e; = (1 — 2Ry |E)| /a)'/? is the eccentricity of the
elliptical orbit.? For vanishing eccentricities (Earth’s orbit eccentricity is e; ~ 0.017) the solutions
given above read R® = Ry and ®© = Qt, i.e. a circular trajectory (and E; ~ —a/2R). A
similar solution holds for the relative motion, though it must be written for a tilted reference
frame. Making use of (10) and (11), the radius of the circular orbit is given by ry = (92 /m3,
and small oscillations around this position of equilibrium can also be considered (like in (12)),
with a characteristic frequency given by w? = 3/mrd (w > Q).> Since the eccentricity e, =
(1 — 2ry |Es| /B)Y/? is small (Moon’s orbit eccentricity is e, ~ 0.055), the orbit can again be
approximated by a circle of radius r(® = ry.

In order to preserve the generality, the unperturbed m-body orbit must be rotated both by an
angle ¢q (about the z-axis) and by an angle 6y (about one of the x- or y-axis). The latter gives

'In view of the great disparity between m; and ms, the center of mass is located practically on the first body
(Earth, M ~ m;), and the relative motion corresponds practically to the second body (Moon, m =~ msy).

ZFrom Q2 = a/M R} one can check easily the Earth’s year ~ 365 days.

30r w = 192 /myr2; Moon’s period ~ 27 days is checked from w? = 3/mr3.
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the inclination of the m-orbit with respect to the plane of the M- body orbit.* The former (¢o-)
rotation can be accounted for by changing the initial moment of time, such that we assume that
time in the m-body trajectory equations is shifted with respect to time in the trajectory equations
of the M-body. The fy-rotation (about the x-axis) leads to the new coordinates ' = r, and ¢, ¢’
given by

cosf' = sinfysiny , tany' = cosbytanp . (15)

One can check easily that (d6’/dy)? + (dy'/dp)?sin® @ = 1, which expresses the conservation of
the angular momentum under this rotation. By (15), one obtains

o'=p— i@g sin2¢p + ... = wt + 2eg sin wt — i@g sin 2wt + ...,
0 =m/2—6bysinp+..=m/2—Oysinwt + ..., (16)
" =r=ro(l —eycoswt+ ...) .

These are the zeroth order contributions u(?) to the general solution u = u(®) +~u( + ... for the
m-body motion. One can check easily that they do indeed verify the unperturbed equations of
motion.

The equations of motion for the m-body, as given by equations (6) to (8) and (10), read
mit — mr(0% + ¢2sin® 0) + 5/r2 = 2v(r/R*)(3cos? x — 1) |
d(mr20) /dt — mr?p?®sinf cos O = 6(r2/ R?) cos x[sin © cos f cos(® — @) — cos Osinf] , (17)
d(mr?sin? 0p) /dt = 67(r?/R?) cos x sin © sin 0 sin(® — ¢) .

Since the ratio of the interaction yv to energy a/R is of the order of 1077, one may take the
zeroth order approximation given by (12)-(14) for the trajectory of the M-body motion, i.e. the
motion of the M-body is not perturbed by interaction within this approximation. Similarly, the
ratio of the interaction yv to energy (/7 is of the order of 1073. Consequently, only the first-order
corrections in ~ are retained for the motion of the m-body, as well as the linear terms in e; and
quadratic terms in 6y only in the zeroth-order motion given by (16). It follows that coordinates
R=Ry,©=m/2,®=Qt and r =1y, § = 7/2, p = wt are used in the rhs of (17). This way, the
problem amounts to a Kepler’s problem in an external potential. In addition, {2 may be droped
out in comparison with w in the rhs of (17), since 2 < w.® Doing so, equations (17) become

mit — mr (62 + $2sin 0) + B/r2 = v(ro/R3)(1 4 3 cos 2wt) |
d(mr20) /dt — mr?¢®sinfcos =0 | (18)
d(mr?sin® 0¢)/dt = —3~(r2/R3) sin 2wt .

The solutions of these equations are looked for in the form r =" +~r; +..., 6 =0’ +~60; + ... and
o =¢ +vp1+ ..., where r’, § and ¢ are given by (16). According to the present approximation
mixed terms of the form e; 50, 61729(2] are not kept in calculations, nor higher-order terms of
the forms e7,, etc (but f3-terms are retained). The presence of the constant term in the first
equation (18) gives rise to secular terms, so the frequency w must to be renormalized to w’ in (16).

Tt corresponds to Moon’s orbit inclination against the ecliptic, which is approximately §p = 5° = 7/36.
5The ratio of these Earth-Moon frequencies is /w ~ 1/13.
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This renormalization implies a shift in frequency of the order of ~, which, as it is well known, is
computed by requiring the cancellation of the secular terms.

It is easy to see that equation on the third row in (18) leads to the integral of motion

mripsin®f = F(t) + 1., (19)
where
F(t) = v(3r3 /2wRy) cos 2wt (20)
and
I =mriw' (1 —632/2) (21)

is a constant of integration. It is reminiscent of the z-component of the unperturbed angular
momentum [?), renormalized by 7-interaction (through frequency «’). Equation (19) expresses
the motion of the z-component of the angular momentum in the presence of the perturbation. It
leads to equation

2mwry + mropr = (3ro/2wRy) cos 2wt (22)
for the functions r; and ;.

