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Abstract

It is shown that d-wave superconductivity may arise in high-Tc superconducting cuprates.

The critical temperature is estimated in a simple model for the BCS gap equation.

Recently, the well-known Bardeen-Cooper-Schrie�er (BCS) gap equation

∆(k) +
∑
k′

V (k,k′)
tanh βE(k′)/2

2E(k′)
∆(k′) = 0 (1)

has been brought back into discussion,[1] in connection with its integral equation properties. In
equation (1) ∆(k) is the gap in the spectrum of the Cooper pairs, V (k,k′) is the pair interaction,
β = 1/T is the inverse of the temperature T and

E(k) =
√

ε2(k) + |∆(k)|2 (2)

is the pair excitation spectrum, where ε(k) = e(k) − µ is the excitation spectrum of the free
particles; e(k) is their (band) energy and µ is the chemical potential. The critical temperature
equation

∆(k) +
∑
k′

V (k,k′)
tanh βcε

′/2

2 |ε′|
∆(k′) = 0 (3)

is derived from equation (1) for the critical temperature Tc = 1/βc where the gap vanishes. As
it is well-known, these BCS equations are relevant for classical superconductivity of metals and
alloys, super�uidity of He3 and, as it is widely agreed, for the high-Tc supercondyctivity.[2]

It has been noticed recently[1] that equation (3) is a Fredholm integral equation whose kernel
may be viewed as a matrix, and, as such, it may have solutions even for repulsive interaction,
in contrast with the current belief; the solution is the lowest negative eigenvalue of the kernel,
which, in general, may exist even for an inde�nite matrix. The only di�culty in getting this
eigenvalue is that we have often to resort to numerical computations, and the kernel matrix is in
general a matrix with labels in two- or three-dimensional k-space. We present here an approximate
analytical solution for high-Tc superconductivity, by taking advantage of the low �lling factor of
the holes in the two-dimensional Fermi sea of the high-Tcsuperconducting cuprates. This idea
was put forward in a previous paper.[3] For more information about high-Tc superconductivity we
refer the reader to Ref. 2. By using such a method we are able to get a d-wave superconductivity
for an attractive interaction.
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We start with the excitation spectrum

ε(k) = −2t (cos kx + cos ky)− µ , (4)

where t is the bandwidth parameter of a tetragonal cell. For low �lling it is reasonable to expand
ε(k) in powers of k; we limit this expansion to the fourth order,

ε(k) = −4t− µ + tk2 − 1

48
tk4 (3 + cos 4ϕ) , (5)

where kx = k cos ϕ and ky = k sin ϕ. From this equation we get k(ε, ϕ) as given by

ε = −4t− µ + tk2
0 ,

k2 = k2
0 + 1

48
k4

0 (3 + cos 4ϕ) .
(6)

The Fermi surface is de�ned by ε = 0, i.e. k2
0F = 4 + µ/t, and the �lling factor n is given by

n = k2
F0 (1 + k2

F0/16) /2π, or k2
F0 ' 2πn.

We pass from the integration over k′ in equation (3) into integration over ε′, with the density of
states given by

ρdε′ = 2tk′dk′ =
[
1 +

1

24
k2

0(3 + cos ϕ′)
]
dε′ , (7)

by using equations (6). We expand the interaction V (k,k′) in powers of k, k′ up to the fourth
order, and express it as a function of ε, ε′, ϕ, ϕ′ by means of equations (6). In addition, due to
the low �lling factor, it is reasonable to take ε = ε′ = 0 in V (k,k′) and ρ, such that k0 = kF0.
Equation (3) can then be written as

∆(ϕ) + I
∫

dϕ′U(ϕ, ϕ′)∆(ϕ′) = 0 , (8)

where

I =
1

16π2t

∫ εc

−εc

dε
tan βcε/2

|ε|
(9)

and U = ρV ; the integration in equation (9) is performed as usually with a cuto� εc.

