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Abstract

Small super�cial irregularities are considered for the surface waves propagating in an

isotropic elastic body. For a statistical distribution of irregularities the only e�ect is a slight

change in the amplitudes of the surface waves.

We consider the elastic waves equation

ü = c2
t ∆u + (c2

l − c2
t )grad · divu (1)

where u is the displacement �eld,

ct =
√

E/2ρ(1 + σ) , cl =
√

E(1− σ)/ρ(1 + σ)(1− 2σ) (2)

are the velocities of the transverse and, respectively, longitudinal waves, E is the Young's modulus,
σ is the Poisson ratio (0 < σ < 1/2) and ρ is the density of the isotropic body. As it is well known,
the elastic �eld can be written as u = ut + ul, with divut = 0 and curlul = 0. This splitting
leads to üt = c2

t ∆ut and ül = c2
l ∆ul. We consider surface waves of the form e−iωteikreκz which

are vanishing for z → −∞. The frequencies are given by ω2
t = c2

t (k
2 − κ2

t ) and ω2
l = c2

l (k
2 − κ2

l ).
The above conditions of transversality and irotationality leads to the following representation for
these waves:

ul = A(kx, ky,−iκl)e
−iωteikreκlz ,

ut = (Bκt, Cκt,−i(Bkx + Cky))e
−iωteikreκtz

(3)

where A, B, C are coe�cients which depend on the wavevector k (for a given frequency). The
elastic �eld is a superposition over k′s of ul + ut given by (3).

We consider a free surface with a normal vector n and impose the free-force boundary condition
σijnj = 0, where

σij =
E

1 + σ
(uij +

σ

1− 2σ
ullδij) (4)

is the stress tensor and uij = (∂ui/∂xj + ∂uj/∂xi)/2 is the strain tensor. We give here the strain
tensor as computed from (3):

uxx =
∑

k i (k2
xAke

κlz + kxκtBke
κtz) eikr

uyy =
∑

k i
(
k2

yAke
κlz + kyκtCke

κtz
)
eikr

uzz = −∑
k i [κ2

l Ake
κlz + κt (kxBk + kyCk) eκtz] eikr

(5)
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and
uxy =

∑
k i

[
kxkyAke

κlz + 1
2
κt (kyBk + kxCk) eκtz

]
eikr

uxz =
∑

k

[
κlkxAke

κlz + 1
2
((k2

x + κ2
t )Bk + kxkyCk) eκtz

]
eikr

uyz =
∑

k

[
κlkyAke

κlz + 1
2

(
kxkyBk + (k2

y + κ2
t )Ck

)
eκtz

]
eikr .

(6)

In addition

ull =
∑
k

i(k2 − κ2
l )Ake

κlzeikr (7)

We consider the free surface described by equation z = f(x, y). Its normal vector n is proportional
to (f1, f2,−1), where f1 = ∂f/∂x and f2 = ∂f/∂y. We assume that f1 and f2 are small quantities
and limit ourselves to the second-order expansion in these quantities; we get the normal vector
n = (f1, f2,−(1− f 2

1 /2− f 2
2 /2)). The boundary condition σijnj = 0 reads

(uxx + σ
1−2σ

ull)f1 + uxyf2 = uxz(1− f 2
1 /2− f 2

2 /2)

uxyf1 + (uyy + σ
1−2σ

ull)f2 = uyz(1− f 2
1 /2− f 2

2 /2)

uxzf1 + uyzf2 = (uzz + σ
1−2σ

ull)(1− f 2
1 /2− f 2

2 /2) .

(8)

We assume further that κl,tf � 1, and write eκl,tz ' 1 + κl,tf + κ2
l,tf

2/2. We use then the Fourier
decomposition f =

∑
q fqe

iqr. The system of equations (8) can then be solved, in principle. It is
of the form AijXj = λijXj, where λ denotes a small parameter, originating in function f . For a
�at surface λ = 0 (z = 0) and we get the Rayleigh waves. For a surface de�ned by function f
the above system leads to det(A − λ) = 0 which induces small changes in the k-dependence of
κl,t; and leads also to small changes in coe�cients A, B, C. Essentially, the e�ect of the irregular
surface is to introduce a superposition of waves instead of a pure k-Rayleigh plane wave. The
actual superposition depends on the particular form of the function f .

We adopt a statistical view and average over function f and its derivatives in (8). We assume
f̄1,2 = 0, ff 1,2 = 0, f̄ 2 = 2f 2 and ¯f 2

1,2 = q2f 2, where f is now a parameter and q−1 is a measure
of the scale of the variations of the function f . Then, the wavevectors are not coupled anymore
in equations (8), so we may restrict ourselves to one k-plane wave; in addition, we may assume
ky = 0. The lhs of equations (8) is now vanishing, and the remaining rhs gives

2κlkA(1 + κ2
l f

2 − q2f 2) + (k2 + κ2
t )B(1 + κ2

t f
2 − q2f 2) = 0

κ2
l A(1 + κ2

l f
2 − q2f 2)− κtkB(1 + κ2

t f
2 − q2f 2)− σ

1−2σ
(k2 − κ2

l )A(1 + κ2
l f

2 − q2f 2) = 0
(9)

and C = 0. We introduce new variables A′ = A(1 + κ2
l f

2 − q2f 2) and B′ = B(1 + κ2
t f

2 − q2f 2)
and the above equations become

2κlkA′ + (k2 + κ2
t )B

′ = 0

2κtkB′ + (k2 + κ2
t )A

′ = 0
(10)

The second equation (10) is obtained by using the dispersion relations (frequency ω vs wavevector
k) and the de�nition of the waves velocities as functions of σ.
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Equations (10) de�ne the Rayleigh waves. With ω = clkξ and κ2
l = (1−c2

t ξ
2/c2

l )k
2, κ2

t = (1−ξ2)k2

they lead to

ξ6 − 8ξ4 + 8
2− σ

1− σ
ξ2 − 8

1− σ
= 0 (11)

which has a solution close to unity. The amplitude ratio is guven by

A′/B′ = −2

√
1− ξ2

2− ξ2
. (12)

The statistical e�ect of small super�cial irregularities on the surface waves is the small change in
amplitudes according to A′ = A(1 + κ2

l f
2 − q2f 2) and B′ = B(1 + κ2

t f
2 − q2f 2).
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