Similarly, by making use of (19), equation on the second row in (18) leads to another integral of
motion

. l/2
(mr?0)* + 52 =17, (23)
where
I'=mriw’ (24)

is another constant of integration (reminiscent of the unperturbed angular momentum [®), renor-
malized by 7-interaction). Equation (23) has the same form as the one corrresponding to the
unperturbed motion, so it gives no equation for r; and 6, as it can be checked easily.

Finally, by making use of the two integrals of motion given by (19) and (23), the first equation in
(18) leads to
mi’ — 12 mr’® + B/7"* = y(ro/ R3) (25)

and
miy + (31O% fmrd)ry — (26/r3)r1 = 6(ro/ R3) cos 2wt . (26)

Equation (25) gives the shifted frequency
W' =w(l -8 2B8R3) = w(l — Q% /4w?) (27)

and the unperturbed solution 7" in (16), with eccentricity e, corresponding to another constant
of integration EY, (unperturbed energy). Equations (22) and (26) can now be easily solved. Their

solutions read
ry = —(2r3/BRY) cos 2wt |

(28)
o1 = —(5r3 JABRY) sin 2wt .

The solution of the m-body motion within this approximation is now complete. It is given by (16)
and by (28), with shifted frequency w’ given by (27). Within this approximation ¢#; = 0. One can
check that the total energy Fy + yv = E) — v(rg/R3) is constant. The motion is characterized
by three basic frequencies: €2, w and w’, though the bare frequency w is not observable. The
calculations can be extended to higher-order terms, where combined frequencies appear, as well
as additional contributions to the frequency shift. The method can also be applied to other
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situations of three bodies interacting through gravitational potentials, like, for instance, two bodies
gravitating around a third one (Jupiter and Saturn, for instance, where a natural perturbation is
just their own interaction, since their mass is much lighter than Sun’s mass, and they do not get
too close to each other).

It is well known that Moon’s orbit exhibits four periodicities, beside T, ~ 365.26days of the year
corresponding to frequency €. There is, first, the sideral Moon 77 ~ 27.32days, then the anomalous
Moon T ~ 27.55days, the nodal Moon T3 ~ 27.21days and the synodal Moon Ty ~ 29.53days.5
Making use of the numerical data given herein (m ~ 7x10*?Kg, M ~ 6 x 10*'Kg, my ~ 2 x 103°Kg,
ro =~ 384 000Km, R ~ 150 000Km) and the gravitational constant G = 6.7 x 10~m3/Kg- s?, one
gets easily T ~ 364.78days from 2 = o/M R3, and the bare period T ~ 27.28days, corresponding
to the bare frequency w? = 3/mr3. The sideral Moon corresponds to frequency w’ given by (27),
and one can check easily that it implies a frequency shift dw/w = —Q%/4w? ~ —1.4 x 1073, It
corresponds to a difference of 67 ~ 0.04days, which gives the sideral Moon T} = T + 6T ~
27.32days. In the rotating frame of the Earth the periodicity is w’ — €2, which corresponds to a
change dw/w' = —Q/w ~ 0.08 in frequency. It implies a change 6T ~ 2.2days, corresponding to
the synodal Moon T, = T} + 6T ~ 29.52days. The nodal Moon is associated with the periodiciy
of the 2z coordinate in the rotating frame. It is easy to see, by using directly the transcription
of the hamiltonian given by (5) in the rotating frame, that this frequency is given by @? =
w? + 0?2 = W?(1 + Q%/2w?) + Q2 which implies a change dw/w’ = 30%/4w?. Tt corresponds to
0T ~ —0.11days, which gives the nodal Moon T3 = T — 6T ~ 27.21days. This correction gives
also (4w/30Q)T, ~ 18years for the slow motion of Moon’s nodal plane.” According to (16) and (28)
the angle o reads ¢ ~ w't — (502 /4w)t+... in the limit of short times, which amounts to a change
dw/w' = =302 /2w? in frequency. Tt leads to §7 ~ 0.22days, i.e. a difference twice as much as the
difference between the nodal Moon and the sideral Moon, which may be associated with Moon’s
anomaly Ty = 17 + 0T ~ 27.54.

In the rotating frame the motion is described by four frequencies, within this approximation, in
agreement with the empirical periodicities, and with three constants of motion (energy F and
angular momenta !, I/). In general, it seems unlikely to exist additional constants of motion,
beside total energy E and angular momentum L, as to match the six degrees of freedom,
at least with analytical functions (and series), so the three-body problem is not "integrable".®
However, non-analytical behaviour may exist, as, for instance, an infinite phase velocity ¢ for a
vanishing polar angle . This may imply an abrupt change in the trajectory (for instance, instead
of rotating very fast around the pole, the trajectory may take suddenly a longitudinal circle).
Apart from particular initial conditions, such chaotic behaviour of the three-body problem would
require an external perturbation, usually time dependent, like in the "Moon’s problem", where
Earth’s coordinates act like time-dependent external fields. Nevertheless, the motion described
above, very likely, by four fundamental frequencies (as well as by the corresponding "combined"
frequencies and their superior harmonics), may look already very complicated to warrant the
adjective "erratic", or "chaotic", though over very small a scale of magnitude.’

6These periodicities were known from ancient times, from the Greeks or even Babylonians, with five decimals,
which amounts to an accuracy of one second of time. The present approximation gives a second decimal, or the
first decimal, at most.

"Correction 302 /4w? was known to Newton.

8This is sometime referred to as a Bruns-Poincare theorem.

In particular, the corresponding orbits are not closed (or "periodic") anymore.
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