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2 J. Theor. Phys.with soures, borrowed from eletromagnetism. This method is employed herein to determinethe elasti waves produed in a semi-in�nite (half-spae) body by external fores loalized eitherbeneath, or on the body surfae. For the fore loalized beneath the body surfae the elasti wavesare stationary waves along the diretion perpendiular to the body surfae. For the fore loalizedon the surfae we determine two transverse waves propagating in the body and a longitudinal onewhih appears as an eigenmode. The surfae displaement and the fore exerted on the surfae areomputed in both ases. All these quantities exhibit a harateristi derease and an osillatorybehavior along the in-plane distane on the body surfae. In both ases, the present method leadsto oupled integral equations for the wave amplitudes, whih are solved. By means of the methodpresented herein new results are obtained for a point-like fore loalized under the surfae andone of Lamb's problem (fore loalized on the surfae) is generalized. The generalization onsistsin treating a general distribution of the fore ating on the body surfae and a general orientationof this fore. In addition, in both ases, the e�ets of a loalized pressure are analyzed. Finally,a brief disussion is given regarding the extension of the present method to inlude the e�et ofthe inhomogeneities on the wave propagation in elasti bodies with �nite geometries.2 General theoryThe elasti waves in isotropi bodies are governed by the equation of motion[10℄
ρü = µ∆u + (λ + µ) grad · divu + ρf , (1)where ρ is the density, u is the displaement �eld, µ and λ are the Lame oe�ients and f is anexternal fore per unit mass (aeleration). By a Fourier transform of the form

u(R, t) =
∑

K

∫

dωu(K, ω)eiKR−iωt (2)and a similar one for the fore f , equation (1) beomes
(

−ρω2 + µK2
)

u = − (λ + µ) (Ku)K + ρf , (3)where we dropped out the arguments K, ω for simpliity. Equation (3) an easily be solved. Itssolution is given by
u = − (v2

l − v2
t ) (Kf)
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t K2) (ω2 − v2

l K
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K − f

ω2 − v2
t K2

, (4)where
vt =

√

µ

ρ
, vl =

√

λ + 2µ

ρ
(5)are the veloities of the transverse and, respetively, longitudinal waves. We an see from equation(4) that for a longitudinal fore f = fK/K the displaement �eld is longitudinal and has theeigenfrequenies ω = vlK, while for a transverse fore, Kf = 0, the �eld is transverse and hasthe eigenfrequenies ω = vtK. As it is well known, the Lame oe�ients an be expressed by theYoung modulus E and the Poisson ratio σ,

λ =
Eσ

(1 + σ) (1 − 2σ)
, µ =

E

2 (1 + σ)
, (6)



J. Theor. Phys. 3and, for reasons of stability, E > 0 and −1 < σ < 1/2 (atually, for usual bodies, 0 < σ < 1/2).In partiular, the ratio
q =

v2
l

v2
t

− 1 =
λ

µ
+ 1 =

1

1 − 2σ
(7)satis�es the inequality q > 1/3 (atually q > 1)[10℄. In general, the solution of the homogeneousequation (1) ("free waves") must be added to the partiular solution given by equation (4) ("foredwaves").As it is well known, another, more diret, method an be used for solving equation (1), withoutresorting to Fourier transforms. The method onsists in writing the displaement u as a sumof two funtions, u = ut + ul, satisfying the onditions divut = 0, as for transverse waves, and

curlul = 0 orresponding to longitudinal waves. Then, it is easy to see that funtions ut,l satisfythe wave equations with veloities vt,l, respetively.We present here a third method, whih is used in the present paper, based on Kirhho� potentials.Indeed, making use of the notations introdued above we write equation (1) as
1

v2
t

ü− ∆u = q · grad · divu +
f

v2
t

, (8)where we an reognize the wave equation with soures q · grad · divu and f/v2
t . As it is wellknown, its (partiular) solution is given by the retarded (Kirhhho�) potential

u(R, t) = q
4π

∫

dR′ grad·divu(R′,t−|R−R
′|/vt)

|R−R′|
+

+ 1
4πv2

t

∫

dR′ f(R
′,t−|R−R′|/vt)
|R−R′|

.

(9)Indeed, making use of the Fourier transform given by equation (2) and using also the well-knownintegral
∫

dR
eiKR+iωR/vt

R
= − 4πv2

t

ω2 − v2
t K2

(10)we get easily the solution given by equations (3) and (4). We apply herein this method of Kirhho�potential, inspired from the theory of eletromagnetism,[11℄ to the elasti waves generated in asemi-in�nite body by fores loalized either beneath, or on the body surfae.3 Semi-in�nite body. Surfae wavesWe onsider a semi-in�nite isotropi body extending over the region z < 0, with a plane surfaeat z = 0. We may onsider also a fore f ating on this body, either inside it or loalized on itssurfae, and look for solutions of equation (1), i.e. for the waves propagating in the body. Ofourse, we assume that u, f = 0 for z > 0 (outside the body). This is Lamb's problem.[2℄ Usually,it is assumed that fore f is loalized, either on the body surfae or beneath it, and the problemis approahed by making use of a remarkable property of equation (1).Indeed, as it is well known, equation (1) is another form of the more ompat equation written as
ρüi =

∂σij

∂xj
+ ρfi , (11)where

σij = λullδij + 2µuij (12)