We pass now to the interaction V (k,k′). We assume it consists of a on-site Coulomb repulsion
of strength v0 and an inter-site attraction of strength v between nearest neighbours. The latter
comes typically from terms like

c+
k1

c+
k2

ck3ck1+k2−k3e
i(k1−k3)rij , (10)

where ck(c
+
k ) are annihilation (creation) fermion operators and rij is the position vector of the

nearest neighbours. We take k2 = −k1 = k as usually (spin labels included), and the gap

∆(k) =
〈
c+
k c+

−k

〉
. It is reasonable to assume that the gap in invariant to spatial re�ection, so,

beside factor ei(k−k′)rij we have also the factor ei(k+k′)rij in equation (10). Therefore, the pair
interaction is proportional to cos kx cos k′

x + cos ky cos k′
y. Consequently, we take the interaction

as[3]

V (k,k′) = v0 + v
(
cos kx cos k′

x + cos ky cos k′
y

)
. (11)

According to the above discussion, its expansion is

V (ϕ, ϕ′) = v0 + v
(
2− k2

0 + k4
0/8

)
+

1

8
vk4

0 cos 2ϕ cos 2ϕ′ , (12)
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and, by making use of equation (7),

U(ϕ, ϕ′) = (v0 + 2v) +
1

8
k2

0(v0 − 6v) +
1

8
vk4

0 cos 2ϕ cos 2ϕ′ +
1

24
k2

0

[
v0 + v(2− k2

0)
]
cos 4ϕ′ . (13)

With the de�nition

∆n =
∫

dϕ cos nϕ∆(ϕ) , (14)

equation (8) is transformed into a system of equations

∆0 + 2π
[
(v0 + 2v) + 1

8
k2

0(v0 − 6v)
]
I∆0 + π

12
k2

0 [v0 + v(2− k2
0)] I∆4 = 0 ,

∆2 + π
8
vk4

0I∆2 = 0

(15)

and ∆4 = 0.

The �rst equation (15) gives an s-wave superconductivity. Very likely, it is forbidden by the
Coulomb interaction v0 which overwhelms the attraction 2v. In this case, we are left with the
d-wave equation (15), which gives the critical temperature

Tc = 1.14εce
−64πt/|v|k2

0 (16)

(integral I = [ln(1.14βcεc0] /8π2t). For a su�ciently large interaction and cuto� energy εc this
critical temperature can be pretty high. For instance, we may take εc ' t, and get a critical
temperature as high as Tc = 100K for v ' 4.8eV and t ' 2.4meV with the �lling factor n = 0.15.

It is worth notingthat we may start with equation (3) and the separable interaction given by
equation (11). De�ning

∆0 =
∑

k
tanh βcε/2

|ε| ∆(k) ,

∆1 =
∑

k cos kx
tanh βcε/2

|ε| ∆(k) ,

∆2 =
∑

k cos ky
tanh βcε/2

|ε| ∆(k) ,

(17)

equation (3) becomes

∆0 +
1

2
v0∆0 +

1

2
v cos kx∆1 +

1

2
v cos ky∆2 = 0 , (18)

which leads to
∆0 + 1

2
v0I0∆0 + vI1∆1 = 0 ,

∆1 + 1
2
v0I1∆0 + 1

2
v (I2 + I3) ∆1 = 0 ,

(19)

where
I0 =

∑
k

tanh βcε/2
|ε| ,

I1 =
∑

k cos kx
tanh βcε/2

|ε| =
∑

k cos ky
tanh βcε/2

|ε| ,

I2 =
∑

k cos2 kx
tanh βcε/2

|ε| =
∑

k cos2 ky
tanh βcε/2

|ε| ,

I3 =
∑

k cos kx cos ky
tanh βcε/2

|ε| ,

(20)
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and ∆1 = ∆2. The system of equations (19) has in principle two eigenvalues. It is di�cult to get
them, unless a numerical evaluation is made for the integrals I0,1,2,3. An expansion in powers of
the �lling factor can be applied for their estimation. However, the solutions are not what we are
looking for, because the angular symmetry is hidden in the de�nition of ∆0, ∆1. The expansion
in angular variable as presented above is more appropriate.

The method presented here can be applied to other types of interactions and energy band structure.
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