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Abstract

The thermoconductivity, �uctuations, viscosity and the di�usion coe�cient are derived

for liquids, as based on the local spectrum of vibrations of their elementary excitations.

The elementary excitations in liquids consist of quanta ε of local vibrations associated to short-
range correlated particle con�gurations which move around with the spatial density of states
dV/b, where V is the volume of the liquid and b is a "constraining " volume.[1] The volume b is
of the order of the molecular volume a3, where a is the mean inter-particle spacing (b > a3). The
vibration quanta are governed by the Bose-Einstein distribution n with a non-vanishing chemical
potential corresponding to the number N of particles in liquid.

The transport is performed by elementary excitations. Each elementary excitation carries a density
of energy ∂(εn/b)/∂T ·∆T with velocity v‖along a gradient ∂T/∂z of temperature in a z-direction.
The energy �ux is therefore ∂(εn/b)/∂T · ∆T · v‖τ , where τ is the lifetime of the elementary
excitations. The �ow is therefore given by ∂q/∂t = ∂(εn/b)/∂T · v2

‖τ · ∂T/∂z, where v2
‖ = v2/3, v

being the velocity of the elementary excitations. The thermoconductivity is de�ned as

K =

∫
(dε/ε1)∂(εn/b)/∂T · v2

‖τ , (1)

and it is easy to see that it can be written as

K =
1

3
cvΛ , (2)

where c is the heat capacity per volume and Λ = vτ is the mean-free path of the excitations. The
heat capacity per volume (at constant volume) is given by[1] c = π2T/3bε1 in the low-temperature
limit ε1 � T � bε1/a

3 and c = 1/a3 in the high-temperature limit T � bε1/a
3. The mean-free

path is given by Λ = b1/3. In the low-temperature limit the thermal energy per particle is given
by[1] π2a3T 2/6bε1, so that a composite of b/a3 particles carries energy εexc = π2T 2/6ε1. It may
be taken as the energy of the elementary excitations in the low-temperature limit, and τ ∼ ~/εexc

may be taken as their lifetime (which means that such excitations are rather poorly de�ned). The
momentum is therefore given by ~/b1/3, and the velocity v = εexcb

1/3/~. The thermoconductivity
becomes

K =
π4

54
· T 3

~b1/3ε2
1

(3)
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in the low-temperature limit. In the high-temperature limit the energy of the elementary excita-
tions are given by εexc = bε1/a

3, so that the thermoconductivity becomes

K =
b5/3ε1

3~a6
(4)

for T � bε1/a
3.

As it is well-known, the �uctuations are governed by probability ∼ eS, where S is the entropy.1

For instance, the �uctuations δV 2 in volume are given by |∂2S/∂V 2| = |(∂p/∂V )/T | = 1/ |V TκT |,
where κT is the isothermal compressibility, so the �uctuations in volume per particle are given by
δv ∼

√
|vTκT |, and the �uctuations in the mean inter-particle distance are δa ∼

√
|TκT | /a. The

compressibilities of the liquid are given below. In the low temperature limit the �uctuations δa
go like

√
T , while in the high-temperatre limit they go like δa ∼ a.

Similarly, the �uctuations δE in energy are given by |∂2S/∂E2| = |(∂T/∂E)/T 2| , and the �uc-
tuations in energy per particle are therefore given by δε ∼ T

√
∂e/∂T , where e is the energy per

particle. The energy per particle for a liquid is given by

e = −ε0 + π2a3T 2/6bε1 (5)

in the low-temperature limit, and by e = −ε0+T in the high-temperature limit.[1] We get therefore

δε ∼ T (π2Ta3/3bε1)
1/2 , T → 0 , (6)

and δε ∼ T for T →∞.

One can check the series of inequalities εeq > T > δεf > δεex � δεq > δεobs, where εeq is the scale
energy for statistical equilibrium (cohesion energy per particle ε0), δεf is the �uctuation energy per
particle derived above, δεex is the uncertainty in the energy of the elementary excitation (related
to their lifetime, herein εexc), δεq is the separation between the energy quantal levels (ε1), and,
�nally, δεobs is the measuring (observed) energy per particle. According to the results given above,
in the low-temperature regime ε1 � T � bε1/a

3 these inequalities read

T > T (π2Ta3/3bε1)
1/2 > π2T 2/6ε1 � ε1 , (7)

and one can see that they are ful�lled. Therefore, the equilibrium is attained in this regime, and
the excitations are well-de�ned. In the high-temperature regime T � bε1/a

3 the above inequalities
become

T > δεf > bε1/a
3 � ε1 , (8)

and one can see that tey are again ful�lled; δεf is actually lower than its asymptotic T -value given
above.

The �uctuations give an additional pressure δp related by the velocity �uctuations through δp ∼
η(δv/δa) ∼ η/τf ∼ ηδε/n~, where η is the viscosity and n is an unde�ned quantal number
depending on the nature of the �uid, the process, etc. The �uctuations in pressure are given
by |∂2S/∂p2| = |(∂V/∂p)S/T | = |V κS/T |, so that δp ∼

√
|T/vκS|, where κS is the adiabatic

compressibility.2 We get therefore

η =
√

T/a3 |κS| ·
n~
δε

, (9)

1Actually, the probability is given by exp[(T∆S − ∆E − p∆V )/T ], as for non-equilibrium. The variations,
given by the second derivatives, are those pertaining to ∆E, and are equivalent with those given in the main text.
Equivalently, from dE = −pdV +TdS, we get (∆T∆S−∆p∆V )/T for the exponent of the probability (with minus
sign).

2Similarly, we get the �uctuations in temperature from
∣∣∂2S/∂T 2

∣∣, which leads to δT ∼ T/
√

cV , where cV is the
heat capacity per particle at constant volume.
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so that η ∼ 1/T in the low-temperature limit, and η ∼
√

T (T + const)/T in the high-temperature
limit (see below). For classical ideal gases we get η = n~/a3, which suggests a quanta ~ for viscosity
ηa3.[2]

The pressure of the liquid is given by[1]

p = −c2ε′
0 + π2T 2/6bε1 (10)

in the low-tempearture limit, and by

p = −c2ε′
0 + cT (11)

in the high-temperature limit, where −ε0(c) < 0 is the cohesion energy per particle (here c = 1/a3

is the concentration). The isothermal compressibility reads[1]

κT =
1

c∂(c2ε′
0)/∂c

< 0 (12)

in the low-temperature limit, and

κT = −1

c
· 1

T − ∂(c2ε′
0)/∂c

(13)

in the high-temperature limit. Similarly,[1] the isentropic compressibilities are given by

κS = κT (1 + π2T 2κT /3bε1) (14)

in the low-temperature limit, and

κS = − 1

2c
· 1

T − (1/2)∂(c2ε′
0)/∂c

(15)

The di�usion coe�cient is de�ned as D ∼ (δa)2/τf , and we get D ∼ T 5/2 in the low-temperature
limit, and D ∼ a2T/n~ in the high-temperature limit. In the latter case one may check the validity
of the hydrodynamic representation D ∼ T/aη.[2, 3]
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