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While progress has been made in second-order phase transitions through Landau-Ginsburg theory
and Wilson's renormalization group, the �rst-order phase transitions enjoyed comparatively less
advance.1 However, it seems that a certain trend has been developed recently for the �rst-order
phase transitions,[1] which can be traced back, in my opinion, to a pair of well-known papers by
Yang and Lee on the subject.[2] This trend consists in associating the horizontal platteau and
the corresponding jump in the volume in the van der Waals isotherms to the jump in an order
parameter across a second-order phase transition.

Actually, this is an improper association, because the �rst-order transitions are discontinuous
across the van der Waals platteux (unphysically, the van der Waals equation replace these plat-
teaux with continuous regions of metastable states), while the thermodynamic functions across
the second-order phase transitions are in fact continuous in the order parameter, and the order
parameter itself is in fact continuous through the transition point. It is true that the van der
Waals equation indicates a critical point where the isotherms are continuous and the metastable
states disappear, which indeed may be viewed as a second-order transition, but this point is in
fact the point terminus for a �rst-order phase transition.

Yang and Lee start their classical analysis by writing the grand-partition function for an interacting
gas like

Z =
∑

yNQN/N ! , (1)

where, with usual notations,
y = (2πmT/~2)3/2eβµ (2)

is related to the fugacity exp(βµ) and

QN =

∫
dr1...drN · exp(−βU) , (3)

is the con�gurational part of the canonical function, where U is the interaction. The grand-
partition function given by (1) is quite a regular function, and there is no apparent reason for it
to produce discontinuities or singularities. For instance, for a free gas it is given by Z = exp(yV ),
and the thermodynamic potential is given by Ω = −pV = −TyV . The number of particles is given
by N = yV ∂(−βΩ)/∂(yV ) = yV , so we get the well-known equation of state Ω = −pV = −NT .

For a weakly interacting gas the canonical partition function can be approximated by ZN =
(2πmT/~2)3N/2 〈exp(−βU)〉 (V − bN)N/N ! ' (2πmT/~2)3N/2 exp(−β 〈U〉)eN(V/N − b)N , with

1A more detailed discussion and references are given in M. Apostol, J. Theor. Phys. 147 (2007).
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〈U〉 = (N2/2V )
∫

dr · U = −N2a/V , where b is an excluded volume and a denotes a parameter
accounting for the interaction. The free energy is given by −βF = ln ZN , and we get straightfor-
wardly the van der Waals equation p = −∂F/∂V = NT/(V −Nb)− aN2/V 2.

This suggests that the grand-canonical function given by (1) may vanish for some values of y, as
for instance for V approaching Nb for a dense number of N -terms (i.e. in the thermodynamic
limit), which would lead to non-analytical thermodynamic functions like the van der Waals free
energy. This observation was made by Gibbs, and led Yang and Lee to assume that Z may have
zeroes for some y's, in general complex. For such zeroes closing unto, or pinching, the real axis,
one may have non-analytic thermodynamic functions, and phase transitions. Indeed, assume for
instance the roots of the equation yN = 1, given by y = exp(2πk/N) for k = 0, 1, ...N − 1. There
is a dense distribution of such zeroes cutting the real axis at y = 1 in the thermodynamic limit
N →⇀ ∞. Assuming that the grand-partition function may have such zeroes, we can represent
the relevant part of the thermodynamic potential Ω as

−βΩ ∼
∫
∼0

dθ · ln(y − eiθ) ∼
∫

0

dθ · ln(y2 − 2y cos θ + 1) ∼
∫

0

dθ · ln(ε2 + θ2) , (4)

where, without loss of generality, we assumed the zeroes cutting the real axis at y = 1, and
ε = y− 1 (the integral in (4) gives also the electrostatic potential of an electric charge distributed
on a circular cilinder). The relevant part of the integral in (4) is −βΩ ∼ π |y − 1|. When y passes
through 1 the thermodynamic potential Ω is continuous, but its derivative with respect to y, which
is related to the number of particles, is discontinuous. This is not a �rst-order phase transition,
like the gas-liquid transition, but it may viewed as representing the condensation of the gas near
the critical point. The jump in the number of particles may be associated with the particles "lost"
in the liquid phase. Actually, the number of particles may be viewed as an order parameter, which
is continuous in fact, but its derivative is discontinuous, so the transition may be a second-order
one, as for the critical point of the van der Waals equation. It is worth noting that the zeroes
cut the real axis only in the thermodynamic limit, so the jump in the order parameter is related
to the continuous distribution of such zeroes. Actually, nothing de�nite can be said about such
a mechanism representing a phase transition, because, in fact, there is no proof that real zeroes
of the grand-partition function (1) exist. Yang and Lee found an analogy of the two-dimesnional
Ising ferromagnet in an external magnetic �eld with a lattice gas, where it is known that there
exists real zeroes of the grand-partition function. Then, the transition in an external �eld is a
smoothed second-order phase transition indeed. The lattice gas, however, has little relevance for
the real interacting gas. In addition, it is worth noting that the Yang and Lee's "condensation"
theory does not produce the transition, or critical, temperature.
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