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Abstract

We examine the elastic waves excited at the surface of an isotropic body by an oscillatory,

localized force (Rayleigh waves). We de�ne the "H/V "-ratio as the ratio of the intensity

of the in-plane waves (horizontal waves) to the intensity of the perpendicular-to-the-plane

waves (vertical waves). It is shown that this ratio exhibits a resonance at a frequency which

is close to the frequency of the transverse waves. It may serve to determine Poison's ratio of

the body.

Recently there is a great deal of interest in the method of the "H/V "-ratio for assessing the elastic
properties of soils by means of their response to external excitations.[1]-[8] We analyze here the
surface (Rayleigh) waves excited in an elastic isotropic body by an oscillatory, localized force. The
"H/V "-ratio, de�ned as the ratio of the intensity of the horizontal waves (in-plane waves) to the
intensity of the vertical waves (perpendicular-to-the-plane waves), exhibits a resonance peak at a
frequency which is close to the frequency of the transverse waves.

As it is well known,[9] the equation of elastic waves in an isotropic body is given by

ü = c2
t ∆u + (c2

l − c2
t )grad · divu + F (1)

where u is the local displacement, ct,l are the velocities of sound for transversal and, respectively,
longitudinal waves and F is an external force (per unit mass). The sound velocities are given by

c2
t =

E

2ρ(1 + σ)
, c2

l =
E(1− σ)

ρ(1 + σ)(1− 2σ)
(2)

where E is Young's modulus, σ is Poison's ratio (0 < σ < 1/2) and ρ is the density of the body.

We consider surface waves in a half-space z < 0 excited by an external force

F = −fe−iΩtδ(r)eκz (3)

where f is a force per unit super�cial mass, Ω is the frequency of the force, κ is an attenuation
coe�cient and r = (x, y) are in-plane coordinates. This would correspond to surface waves excited
at Earth's surface by seismic waves or other external perturbations. The localization of the force
means that we detect the surface waves far away form the source of excitation.
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We look for solutions of the form u ∼ eikreκz and introduce the notation u = (ul, ut, uv) and
k = (k, 0). In addition we assume f = (fl, 0, fv). Equation (1) becomes

ül = (−c2
l k

2 + c2
t κ

2)ul + iκk(c2
l − c2

t )uv − fle
−iΩt ,

üv = (−c2
t k

2 + c2
l κ

2)uv + iκk(c2
l − c2

t )ul − fve
−iΩt ,

üt = c2
t (−k2 + κ2)ut .

(4)

The homogeneous equations (4) have two distinct eigenfrequencies given by ω2
l,t = c2

l,t(k
2 − κ2)

corresponding to the eigenmodes ul ∼ ik, uv ∼ κ and, respectively, ul ∼ κ , uv ∼ −ik.

We take ω2 = c2
l (k

2 − κl) = c2
t (k

2 − κ2
t ) and the linear combination

ul = (ikAeκlz + κtBeκtz)eikx ,

uv = (κlAeκlz − ikBeκtz)eikx

(5)

in order to satisfy the boundary conditions σiz = 0 at the free surface z = 0, where

σij =
E

1 + σ
(uij +

σ

1− 2σ
ullδij) (6)

is the stress tensor and uij = (∂ui/∂xj +∂uj/∂xi)/2 is the strain tensor. These are the well-known
Rayleigh waves.[10] From the boundary coonditions we get ut = 0 and the equations

2iκlkA + (k2 + κ2
t )B = 0 ,

[σ(k2 + κ2
l )− κ2

l ] A + i(1− 2σ)κtkB = 0 .
(7)

It is easy to see that the ωl-solution corresponds to curlu = 0 and the ωt-solution corresponds to
divu = 0. Making use of c2

l (k
2 − κ2

l ) = c2
t (k

2 − κ2
t ) = ω2 and of equations (2) the second equation

(7) can also be written as
(k2 + κ2

t )A− 2iκtkB = 0 , (8)

so that equations (7) have solutions providing

(k2 + κ2
t )