4 J. Theor. Phys.is the stress tensor,
uij =

1

2

(

∂ui

∂xj

+
∂uj

∂xi

) (13)is the strain tensor and i, j, l, et, denote the oordinates axes. We take a small volume enirlinga point on the body surfae and apply the Gauss theorem for equation (11). It is easy to see that,for a fore distributed in the body volume, we get
σijnj = 0 , (14)for any point on the body surfae, where n is the unit vetor normal to the body surfae. Equation(14), whih plays the role of a boundary ondition, tells that the body surfae is free (from anyfores). If there exists a fore loalized on the body surfae, say fδ(z), then it is easy to see thatthe same proedure leads to

σijnj + fi = 0 , (15)whih tells again that the total fore on the surfae is vanishing. In addition, equation (15) tellsthat the quantity σijnj is the surfae elasti fore (fore per unit area) ating on the surfae. It isalso easy to see that the same proedure an be applied, at least in priniple, to a fore loalizedonto a point, a surfae, region, et inside the body. In all these ases we write solutions forthe homogeneous equation (11) and impose upon them the ontinuity and the "jump" boundaryondition of the type given by equation (15). This way, the general solution of equation (11)is obtained. This was the method used by Lamb in treating suh problems.[2℄ Apart from lessinteresting two-dimensional problems, Lamb treated also partiular ases of a fore loalized onthe surfae of a semi-in�nite isotropi body and skethed an integral representation of the solutionfor a fore loalized beneath the surfae of suh a body.It is worth noting also that the "free-surfae" ondition given by equation (14) has been used byRayleigh[1℄ to identify the damped "free" surfae waves (∼ eκz, κ real) propagating on the surfaeof a semi-in�nite body in the absene of any fore.A di�erent proedure is adopted in this paper. A partiular solution is obtained by using Kirhho�potential, as determined by the external fore f ("fored waves"), and "free waves" of the form
ut,l are added to it, i.e. solutions of the homogeneous equation, in order to satisfy the boundaryonditions of the type given by equations (14) and (15). We arry out expliit alulations for apoint-like fore loalized beneath the body surfae and for a point-like fore loalized on the bodysurfae. As we shall see, the damped "free" surfae waves are not exited by loalized externalfores, though they may be exited by surfae damped fores.4 Fore loalized beneath the surfaeWe onsider a fore

f(R, t) = a3
f(t)δ(R − R0) (16)loalized at depth d beneath the plane surfae z = 0 of a semi-in�nite elasti body extendingto the region z < 0, suh as R0 = (0, 0,−d). The harateristi length a is, muh smaller thanthe relevant distanes, is introdued on one hand for reasons of dimensionality and, on the other,for having a representation of the spatial extension of the "fous" onto whih the fore ats. Inequation (16) the position vetor is given by R = (x, y, z) = (r, z) and t denotes the time. Thepropagating spherial waves produed by this point-like fore in an in�nite body are well known



J. Theor. Phys. 5(see for instane Ref. [9℄). We derive here the waves produed by suh a soure in a semi-in�nitebody. We represent the displaement �eld as
u = (v, u3)θ(−z) , (17)where v is the in-plane omponent (parallel to the surfae), u3 is the transverse omponent (per-pendiular to the surfae) and θ(z) = 0 for z < 0, θ(z) = 1 for z > 0 is the step funtion. We useFourier transforms of the form

v(r, z; t) =
∑

k

∫

dωv(k, ω; z)eikr−iωt , (18)and a similar one for u3(r, z; t), where k is the in-plane wavevetor. Usually, we leave asidethe arguments k, ω, while preserving expliitly the z-dependene of the funtions v(k, ω; z) and
u3(k, ω; z). The divergene ourring in equation (9) an then be written as

divu =

(

divv +
∂u3

∂z

)

θ(−z) − u3(0)δ(z) , (19)where we an see the ourrene of spei� surfae ontributions assoiated with u3(0) = u3(z = 0).We ompute grad · divu aording to equations (18) and (19) and introdue it, together withthe fore given by equation (16), in equation (9). The intervening integrals redue to the knownintegral[12℄
∫ ∞

|z|
dxJ0

(

k
√

x2 − z2
)

eiωx/c =
i

κ
eiκ|z| , (20)where J0 is the Bessel funtion of the �rst kind and zeroth order and

κ =

√

ω2

v2
t

− k2 . (21)In addition, we introdue the onvenient notations v1 = vk/k, v2 = vk⊥/k and similar ones for
f1,2, where k⊥ is a vetor perpendiular to k, kk⊥ = 0, and of the same magnitude k. The foreterm in equation (9), whih we denote by F, an easily be evaluated. Its Fourier transform isgiven by

F = − a3
f

2v2
t κ

sin κ |z + d| , (22)where κ2 = ω2/v2
t − k2 > 0. Applying the proedure desribed above we get straightforwardlyfrom equation (9)

v2 = F2 = − a3f2

2v2
t κ

sin κ |z + d| (23)and the set of oupled integral equations
v1 = − iqk2

2κ

∫ 0 dz′v1(z
′)eiκ|z−z′| − qk

2κ
∂
∂z

∫ 0 dz′u3(z
′)eiκ|z−z′| + F1 ,

u3 = − qk
2κ

∂
∂z

∫ 0 dz′v1(z
′)eiκ|z−z′| + iq

2κ
∂2

∂z2

∫ 0 dz′u3(z
′)eiκ|z−z′| + F3 .

