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Abstract

A model of phase transition of the �rst kind is introduced, based on the assumption that

a classical gas of particles condenses in composite particles made up of various numbers of

gas molecules. The transition temperature and the latent heat are derived, and the phase

diagram is characterized.

Phase transitions represent a well-studied �eld of research in condensed matter. Comparatively,
and in spite of their ubiquitous occurrence, the phase transitions of the �rst kind, which exhibit
�nite discontinuities in thermodynamic funcions, received less attention than the phase transitions
of the second kind, characterized by discontinuities in the derivatives of the thermodynamic poten-
tials. It is known that the latter are associated with a symmetry breaking and quantal-statistical
correlations. Typical examples are the superconductivity, the super�uidity, or the structural mod-
i�cations of the solids. Technically, they are driven by a continuous change in an order parameter,
which generates singularities characterized by power laws with critical exponents (indices). The
particular mechanisms for the phase transitions of the �rst kind remain elusive, though both kinds
of transitions are related to a certain condensation to a macroscopically-occupied state. The typ-
ical instance of such phase transitions is the gas-liquid transition. The van der Waals theory,
which captures much of the general features of the problem is an interpolation between an ideal
classical gas and a strongly interacting gas, and views the particle density as an order parameter,
thus having much in common with the phase transitions of the second kind. On the other hand,
dealing with an interacting ensemble of particles, the van der Waals theory fails to incorporate the
particle condensation in the form of bound states. Previous attempts to describe the condensation
of matter are known,[1]-[11], as quoted by ter Haar.[12] We present here a direct condensation
in the phase space of the molecules of a classical gas, in the form of composite particles, which
exhibits typical features of a phase transition of the �rst kind. It may be viewed as a generic
model for such phase transitions.

Let an ideal classical gas of N molecules with mass m be enclosed in volume V at temperature T .
As it is well-known, leaving aside the internal motion of the molecules, the particle distribution is
given by

dN =
gV

(2π~)3
eµ/T e−p2/2mT dp , (1)

where g is the statistical weight, µ is the chemical potential and p denotes the particle momentum.
The energy is E = 3NT/2 and the thermodynamic potential Ω = −pV = −NT , where p is the
pressure. The chemical potential is given by

µ = −T ln[g(mT/2π~2)3/2/n] , (2)
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where n = N/V is the density, and g(mT/2π~2)3/2/n � 1 (condition for a classical gas).
We introduce the characteristic temperature T0 = ~2n2/3/m, and write approximately µ '
−(3/2)T ln(T/T0) for T � T0.

We assume that the gas condenses in various species labelled by j = 1, 2, 3..., consisting of com-
posite particles made up of nj = 2, 3, ... original molecules. These composite particles have an
energy εj = −ε0j + p2/2Mj, where −ε0j < 0 is their cohesive energy and Mj is the mass of the
j-th particle. These condensed species form an ideal classical gas. We impose the conservation of
the number of gas molecules

Nc =
∑

njρj , (3)

and the conservation of the energy Ec of the condensed phase,

Ec =
∑

εjρj , (4)

where ρj = dNj/dnjdpj is the probability distribution of Nj particles in species j over phase
space (nj,pj). The summations in (3) and (4) are extended to all the states of the particles,
characterized by number nj and momentum pj. Then, we get straightforwardly the distribution
of particles in the condensed phase

dNj =
gjVc

(2π~)3
eµcnj/T e−εj/T dnjdpj , (5)

where gj is the statistical weight of the j-th species, µc is the chemical potential of the condensate
and Vc is the volume of the condensate. We leave aside other degrees of freedom, corresponding
to the internal motion of the composite particles. We write nj as a continuous variable for
convenience, but we understand the summation over discrete values nj = 2, 3, ....

The integration over momenta pj in (5) is straightforward. It gives

dNj = gjVc(MjT/2π~2)3/2eµcnj/T eε0j/T dnj . (6)

It is reasonable to assume that the condensate is a multiple of its constituents, i.e. ε0j = ε0nj and
Mj = mnj, where ε0 is a parameter of the cohesive energy, so that equation (6) becomes

dNj = gjVc(mT/2π~2)3/2n
3/2
j e(µc+ε0)nj/T dnj . (7)

The number total of species is then given by∑
j

Nj = Vc(mT/2π~2)3/2
∑
nj

gjn
3/2
j e(µc+ε0)nj/T , (8)

and the number of the original particles in the condensate given by (3) reads

Nc = Vc(mT/2π~2)3/2
∑
nj

gjn
5/2
j e(µc+ε0)nj/T . (9)