2 = 4κlκtk
2 . (9)

We introduce the variable ξ de�ned by ω = ctξk and, making use of equations (2), we get

κ2
l = (1− c2

t ξ
2/c2

l )k
2 =

[
1− 1−2σ

2(1−σ)
ξ2

]
k2 , κ2

t = (1− ξ2 )k2 . (10)

Equations (9) becomes

ξ6 − 8ξ4 + 8
2− σ

1− σ
ξ2 − 8

1− σ
= 0 . (11)

This equation has a solution close to unity, ξ ' 1, for 0 < σ < 1/2. It follows that κl ∼ k and
κt ∼ 0. The ratio of the two amplitudes is

A

B
= 2i

√
1− ξ2

2− ξ2
, (12)

so the amplitude of the κl-wave (A) is much smaller than the amplitude of the κt-wave (B). The
main surface wave is a shallow wave with a large penetration depth (κt ' 0).
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We pass now to solving equations (4) with the force term. The solution is of the form u ∼
eikreκze−iΩt, where κ is the attenuation coe�cient in the force. We get easily

ul =
(Ω2−c2t k2+c2l κ2)fl−iκk(c2l−c2t )fv

∆
,

uv =
(Ω2−c2l k2+c2t κ2)fv−iκk(c2l−c2t )fl

∆

(13)

where ∆ = [Ω2 − c2
l (k

2 − κ2)] [Ω2 − c2
t (k

2 − κ2)]. We de�ne the "H/V "-ratio asH/V = |ul|2 / |uv|2.
It is convenient to introduce the notation s = f 2

l /f2
v . We get

H/V =
(Ω2 − c2

t k
2 + c2

l κ
2)2s + κ2k2(c2

l − c2
t )

2

(Ω2 − c2
l k

2 + c2
t κ2)2 + κ2k2(c2

l − c2
t )2s

. (14)

We introduce ω = ctξk for ξ ' 1 and r = cl/ct. It is natural to assume κ ' 0, comparable with κt

given by κ2
t = (1− ξ2)k2 for ξ ' 1. Equation (14 becomes then approximately

H/V ' (Ω2 − ω2)2s

(Ω2 − r2ω2)2 . (15)

We can see that the H/V -ratio exhibits a resonance at ω = ω0 ' Ω/r = (ct/cl)Ω. If we take
Ω = clk this resonance is in the vicinity of the S-wave frequency ω ' ctk, in agreement with
previous results.[1] For s = 0 the H/V -ratio is given by

H/V ' (1− ξ2)(r2 − 1)2ω4

(Ω2 − r2ω2)2 (16)

and one can see that the resonance is rather sharp. For s →∞ the resonance disappears.

We may also use κ2 = κ2
l = (1− ξ2/r2)k2, and equation (14) becomes

H/V ' [Ω2 + (r2 − 2)ω2]
2
s + (r2 − 1)3ω4/r2

[Ω2 − (r2 + 1/r2 − 1)ω2]2 + s(r2 − 1)3ω4/r2
. (17)

This expression has a rather broad maximum. For s = 0 equation (17) exhibits a resonance at
ω ' (r2 + 1/r2− 1)−1/2Ω = (1 + 1/r4− 1/r2)−1/2ω0 which is greater than ω0 (r

2 > 2). For s →∞
the maximum of (17) disappears.

It is likely that the attenuation coe�cient κ in the expression of the force is very small. The
surface waves given by (13) and the H/V -ratio (14) acquire then a very simple expression. A
small but �nite value of κ shifts the resonance frequency and smooth out the resonance, giving it
a small width. The frequency Ω is not necessary related to the frequency of the elastic waves in
the surface layer, but rather it is given by the frequency of the in-depth waves of excitations, or it
may have other sources. If the force is a superposition of various frequencies Ω then the resonance
is smoothed out and gets a �nite width.

The model presented here can be extended to include damping e�ects and various other distribu-
tions of external forces.
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