(24)In deriving these equations it is worth noting the non-invertibility of the derivatives and theintegrals, aording to the identity
∂

∂z

∫

0
dz′f(z′)

∂

∂z′
eiκ|z−z′| = κ2

∫

0
dz′f(z′)eiκ|z−z′| − 2iκf(z) (25)



6 J. Theor. Phys.for any funtion f(z), z > 0; it is due to the disontinuity in the derivative of the funtion eiκ|z−z′|for z = z′. These equations imply the relationship
u3 = − i

k

∂v1

∂z
− i

k

∂F1

∂z
− F3 . (26)Introduing u3 from this equation into the �rst equation (24) and performing the integrations byparts, we get a single integral equation

(1 + q)v1 = − iqω2

2v2

t
κ

∫ 0 dz′v1(z
′)eiκ|z−z′| + q

2
v1(0)e−iκz + (1 − q)F1−

− iqκ
2

∫ 0 dz′F1(z
′)eiκ|z−z′| + q

2
F1(0)e−iκz + qk

2κ
∂
∂z

∫ 0 dz′F3(z
′)eiκ|z−z′| .

(27)Taking the seond derivative with respet to z in this equation we �nd
∂2v1

∂z2
+ κ′2v1 =

q

1 + q

(

κ2F1 + ik
∂F3

∂z

)

, (28)where κ′2 = ω2/v2
l − k2. Now, it is easy to get the solution for v1. It is given by

v1 =
a3

2ω2
[κf1 sin κ |z + d| + ikf3sgn(z + d) cos κ(z + d)] (29)and, by equations (22) and (26),

u3 =
a3k

2ω2κ
[kf3 sin κ |z + d| + iκf1sgn(z + d) cosκ(z + d)] . (30)We an see that all these solutions v1,2, u3 are stationary waves along the diretion perpendiularto the surfae, as generated by the stationary osillating fore given by equation (22). In addition,they are regular funtions for κ → 0, though v2 and u3 may inrease inde�nitely for κ → 0,

v2(κ → 0), u3(κ → 0) ∼ |z + d|; this inrease indiates the transition to the damped regime. It isalso worth noting the disontinuity ourring at z = −d.It is interesting to note that the wavevetors k and κ in the loalized fore given by equation (16)are independent and real variables. Out of them, the equation of the elasti waves selets onlythose wavevetors whih satisfy the ondition ω2 = v2
t (k

2 + κ2), and assigns them to the allowedpropagating waves. This is the mathematial mehanism through whih extended elasti wavesare generated by loalized fores. Another observation is that, the above waves being stationary,the polarization is meaningless for them, although they are assoiated with the veloity vt of thetransverse elasti waves. On the other hand, we must notie that the solution of the homogeneousequation (28) is the "free" longitudinal wave propagating with the wavevetor κ′, i.e. with theveloity vl of the longitudinal waves, and similarly, the solution of the homogeneous wave equation(8) is the "free" transverse wave propagating with the wavevetor κ and the veloity vt.5 Surfae displaementThe displaement of the surfae z = 0, as aused by the "fored waves" obtained above, an beomputed by using the inverse Fourier transforms of v1,2(K) and u3(K) given by equations (23),(29) and (30), where K = (k, κ). As usually, we leave aside for the moment the argument ω in



J. Theor. Phys. 7these expressions. It is worth noting that κ =
√

ω2/v2
t − k2 is not an independent variable. TheFourier omponents of the fore are given by f(K) = a3

feiκd. We hoose an in-plane refereneframe with one axis oriented along the in-plane radius r (radial axis r) and another perpendiularto the former (tangential axis t). We denote by α the angle between the fore vetor f and radius
r so that the fore vetor an be written as (f cos α, f sin α, f3), where f denotes the in-plane(horizontal) fore and f3 denotes the vertial fore. We also denote by ϕ the angle between the in-plane wavevetor k and radius r, suh that k = k(cos ϕ, sin ϕ) and k⊥ = k(− sin ϕ, cos ϕ). Then,we an ompute easily the fore projetions f1,2,3 appearing in equations (23), (29) and (30). Theyare given by f = (f cos(α−ϕ), f sin(α−ϕ), f3). It is worth noting that on hanging k → −k, i.e.
ϕ → π +ϕ, the quantities f1,2 hange sign, as they should do; similarly, f3, being the projetion ofthe fore along the wavevetor omponent κ, must hange sign under the reversal of the diretionof this omponent, κ → −κ. Making use of the above notations and of v(K) = v1k/k + v2k⊥/kwe an obtain immediately the radial and tangential omponents of the displaement, vr(K) and
vt(K) , respetively. However, it is worth noting that for a real displaement the Fourier transformsmust satisfy the symmetry relationship v

∗(−K) = v(K), and, similarly, u∗
3(−K) = u3(K). Takinginto aount the hange of sign of the fore omponents f1,2,3 under this operation, we an seethat a fator sgn(π − ϕ) must be introdued, in general, wherever relevant, in order to get realdisplaements. The integrals with respet to angle ϕ in the Fourier transforms imply the Besselfuntions J0,1. Some of these integrals are olleted in Appendix.The surfae displaement anbe written as

vr(r) = a3f
4πω2 (I1 − 1

r
I2) cos α − a3f

4πv2

t
r
I3 cos α − a3f3

4πω2 I4 ,

vt(r) = a3f
4πω2r

I2 sin α − a3f
4πv2

t

(I5 − 1
r
I3) sinα ,

u3(r) = a3f3

4πω2 I6 − a3f
4πω2 I4 cos α ,

(31)where
I1 =

∫ ω/vt

0 dkκk sin κd · J0(kr) , I2 =
∫ ω/vt

0 dkκ sin κd · J1(kr) ,

I3 =
∫ ω/vt

0 dk 1
κ

sin κd · J1(kr) , I4 =
∫ ω/vt

0 dkk2 cos κd · J1(kr) ,

I5 =
∫ ω/vt

0 dk k
κ

sin κd · J0(kr) , I6 =
∫ ω/vt

0 dk k3

κ
sin κd · J0(kr) .