Similarly, the energy of the condensate given by (4) reads now

Ec = −Ncε0 + (3/2)T
∑

j

Nj , (10)

and the thermodynamic potential Ωc is given by Ωc = −pcVc = −T
∑

j Nj. The sumations in (8)
and (9) are convergent, since the chemical potential µc assumes large, negative values, as for a
classical gas.
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Let us �rst consider only one type of composite particles, labelled by j = s−1, with a constituency
nj = s. Then, the summations in (8) and (9) reduce to the s-th term only, and we get

Ns = Vc(mT/2π~2)3/2gss
3/2e(µc+ε0)s/T = Nc/s . (11)

Hence, we get straightforwardly the chemical potential of the condensate

µc = −ε0 − (T/s) ln[gss
3/2(mT/2π~2)3/2/nc] , (12)

where nc = Ns/Vc. The pressure of the condensate is given by pc = TNs/Vc, while the pressure of
the original gas is given by p = TNc/V . At equilibrium, the two values of the pressure must be
equal, pc = p, and, since Ns = Nc/s, it follows that Vc = V/s. It follows that at equilibrium the
two concentrations, n = Nc/V of the original gas and nc = Ns/Vc of the condensate, are equal,
n = nc, while the number Ns of particles in the condensate and the volume Vc of the condensate
are decreased by factor s, according to Ns = Nc/s and Vc = V/s, respectively. The chemical
potential of the condensate given by (12) becomes

µc = −ε0 − (T/s) ln[gss
3/2(mT/2π~2)3/2/n] , (13)

and it may be compared now with the chemical potential of the original gas of molecules given
by (2). The equilibrium between the two phases, the original gas and the resulting condensate, is
attained for µc = µ. Making use of (2) and (13), this equation can be written as

3(s− 1)

2s
ln(T/T0) = ε0/T , (14)

for T, ε0 � T0. Its solution gives the critical temperature

Tc '
2s

3(s− 1)
· ε0

ln(ε0/T0)
. (15)

The chemical potential acquires the value µcrit ' −sε0/(s− 1) at the critical temperature. Below
the critical temperature the condensate is favoured (µc < µ for T < Tc), while above the critical
temperature it is the gas which is favoured (µc > µ for T > Tc), as expected. Introducing T0 =
~2(p/T )2/3/m in (14) we get the (p, T )-equilibrium curve of the gas-condensate ensemble. It reads
p = (m/~2)3/2T 5/2 exp[−sε0/(s − 1)T ]. In-between the two isotherms pV = NcT and pVc = NsT
there exists a platteau at the critical temperature, as it can be seen from the decreasing of the
volume from V to Vc = V/s and the decreasing of the constant NcT from NcTc to NsTc = NcTc/s.
The critical temperature given by (15) decreases slowly with increasing s.

Below the critical temperature the condensation is fully attained, and Nc = N . The ther-
modynamic potentials su�er a discontinuity at the transition temperature, as a result of the
condensation. For instance, the thermodynamic potential of the condensate Ωc = −pVc =
−NTc/s di�ers from Ω = −NTc by a relative jump −(1 − s)/s, and the volume of the con-
densate decreases to Vc = V/s. Similarly, the energy of the condensate given by (10) reads
now Ec = −Nε0 + 3NsTc/2 = −Nε0 + 3NTc/2s, and exhibits a discontinuity as given by
∆E = 3NTc(1− s)/2s. The heat function of the original gas is given by W = E + pV = 5NT/2,
while the heat function of the condensate reads Wc = −Nε0 + 5NsT/2 = −Nε0 + 5NT/2s,
so the latent heat is Q = Wc − W = −Nε0 + 5(1 − s)NTc/2s. Similarly, the entropy of the
original gas can be written as S = (3N/2) ln(T/T0) + 5N/2, while the entropy of the conden-
sate is given by Sc = (3N/2s) ln(T/T0) + 5N/2s, and, by making use of equation (14), one gets
∆S = Sc − S = −Nε0/Tc + 5(1 − s)N/2s at equlibrium. One can check that the latent heat



4 J. Theor. Phys.

is given by Q = Tc∆S, according to the Clapeyron-Clausius law. There is also a jump in heat
capacities, which are given by C = 3N/2 and, respectively, Cc = 3N/2s, at constant volume.

