Journal of Theoretical Physics

Founded and Edited by M. Apostol

ISSN 1453-4428

Elastic waves on a surface with irregularities B. F. Apostol Department of Theoretical Physics, Institute of Atomic Physics, Magurele-Bucharest MG-6, POBox MG-35, Romania email: apoma@theory.nipne.ro

Abstract

Small superficial irregularities are considered for the surface waves propagating in an isotropic elastic body. For a statistical distribution of irregularities the only effect is a slight change in the amplitudes of the surface waves.

We consider the elastic waves equation

$$\ddot{\mathbf{u}} = c_t^2 \Delta \mathbf{u} + (c_l^2 - c_t^2) grad \cdot div\mathbf{u} \tag{1}$$

where \mathbf{u} is the displacement field,

$$c_t = \sqrt{E/2\rho(1+\sigma)} , \ c_l = \sqrt{E(1-\sigma)/\rho(1+\sigma)(1-2\sigma)}$$
 (2)

are the velocities of the transverse and, respectively, longitudinal waves, E is the Young's modulus, σ is the Poisson ratio ($0 < \sigma < 1/2$) and ρ is the density of the isotropic body. As it is well known, the elastic field can be written as $\mathbf{u} = \mathbf{u}_t + \mathbf{u}_l$, with $div\mathbf{u}_t = 0$ and $curl\mathbf{u}_l = 0$. This splitting leads to $\ddot{\mathbf{u}}_t = c_t^2 \Delta \mathbf{u}_t$ and $\ddot{\mathbf{u}}_l = c_l^2 \Delta \mathbf{u}_l$. We consider surface waves of the form $e^{-i\omega t}e^{i\mathbf{k}\mathbf{r}}e^{\kappa z}$ which are vanishing for $z \to -\infty$. The frequencies are given by $\omega_t^2 = c_t^2(k^2 - \kappa_t^2)$ and $\omega_l^2 = c_l^2(k^2 - \kappa_l^2)$. The above conditions of transversality and irotationality leads to the following representation for these waves:

$$\mathbf{u}_{l} = A(k_{x}, k_{y}, -i\kappa_{l})e^{-i\omega t}e^{i\mathbf{k}\mathbf{r}}e^{\kappa_{l}z} ,$$

$$\mathbf{u}_{t} = (B\kappa_{t}, C\kappa_{t}, -i(Bk_{x} + Ck_{y}))e^{-i\omega t}e^{i\mathbf{k}\mathbf{r}}e^{\kappa_{t}z}$$
(3)

where A, B, C are coefficients which depend on the wavevector \mathbf{k} (for a given frequency). The elastic field is a superposition over $\mathbf{k}'s$ of $\mathbf{u}_l + \mathbf{u}_t$ given by (3).

We consider a free surface with a normal vector **n** and impose the free-force boundary condition $\sigma_{ij}n_j = 0$, where

$$\sigma_{ij} = \frac{E}{1+\sigma} (u_{ij} + \frac{\sigma}{1-2\sigma} u_{ll} \delta_{ij}) \tag{4}$$

is the stress tensor and $u_{ij} = (\partial u_i / \partial x_j + \partial u_j / \partial x_i)/2$ is the strain tensor. We give here the strain tensor as computed from (3):

$$u_{xx} = \sum_{\mathbf{k}} i \left(k_x^2 A_{\mathbf{k}} e^{\kappa_l z} + k_x \kappa_t B_{\mathbf{k}} e^{\kappa_t z} \right) e^{i\mathbf{k}\mathbf{r}}$$

$$u_{yy} = \sum_{\mathbf{k}} i \left(k_y^2 A_{\mathbf{k}} e^{\kappa_l z} + k_y \kappa_t C_{\mathbf{k}} e^{\kappa_t z} \right) e^{i\mathbf{k}\mathbf{r}}$$

$$u_{zz} = -\sum_{\mathbf{k}} i \left[\kappa_l^2 A_{\mathbf{k}} e^{\kappa_l z} + \kappa_t \left(k_x B_{\mathbf{k}} + k_y C_{\mathbf{k}} \right) e^{\kappa_t z} \right] e^{i\mathbf{k}\mathbf{r}}$$
(5)

163 (2007)

and

$$u_{xy} = \sum_{\mathbf{k}} i \left[k_x k_y A_{\mathbf{k}} e^{\kappa_l z} + \frac{1}{2} \kappa_t \left(k_y B_{\mathbf{k}} + k_x C_{\mathbf{k}} \right) e^{\kappa_t z} \right] e^{i\mathbf{k}\mathbf{r}}$$
$$u_{xz} = \sum_{\mathbf{k}} \left[\kappa_l k_x A_{\mathbf{k}} e^{\kappa_l z} + \frac{1}{2} \left(\left(k_x^2 + \kappa_t^2 \right) B_{\mathbf{k}} + k_x k_y C_{\mathbf{k}} \right) e^{\kappa_t z} \right] e^{i\mathbf{k}\mathbf{r}}$$
$$u_{yz} = \sum_{\mathbf{k}} \left[\kappa_l k_y A_{\mathbf{k}} e^{\kappa_l z} + \frac{1}{2} \left(k_x k_y B_{\mathbf{k}} + \left(k_y^2 + \kappa_t^2 \right) C_{\mathbf{k}} \right) e^{\kappa_t z} \right] e^{i\mathbf{k}\mathbf{r}}$$
(6)