(32)We estimate these integrals in the fast osillating limit ωr/vt , ωd/vt ≫ 1. In this ase, the mainontribution omes from k ∼ 0 and extends over a range ∆k ∼ 1/r for r ≫ d or ∆k ∼ 1/d for
d ≫ r. The leading ontributions for r ≫ d are given by

vr(r) ∼
a3f

ωvtr2
cos α , vt(r) ∼

a3f

ωvtr2
sin α , u3(r) ∼

a3f

ω2r3
cos α , (33)where osillating fators of the form sin ωd/vt, cos ωd/vt are left aside. We an see the diretionalharater of the surfae displaement (through angle α) and the vertial omponent (u3) whih ismuh smaller (by a fator ωr/vt) than the horizontal omponents. We shall see that the diretionalharater as given in equation (33) for the "fored waves" is amended by the ontribution of the"free waves". It is also worth noting that the leading ontribution to the vertial displaement isaused by the in-plane fore f , and, in general, the vertial omponent of the fore brings a smallerontribution. This is due to the stationary harater of the waves along the vertial diertion.Let us assume now a fore derived from a loalized pressure p. The fore omponents are thengiven by f1 = ipk/ρ, f2 = 0 and f3 = (−ipκ/ρ)eiκd. In omputing the Fourier transforms of the



8 J. Theor. Phys.surfae displaement we must take are again of the general symmetry relations v
∗(−K) = v(K)and u

∗
3(−K) = u3(K). We get

vr(r) = a3p
4πω2ρ

∫ ω/vt

0 dkκk2 sin κd(1 − cos κd)J1(kr) ,

vt(r) = a3p
2π2ω2ρr

∫ ω/vt

0 dkκk cos2 κd sin(kr) ,

u3(r) = a3p
4πω2ρ

∫ ω/vt

0 dkk3(sin2 κd + cos κd)J0(kr) .

(34)In the same limit ωr/vt ≫ ωd/vt ≫ 1 the leading ontributions to the above displaements aregiven by
vr(r), vt(r) ∼

a3p

ωvtρr3
, u3(r) ∼

a3p

ω2ρr4
. (35)We an see that the displaements produed by pressure fall o� faster with distane than theorresponding displaements aused by a fore (equation (33)).6 Fore exerted on the surfaeWe are interested now in the fore exerted on the surfae z = 0 by the "fored waves" produedbeneath the surfae. As shown above, the fore exerted by a displaement �eld u per unit area ofa surfae with unit normal n is given (in our notations) by ρf s

i = σijnj , where σij = λullδij +2µuijis the stress tensor and uij = (1/2)(∂ui/∂xj + ∂uj/∂xi) is the strain tensor. Using the refereneframe de�ned by k, k⊥ and z we get
f s

1 (k, ω) =
a3v2

t
κ

ω2 [κf1 cos κd − ikf3 sin κd] ,

f s
2 (k, ω) = −a3f2 cos κd ,

f s
3 (k, ω) =

a3v2

t
k

ω2 [kf3 cos κd − iκf1 sin κd] .

(36)We note that the dilatation vanishes, v11 + v22 + u33 = 0, in aordane with the fat that thesesolutions, given by equations (23), (29) and (30), are onstruted from transverse waves.We ompute the inverse Fourier transforms of these fores with respet to the wavetor k aord-ing to the proedure desribed above for the surfae displaement. The asymptoti expressions(ωr/vt ≫ ωd/vt ≫ 1) are given by
f s

r (r) ∼ a3f

r2
cos α , f s

t (r) ∼ a3f

r2
sin α , f s

3 (r) ∼ a3fvt

ωr3
cos α ; (37)they are similar with the surfae displaements given by equation (33), exept for an additionalfator ω. In the same manner we an ompute the fore exerted on the surfae by a loalizedpressure.7 General solutionThe general solution of the problem is obtained by adding to the partiular solution given byequations (23), (29) and (30) the solutions of the homogeneous equations (8) and (28). These are



J. Theor. Phys. 9given by a transverse wave
ut =

(

A1, A2,−
k

κ
A1

)

eiκz (38)and a longitudinal wave
ul =

(

B, 0,
κ′

k
B

)

eiκ′z , (39)where the onstants A1,2, B are determined from the ondition of a vanishing total surfae fore,in aordane with equation (14). On equations (38) and (39) one an hek the transversalityondition divut = 0 and the ondition curlul = 0 for longitudinal waves. The "free waves"solutions given by equations (38) and (39) are written in the referene frame de�ned by k, k⊥ and
z.We ompute the surfae fore ρf 0s

i = λu0
llδi3 +2µu0

i3, where u
0 = ut +ul, and impose the ondition

f 0s
i + f s

i = 0 , (40)where f s
i , given by equations (36), orrespond to the surfae fore generated by the partiularsolution ("fored waves"). It is worth noting here that equation (40) holds for any point on thesurfae z = 0, i.e. it is multiplied in fat by the fator eikr with the same in-plane wavevetor k.Sine ω is the same for both the partiular solution and the "free waves", and ω2 = v2