We pass now to the estimation of the entire ensemble of composite particles in the condensate.
The summation in equation (8) can be aproximated by an integral, according to∑

j

Nj = Vcgc(mT/2π~2)3/2

∫
s

dn · n3/2e(µc+ε0)n/T , (16)

where gc is a mean statistical weight and the lower limit of integration is s = 2. Integrating by
parts, the integral in (16) can be written as∫

s

dn · n3/2e−λn =
s3/2

λ
e−λs +

3s1/2

2λ2
e−λs +

3s−1/2

4λ3
e−λs + ..., (17)

where λ = −(µc + ε0)/T . Since λ � 1 we may approximate this integral by the �rst term in the
rhs of (17), so that equation (16) becomes

λeλs ' gcs
3/2(mT/2π~2)3/2/n , (18)

where n =
∑

j Nj/Vc, as for equilibrium. The solution of this equation for large values of λ can
be written as

λ = (1/s) ln[gcs
3/2(mT/2π~2)3/2/n]− (1/s) ln{(1/s) ln[gcs

3/2(mT/2π~2)3/2/n]}+ ..., (19)

and we may retain only the �rst term in this expansion. Thus, we get the chemical potential of
the condensate

µc ' −ε0 − (T/s) ln[gcs
3/2(mT/2π~2)3/2/n] , (20)

which is identical with the one given by (13) for s = 2. We can say that the condensate is dominated
by pair composites made out of two particles of the original gas. Therefore, the discussion made
above for one type of composite applies here for the entire ensemble of the condensate, for s = 2.
In particular the transition temperature is given by (15) for s = 2. The �uctuations in the size
of the composite particles are readily obtained as 〈(δnj)

2〉 ' T 2/(µc + ε0)
2. At the transition

temperature they are given by 〈(δnj)
2〉1/2 ' (s − 1)1/2Tc/ε0. According to the approximation

employed here for solving equation (16), the number of particles in species with s + 1, s + 2,
... particles are exponentially small in comparison with the number of particles corresponding to
s = 2.

It is worth noting that the essential element of the mechanism presented here, which captures the
nature of the �rst-order phase transition, consists in the conservation of the number of condensed
particles as expressed by equation (3). It makes possible to express the chemical potentials of
the two phases, say µ1and µ2, in terms of the same quantities, namely the density of the original
particles (beside temperature), making thus possible their comparison for identifying the equi-
librium and the critical temperature. In addition, it is also worth noting that, technically, the
mechanism described here is not limited to the classical statistics (though this is the most typ-
ical situation). In general, if there is a critical point at the transition temperature Tc, then the
equilibrium is given by the equality of the two chemical potentials µ1(Tc) = µ2(Tc) (for the same
pressure, i.e. density). In the neighbourhood of the critical temperature Tc we may expand the
chemical potentials as µ1 = µ1(Tc)+ (T −Tc)(∂µ1/∂T )cand µ2 = µ2(Tc)+ (T −Tc)(∂µ2/∂T )c, and
one can see that µ1 < µ2 for T > Tc, and, at the same time, µ1 > µ2 for T < Tc, i.e. we have
a phase transition, providing (∂µ1/∂T )c < (∂µ2/∂T )c < 0. On the other hand, ∂µ/∂T = −S,
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where S denotes the entropy per particle, so that the above inequalities read S1 > S2 > 0, i.e.
the transition to the condensed phase (phase 2) implies a decrease of entropy, i.e. the condensed
phase is more "macroscopically-occupied" than the original one, as expected. If we express the
entropy as the logarithm of the phase-space element, S ∼ ln ∆q∆p, then for s independent par-
ticles we have the entropy per particle S1 ∼ (1/s) ln(∆q∆p)s = ln ∆q∆p, while for a composite
made up of s particles we have the entropy per particle S2 ∼ (1/s) ln ∆q∆p, because their phase
space diminished. We can see that indeed S1 > S2 > 0, i.e. the condensed phase is indeed
more "macroscopically-occupied", and, in addition, we see that the relative jump in the entropy
is 1/s− 1 = (1− s)/s, as obtained in the model described above.

It may be viewed that the liquid state is attained for all the Nj vanishing, except for one Nj = 1.
The liquid is then made of only one, big composite "particle", consisting of s = N →∞ particles
of the original gas. The distributions given by (7) lose then their statistical meaning (the entropy
vanishes), and the chemical potential of the liquid is exactly µc = −ε0. The critical temperature of
the gas-liquid transition is given by equation (15) for s →∞. It reads Tc ' 3ε0/2 ln(ε0/T0). The
liquid has the volume Vc = V/N and density N/Vc = N2/V (distinct from density nc = 1/Vc =
N/V = n which enters the equation of state pcVc = T ). The thermodynamics of this liquid state
has then to be re-constructed on new statistical assumptions. This conclusion is very similar with
the well-known previous analysis made in Refs. 13-14.
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