In addition

$$u_{ll} = \sum_{\mathbf{k}} i(k^2 - \kappa_l^2) A_{\mathbf{k}} e^{\kappa_l z} e^{i\mathbf{k}\mathbf{r}}$$
(7)

We consider the free surface described by equation z = f(x, y). Its normal vector **n** is proportional to $(f_1, f_2, -1)$, where $f_1 = \partial f / \partial x$ and $f_2 = \partial f / \partial y$. We assume that f_1 and f_2 are small quantities and limit ourselves to the second-order expansion in these quantities; we get the normal vector $\mathbf{n} = (f_1, f_2, -(1 - f_1^2/2 - f_2^2/2))$. The boundary condition $\sigma_{ij}n_j = 0$ reads

$$(u_{xx} + \frac{\sigma}{1-2\sigma}u_{ll})f_1 + u_{xy}f_2 = u_{xz}(1 - f_1^2/2 - f_2^2/2)$$

$$u_{xy}f_1 + (u_{yy} + \frac{\sigma}{1-2\sigma}u_{ll})f_2 = u_{yz}(1 - f_1^2/2 - f_2^2/2)$$

$$u_{xz}f_1 + u_{yz}f_2 = (u_{zz} + \frac{\sigma}{1-2\sigma}u_{ll})(1 - f_1^2/2 - f_2^2/2) .$$
(8)

We assume further that $\kappa_{l,t}f \ll 1$, and write $e^{\kappa_{l,t}z} \simeq 1 + \kappa_{l,t}f + \kappa_{l,t}^2 f^2/2$. We use then the Fourier decomposition $f = \sum_{\mathbf{q}} f_{\mathbf{q}} e^{i\mathbf{q}\mathbf{r}}$. The system of equations (8) can then be solved, in principle. It is of the form $A_{ij}X_j = \lambda_{ij}X_j$, where λ denotes a small parameter, originating in function f. For a flat surface $\lambda = 0$ (z = 0) and we get the Rayleigh waves. For a surface defined by function f the above system leads to $det(A - \lambda) = 0$ which induces small changes in the **k**-dependence of $\kappa_{l,t}$; and leads also to small changes in coefficients A, B, C. Essentially, the effect of the irregular surface is to introduce a superposition of waves instead of a pure **k**-Rayleigh plane wave. The actual superposition depends on the particular form of the function f.

We adopt a statistical view and average over function f and its derivatives in (8). We assume $\bar{f}_{1,2} = 0$, $\bar{f}f_{1,2} = 0$, $\bar{f}^2 = 2f^2$ and $\bar{f}_{1,2}^2 = q^2f^2$, where f is now a parameter and q^{-1} is a measure of the scale of the variations of the function f. Then, the wavevectors are not coupled anymore in equations (8), so we may restrict ourselves to one **k**-plane wave; in addition, we may assume $k_y = 0$. The *lhs* of equations (8) is now vanishing, and the remaining *rhs* gives

$$2\kappa_l k A (1 + \kappa_l^2 f^2 - q^2 f^2) + (k^2 + \kappa_t^2) B (1 + \kappa_t^2 f^2 - q^2 f^2) = 0$$

$$\kappa_l^2 A (1 + \kappa_l^2 f^2 - q^2 f^2) - \kappa_t k B (1 + \kappa_t^2 f^2 - q^2 f^2) - \frac{\sigma}{1 - 2\sigma} (k^2 - \kappa_l^2) A (1 + \kappa_l^2 f^2 - q^2 f^2) = 0$$
(9)

and C = 0. We introduce new variables $A' = A(1 + \kappa_l^2 f^2 - q^2 f^2)$ and $B' = B(1 + \kappa_t^2 f^2 - q^2 f^2)$ and the above equations become

$$2\kappa_l k A' + (k^2 + \kappa_t^2) B' = 0$$

$$2\kappa_t k B' + (k^2 + \kappa_t^2) A' = 0$$
(10)

The second equation (10) is obtained by using the dispersion relations (frequency ωvs wavevector **k**) and the definition of the waves velocities as functions of σ .

Equations (10) define the Rayleigh waves. With $\omega = c_l k \xi$ and $\kappa_l^2 = (1 - c_t^2 \xi^2 / c_l^2) k^2$, $\kappa_t^2 = (1 - \xi^2) k^2$ they lead to

$$\xi^{6} - 8\xi^{4} + 8\frac{2-\sigma}{1-\sigma}\xi^{2} - \frac{8}{1-\sigma} = 0$$
(11)

which has a solution close to unity. The amplitude ratio is guven by

$$A'/B' = -2\frac{\sqrt{1-\xi^2}}{2-\xi^2} .$$
(12)

The statistical effect of small superficial irregularities on the surface waves is the small change in amplitudes according to $A' = A(1 + \kappa_l^2 f^2 - q^2 f^2)$ and $B' = B(1 + \kappa_l^2 f^2 - q^2 f^2)$.

 $[\]bigodot$ J. Theor. Phys. 2007, apoma@theor1.theory.nipne.ro