t (κ
2 + k2),

ω2 = v2
l (κ

′2 + k2) in both ases, it follows that κ, κ′ are the same, i.e. they are real variables, asorresponding to loalized external fores. Consequently, the "free waves" are propagating waves.Damped "free" surfae waves (i.e. waves with κ, κ′ purely imaginary) an be exited by dampedexternal fores.[13℄Condition (40) leads to
A2 = −i

a3f2

v2
t κ

cos κd (41)and the system of equations
(κ2 − k2)A1 + 2κκ′B = a3κ2

ω2 (kf3 sin κd + iκf1 cos κd) ,

2k2A1 − (κ2 − k2)B = −a3k2

ω2 (κf1 sin κd + ikf3 cos κd) ,

(42)whose solution an be written as
A1 = −4κκ′k2

∆
v1 + 2κ3(κ2−k2)

k∆
u3 ,

B = 4κ3k
∆

u3 + 2k2(κ2−k2)
∆

v1 ,

(43)where ∆ = (κ2 − k2)2 + 4κκ′k2. Inidentally, we note here that ∆ = 0 for κ → iκ and κ′ → iκ′gives the dispersion relation ω(k) for the Rayleigh surfae waves.The surfae displaements brought about by the "free waves" are given by v0
1 = A1 + B, v0

2 = A2and u0
3 = −k

κ
A1 + κ′

k
B. We ompute their inverse Fourier transforms by the same proedure asthat desribed in Setion 5. Under the same onditions as those employed in this Setion weget the asymptoti behaviour

vtot
r (r) ∼ a3f

ωvtr2 cos α , a3f
ωvtr2 sin α ,

vtot
t (r) ∼ a3f

ωvtr2 sin α , a3f
ωvtr2 cos α ,

utot
3 (r) ∼ (1 − vt/vl)

a3f
ω2r3 cos α , a3vtf

ω2vlr3 sin α

(44)



10 J. Theor. Phys.for the total displaement u
tot = u

0 + u. We an see that the "free waves" do not hangethe r-dependene, but introdue an additional diretional harater. In addition, the vertialdisplaement is a�eted by fators depending on vt/vl. A similar onlusion (exept for thediretional harater) holds for a fore derived from pressure.8 Fore loalized on the surfaeWe onsider a semi-in�nite isotropi elasti body extending over the region z > 0 and assume aloalized fore
f(R, t) = a

∑

k

∫

dωf(k, ω)eikr−iωtδ(z) (45)ating on the body plane surfae z = 0, where a is a harateristi length, R = (r, z) and k is thein-plane wavevetor. This is a generalization of one of Lamb's problems.[2℄We represent the displaement �eld as
u = (v, u3)θ(z) , (46)where v is the in-plane omponent (parallel to the surfae), u3 is the transverse omponent (per-pendiular to the surfae) and θ(z) = 0 for z < 0, θ(z) = 1 for z > 0 is the step funtion. Thedivergene ourring in equation (9) an then be written as

divu =

(

divv +
∂u3

∂z

)

θ(z) + u3(0)δ(z) , (47)where we an see the ourrene of spei� surfae ontributions assoiated with u3(0) = u3(z = 0).As before, we use a Fourier transform of the form
v(r, z; t) =

∑

k

∫

dωv(k, ω; z)eikr−iωt , (48)and a similar one for u3(r, z; t). Usually, we leave aside the arguments k, ω, while preservingexpliitly the z-dependene of the funtions v(k, ω; z) and u3(k, ω; z). We ompute grad · divuaording to equations (47) and (48) and introdue it, together with the fore given by equation(45), in equation (9). As for a fore loalized beneath the surfae, the intervening integrals redueto the known integral[12℄
∫ ∞

|z|
dxJ0

(

k
√

x2 − z2
)

eiωx/c =
i

κ
eiκ|z| , (49)where

κ =

√

ω2

v2
t

− k2 . (50)We use also the same onvenient notations v1 = vk/k, v2 = vk⊥/k and similar ones for f1,2, where
k⊥ is a vetor perpendiular to k, kk⊥ = 0, and of the same magnitude k. Then, equation (9)redues to

v2 =
iaf2

2v2
t κ

eiκz (51)and to a set of two oupled integral equations whih read
v1 = − iqk2

2κ

∫

0 dz′v1(z
′)eiκ|z−z′| − qk

2κ
∂
∂z

∫

0 dz′u3(z
′)eiκ|z−z′|+

+ iaf1

2v2

t
κ
eiκz

(52)



J. Theor. Phys. 11and
u3 = − qk

2κ
∂
∂z

∫

0 dz′v1(z
′)eiκ|z−z′| + iq

2κ
∂2

∂z2

∫

0 dz′u3(z
′)eiκ|z−z′|+

+ iaf3

2v2

t
κ
eiκz .

(53)We note here again that in deriving these equations it is worth observing the non-invertibility ofthe derivatives and the integrals, aording to the identity
∂

∂z

∫

0
dz′f(z′)

∂

∂z′
eiκ|z−z′| = κ2

∫

0
dz′f(z′)eiκ|z−z′| − 2iκf(z) (54)for any funtion f(z), z > 0; it is due to the disontinuity in the derivative of the funtion eiκ|z−z′|for z = z′. From equations (52) and (53) we get easily

u3 = − i

k

∂v1

∂z
− ia (κf1 − kf3)

2v2
t κk

eiκz . (55)Equation (51) gives the transverse wave v2 (for κ real) propagating with the veloity vt, aordingto equation (50). Its polarization is normal to the plane of propagation (the plane determined bythe vetors k and κ). This wave is usually known as the s-wave in the theory of eletromagnetism(from the German word "senkreht" whih means "perpendiular "). From equation (51) we ansee that the s-wave beomes singular for κ = 0.We pass now to the system of oupled equations (52) and (53), and the relationship given byequation (55). We introdue u3 from equation (55) into equation (52) and get
(1 + q) v1 = − iqω2

2v2

t
κ

∫

0 dz′v1(z
′)eiκ|z−z′|+

+ iaq
4v2

t
κ2 (κf1 − kf3)

∂
∂z

∫

0 dz′eiκz′eiκ|z−z′| + 1
2

[

iaf1

v2

t
κ

+ qv1(0)
]

eiκz .

(56)This equation an easily be solved by taking the seond derivative with respet to z and using thenon-invertibility equation (54). We get
∂2v1

∂z2
+ κ

′2v1 = − iaq

2v2
t (1 + q)

(κf1 − kf3) eiκz , (57)where
κ

′

=

√

√

√

√

ω2

v2
l

− k2 . (58)For a longitudinal fore κf1−kf3 = 0 we obtain from equation (57) longitudinal waves propagatingwith wavevetor κ′ (for κ′ real) and with the veloity vl. For a general fore, equation (57) hasthe partiular solution
v1 =

ia

2ω2
(κf1 − kf3) eiκz (59)and

u3 = − iak

2ω2κ
(κf1 − kf3) eiκz . (60)We an see that v1 and u3 given above orrespond to a transverse wave, kv1 + κu3 = 0, whosepolarization lies in the plane of propagation. This is alled the p-wave, where p stands for "par-allel". We an see also that v1is a regular funtion, while u3 may exhibit the same singularity as

v2 does for κ = 0.



12 J. Theor. Phys.9 Surfae displaement aused by a fore loalized on thesurfaeThe displaement of the surfae z = 0 an be omputed by using the inverse Fourier transformsof v1,2(K) and u3(K) given by equations (51), (59) and (60), where K = (k, κ). As usually,we leave aside for the moment the argument ω in these expressions. It is worth noting that
κ =

√

ω2/v2
t − k2 is not an independent variable. First, we onsider a δ-type fore loalized onthe surfae, f(R) = ab2

fδ(r)δ(z), where f is a onstant vetor and b is a harateristi loalizationlength on the surfae. Again, this is another generalization of one of Lamb's problems.[2℄ TheFourier omponents f(K) = ab2
f of this fore do not depend on K (but they may have an ω-dependene). As before, we hoose an in-plane referene frame with one axis oriented along thein-plane radius r (radial axis r) and another perpendiular to the former (tangential axis t). Wedenote by α the angle between the fore vetor f and radius r. Then, the fore vetor an bewritten as f = (f cos α, f sin α, fv), where f denotes the in-plane (horizontal) fore and fv denotesthe vertial fore. Similarly, we denote by ϕ the angle between the in-plane wavevetor k andradius r, suh that k = k(cos ϕ, sin ϕ) and k⊥ = k(− sin ϕ, cos ϕ). Then, the fore projetions

f1,2,3 entering equations (51), (59) and (60) an be written as
f1 = b2f cos(α − ϕ) , f2 = b2f sin(α − ϕ) , f3 = b2fv . (61)It is worth noting that on hanging k → −k, i.e. ϕ → π + ϕ, the quantities f1,2 hange sign, asthey should do; similarly, f3, being the projetion of the fore along the wavevetor omponent

κ, must hange sign under the reversal of the diretion of this omponent, κ → −κ. Making useof the above notations and of v(K) = v1k/k + v2k⊥/k we an obtain immediately the radial andtangential omponents of the displaement, vr(K) and vt(K) , respetively. However, it is worthnoting that for a real displaement the Fourier transforms must satisfy the symmetry relationship
v
∗(−K) = v(K), and, similarly, u

∗
3(−K) = u3(K). Taking into aount the hange of sign ofthe fore omponents f1,2,3 under this operation, we an see that a fator sgn(π − ϕ) must beintrodued wherever relevant. The Fourier omponents of the displaement an be written as

vr(k) =
[

iab2

2ω2 κf cos(α − ϕ) cosϕ − iab2f
2v2

t
κ

sin(α − ϕ) sin ϕ
]

sgn(π − ϕ) − iab2

2ω2 kfv cos ϕ ,

vt(k) =
[

iab2

2ω2 κf cos(α − ϕ) sinϕ + iab2f
2v2

t
κ

sin(α − ϕ) cosϕ
]

sgn(π − ϕ) − iab2

2ω2 kfv sin ϕ ,

u3(k) = − iab2

2ω2 kf cos(α − ϕ) + iab2k2

2ω2κ
fvsgn(π − ϕ)

(62)
(for z = 0). Now we an take the inverse Fourier transforms of these quantities. It is easy tosee that the integrals over angle ϕ whih ontain fators sin2 ϕ and cos2 ϕ are vanishing. For theradial omponent we are left with

vr(r) = − iab2f
2(2π)2ω2 sin α

∫ ω/vt

0 dk k3

κ

∫ 2π
0 dϕsgn(π − ϕ) sin ϕ cos ϕeikr cos ϕ−

− iab2fv

2(2π)2ω2

∫ ω/vt

0 dkk2
∫ 2π
0 dϕ cos ϕeikr cos ϕ .

(63)The integrals in equation (63) an be performed straightforwardly, by making use of the propertiesof the Bessel funtions.[12, 14℄ We get
vr(r) = − ab2

4πv2

t
r
(f sin α + fv)

[

J0(
ωr
vt

) − 2vt

ωr
J1(

ωr
vt

)
]

. (64)



J. Theor. Phys. 13In the limit ωr/vt ≫ 1 we get
vr(r) ∼ωr/vt≫1 −

ab2

ω1/2
(f sin α + fv)

1

(vtr)3/2
cos(

ωr

vt
− π

4
) . (65)We an see that the radial omponent of the surfae displaement attains its maximum value alonga diretion perpendiular to the diretion of the fore (α = π/2), as expeted for a transverse wavegenerated by suh a loalized fore. It has a harateristi osillatory behaviour with the in-planedistane and goes like r−3/2 for long distanes. The temporal Fourier transform of the spetrumgiven by equation (65) for f and fv independent of ω (related to Fresnel integrals) exhibits aharateristi osillatory wave front of the form ∼ (r − vtt)

−1/2, as expeted. Suh qualitativeharateristis of the solution to this problem are similar with those indiated long time ago byLamb[2℄ (See also Ref. [3℄).Similar alulations an be done for the tangential omponent vt(r) and the vertial omponent
u3(r). The result for vt(r) an be obtained from equations (64) and (65) by putting formally
fv = 0 and replaing sin α by cos α. The vertial omponent an be obtained from equations (64)and (65) by replaing sin α by 1 and putting fv = 0.Next, we onsider an in-plane loalized pressure pb2δ(r). The Fourier omponents of the fore aregiven by f1 = (−ib2p/ρ)k, f2 = f3 = 0 and the Fourier omponents of the displaement are

v1(k) =
ab2p

2ρω2
κk (cos ϕ, sin ϕ) sgn(π − ϕ) , u3(k) = − ab2p

2ρω2
k2 . (66)The inverse Fourier transforms of these displaements gives vr(r) = 0 and

vt(r) = ab2pω
16πρv3

t
r

[

J1(
ωr
vt

) + J3(
ωr
vt

)
]

,

u3(r) = − ab2pω
4πρv3

t
r

[

J1(
ωr
vt

) − 2vt

ωr
J2(

ωr
vt

)
]

,

(67)where J2,3 are Bessel funtions of the �rst kind and seond and, repetively, third order Theleading term (∼ r−3/2) in vt is vanishing in the limit ωr/vt ≫ 1, while u3behaves like
u3(r) ∼ωr/vt≫1 −

ab2p

ρvt

ω1/2

(vrr)3/2
cos(

ωr

vt
− 3π

4
) . (68)The vertial omponent of the surfae displaement has a wave front of the form ∼ (r − vtt)

−3/2.10 General solution for a fore loalized on the surfaeThe fore exerted on the surfae by the "fored waves" is given by ρf s
i = σi3 = λullδi3 + 2µui3,where the partiular solution given by equations (51), (59) and (60) is used for omputing thestrain tensor. Its omponents are given by

f s
1 = −av2

t
(κ2−k2)

2ω2κ
(κf1 − kf3) ,

f s
2 = −af2

2
,

f s
3 =

av2

t
k

ω2 (κf1 − kf3) ,

(69)



14 J. Theor. Phys.where fi are given by equation (61). We an estimate this fore following the same proeduredesribed in the preeding Setion for the displaement. The results are similar with the orre-sponding displaements. For instane, the asymptoti expression for the radial omponent of suha fore is given by
f s

r (r) ∼ωr/vt≫1 −
ab2

r
(ω/vtr)

1/2f cos α cos(
ωr

vt

− 3π

4
) , (70)whih is similar with equation (65).The ontribution f 0s

i of the "free waves", as given by equations (38) and (39), must be added tothis fore, in order to satisfy the "free-surfae" boundary ondition given by equation (15). Forthe in-plane Fourier transforms this ondition reads
f 0s

i + f s
i + afi = 0 . (71)The solutions of this system of equations are

A1 = − iaf1κ(κ2−k2)
2∆v2

t

+ iaκ
2ω2k

(kf1 − κf3) + ia(κ2−k2)3

2∆ω2k
f3 ,

A2 = iaf2

2v2

t
κ

,

B = − iaf1κk2

∆v2

t

+ iak(κ2−k2)
∆ω2 [2κkf1 + (κ2 − k2)f3] ,

(72)
where ∆ = (κ2 − k2)2 + 4κκ′k2. The surfae displaement aused by the free waves is given by

v0
1 = A1 + B , v0

2 = A2 , u0
3 = −k

κ
A1 +

κ′

k
B . (73)In the asymptoti limit ωr/vt ≫ 1 the main ontribution to the in-plane Fourier transforms of thequantities given by equation (73) in the referene frame de�ned by the radial axis r, tangentialaxis t and the vertial axis z is brought by k ∼ 0. Within this approximation we �nd

v0
r(r) ∼

ab2fv

v2
t r

J0(
ωr

vt

) ∼ ab2fv

ω1/2(vtr)3/2
cos(

ωr

vt

− π

4
) (74)for the radial omponent, a similar expresion for the tangential omponent and

u0
3(r) ∼

ab2f

vlvtr
J0(

ωr

vt

) cos α ∼ ab2f

vl(vtω)1/2r3/2
cos α cos(

ωr

vt

− π

4
) (75)for the vertial omponant of the displaement. As we an see, the "free waves" do not modifythe asymptoti r-dependene of the displaement aused by the "fored waves" (equation (65)),but introdue an additional angle dependene and amplitude fators related to the veloity ofthe longitudinal waves. A similar onlusion holds for the displaement aused by a point-likepressure loalized on the surfae.11 Temporal dependeneThe asymptoti surfae displaements for a fore loalized beneath the surfae ontains frequenyfators of the form 1/ω, 1/ω2 et. In addition, for d ≪ r, they have also osillating fators of the



J. Theor. Phys. 15form sin(ωd/vt), cos(ωd/vt) (not inluded in equations (44)). In the opposite ase r ≪ d theseosillating fators are of the form sin(ωr/vt), cos(ωr/vt), so we may take a general behaviour ofthe type sin(ωR/vt), cos(ωR/vt), where R is a length related to the distane from the soure tothe point on the surfae. In addition, the free waves may bring also ontributions propagatingwith veloity vl along the distane R, espeially for small values of the in-plane radius r.Consequently, for the time dependene of the surfae displaement we have to estimate, for in-stane, integrals of the form
I =

∫ ∆ω

0
dω

cosωτ

ω
, (76)where τ ∼ t − R/v , where v denotes a generi veloity and ∆ω is a range of frequenies. It iseasy to see that for small τ the integral in equation (76) is approximately given by I ∼ ln(∆ωτ).It tells that the front waves has an abrupt rise for τ = 0, as expeted.For the surfae displaements aused by a fore loalized on the surfae the harateristi frequenyfator is ∼ ω−1/2 and we have to estimate integrals of the form

I =
∫ ∆ω

0
dω

cosωτ√
ω

. (77)By a hange of variable ωτ = z2 this integral an be redued to a Fresnel integral. The Fresnelintegral is given by[11℄
∫ ∞

0
dzeiz2

=

√

π

2

1 + i

2
. (78)We an see that the wave front goes like τ−1/2 = (t − r/v)−1/2.12 ConlusionsIn onlusion, we may say that we have introdued herein a new method of studying the propaga-tion of the elasti waves in isotropi bodies, based on the Kirhho� potentials for wave equationwith soures, borrowed from the theory of eletromagnetism. The method implies oupled inte-gral equations for the waves amplitudes, whih we solved. Making use of this method we havedetermined the waves produed in an isotropi elasti semi-in�nite body by an external fore lo-alized either on the body surfae or beneath the surfae at some distane d. In the latter asethe waves are stationary along the diretion perpendiular to the body surfae. We have alsoomputed the surfae displaement produed by these fores as well as the fore exerted on thesurfae as aused by a fore loalized beneath. We have estimated these quantities in the fastosillating regime (ωr/vt ≫ ωd/vt ≫ 1, where ω denotes the frequeny and vt is the veloity of thetransverse waves). These quantities exhibit a harateristi derease along the in-plane distaneon the body surfae and a harateristi osillatory behaviour. By making use of this method wehave generalized one of Lamb's problem (fore loalized on the surfae of the body) and obtainednew results for a point-like fore loalized beneath the body surfae. Various other results an beobtained by means of this method, for various other geometries and fore distributions.The present approah an be extended to determine the waves propagating in elasti bodies withspeial, �nite geometries, either as eigenmodes or aused by some external fores (both loalizedor extended). More interesting, we an extend the present approah to inlude the e�et of variousinhomogeneities plaed in elasti bodies, as aused by loal variations in the body density or elastionstants.



16 J. Theor. Phys.Indeed, suppose for instane that a small irregularity δρ ours in the density ρ in equation (1).The orresponding term δρü an be transferred into the rhs of equation (8) and an be treated asa "wave soure". It will bring an additional ontribution to the "potential" given by equation (9),whih allows one to ompute the hanges brought by this inhomogeneity both in the eigenmodesand the elasti response of the body. Of partiular importane is the ase when this inhomogeneityis plaed on the body surfae. Obviously, a similar treatment an be applied to inhomogeneitiesourring in the elasti oe�ients λ and µ, both on the body surfae or in the bulk. Some resultsin this diretion will be reported in a forthoming publiation.Aknowledgments. The author is indebted to the members of the Institute for Earth's Physis atMagurele-Buharest for enouraging support and to the members of the Laboratory of TheoretialPhysis at Magurele-Buharest for many useful, enlightening disussions.Appendix. A few integralsWe give here a few integrals ourring in the alulations desribed in the main text:
∫ 2π
0 dϕ cos ϕeiz cos ϕ = 2iπJ1(z) ,

∫ 2π
0 dϕ sin ϕeiz cos ϕ = 0 ,

∫ 2π
0 dϕ cos2 ϕeiz cos ϕ = 2πJ0(z) − 2π

z
J1(z) ,

∫ 2π
0 dϕ sinϕ cos ϕeiz cos ϕ = 0 ,

∫ 2π
0 dϕ sin2 ϕeiz cos ϕ = 2π

z
J1(z) ,

∫ 2π
0 dϕsgn(π − ϕ)eiz cos ϕ = 0 ,

∫ 2π
0 dϕsgn(π − ϕ) cosϕeiz cos ϕ = 0 ,

∫ 2π
0 dϕsgn(π − ϕ) sin ϕeiz cos ϕ = 4 sin z

z
,

∫ 2π
0 dϕsgn(π − ϕ) cos2 ϕeiz cos ϕ = 0 ,

∫ 2π
0 dϕsgn(π − ϕ) sin2 ϕeiz cos ϕ = 0 ,

∫ 2π
0 dϕsgn(π − ϕ) sin ϕ cos ϕeiz cos ϕ = −4i ∂

∂z
sin z

z
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