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tionThe propagation of elasti
 waves in bodies with spe
ial, restri
ted geometries was originally inves-tigated by Rayleigh[1℄ and Lamb,[2℄ and underwent various developments during the time.[3℄ It issometimes known as Lamb's problem in seismology.[4℄ The problem exhibits a 
ertain 
omplex-ity related to di�
ulties arising mainly from the la
k of an adequate treatment of the boundary
onditions. Of parti
ular importan
e is the determination of the waves produ
ed in su
h elasti
bodies by external for
es, either lo
alized on the body surfa
e, or within the bulk, or extendedover 
ertain spatial volumes. Even more interesting, and more di�
ult, is the problem of treatingthe e�e
t of the inhomogeneities, either lo
alized or extended, on the wave propagation in �niteelasti
 bodies. Apart from their pra
ti
al importan
e in engineering, su
h problems are of greatrelevan
e for the e�e
t of the seismi
 waves on the Earth's surfa
e[5℄-[9℄.A new method is presented here for studying the wave propagation in isotropi
 elasti
 bodieswith a �nite (or partially �nite) stru
ture, based on the Kir
hho� potentials of the wave equation



2 J. Theor. Phys.with sour
es, borrowed from ele
tromagnetism. This method is employed herein to determinethe elasti
 waves produ
ed in a semi-in�nite (half-spa
e) body by external for
es lo
alized eitherbeneath, or on the body surfa
e. For the for
e lo
alized beneath the body surfa
e the elasti
 wavesare stationary waves along the dire
tion perpendi
ular to the body surfa
e. For the for
e lo
alizedon the surfa
e we determine two transverse waves propagating in the body and a longitudinal onewhi
h appears as an eigenmode. The surfa
e displa
ement and the for
e exerted on the surfa
e are
omputed in both 
ases. All these quantities exhibit a 
hara
teristi
 de
rease and an os
illatorybehavior along the in-plane distan
e on the body surfa
e. In both 
ases, the present method leadsto 
oupled integral equations for the wave amplitudes, whi
h are solved. By means of the methodpresented herein new results are obtained for a point-like for
e lo
alized under the surfa
e andone of Lamb's problem (for
e lo
alized on the surfa
e) is generalized. The generalization 
onsistsin treating a general distribution of the for
e a
ting on the body surfa
e and a general orientationof this for
e. In addition, in both 
ases, the e�e
ts of a lo
alized pressure are analyzed. Finally,a brief dis
ussion is given regarding the extension of the present method to in
lude the e�e
t ofthe inhomogeneities on the wave propagation in elasti
 bodies with �nite geometries.2 General theoryThe elasti
 waves in isotropi
 bodies are governed by the equation of motion[10℄
ρü = µ∆u + (λ + µ) grad · divu + ρf , (1)where ρ is the density, u is the displa
ement �eld, µ and λ are the Lame 
oe�
ients and f is anexternal for
e per unit mass (a

eleration). By a Fourier transform of the form

u(R, t) =
∑

K

∫

dωu(K, ω)eiKR−iωt (2)and a similar one for the for
e f , equation (1) be
omes
(

−ρω2 + µK2
)

u = − (λ + µ) (Ku)K + ρf , (3)where we dropped out the arguments K, ω for simpli
ity. Equation (3) 
an easily be solved. Itssolution is given by
u = − (v2

l − v2
t ) (Kf)

(ω2 − v2
t K2) (ω2 − v2

l K
2)

K − f

ω2 − v2
t K2

, (4)where
vt =

√

µ

ρ
, vl =

√

λ + 2µ

ρ
(5)are the velo
ities of the transverse and, respe
tively, longitudinal waves. We 
an see from equation(4) that for a longitudinal for
e f = fK/K the displa
ement �eld is longitudinal and has theeigenfrequen
ies ω = vlK, while for a transverse for
e, Kf = 0, the �eld is transverse and hasthe eigenfrequen
ies ω = vtK. As it is well known, the Lame 
oe�
ients 
an be expressed by theYoung modulus E and the Poisson ratio σ,

λ =
Eσ

(1 + σ) (1 − 2σ)
, µ =

E

2 (1 + σ)
, (6)



J. Theor. Phys. 3and, for reasons of stability, E > 0 and −1 < σ < 1/2 (a
tually, for usual bodies, 0 < σ < 1/2).In parti
ular, the ratio
q =

v2
l

v2
t

− 1 =
λ

µ
+ 1 =

1

1 − 2σ
(7)satis�es the inequality q > 1/3 (a
tually q > 1)[10℄. In general, the solution of the homogeneousequation (1) ("free waves") must be added to the parti
ular solution given by equation (4) ("for
edwaves").As it is well known, another, more dire
t, method 
an be used for solving equation (1), withoutresorting to Fourier transforms. The method 
onsists in writing the displa
ement u as a sumof two fun
tions, u = ut + ul, satisfying the 
onditions divut = 0, as for transverse waves, and

curlul = 0 
orresponding to longitudinal waves. Then, it is easy to see that fun
tions ut,l satisfythe wave equations with velo
ities vt,l, respe
tively.We present here a third method, whi
h is used in the present paper, based on Kir
hho� potentials.Indeed, making use of the notations introdu
ed above we write equation (1) as
1

v2
t

ü− ∆u = q · grad · divu +
f

v2
t

, (8)where we 
an re
ognize the wave equation with sour
es q · grad · divu and f/v2
t . As it is wellknown, its (parti
ular) solution is given by the retarded (Kir
hhho�) potential

u(R, t) = q
4π

∫

dR′ grad·divu(R′,t−|R−R
′|/vt)

|R−R′|
+

+ 1
4πv2

t

∫

dR′ f(R
′,t−|R−R′|/vt)
|R−R′|

.

(9)Indeed, making use of the Fourier transform given by equation (2) and using also the well-knownintegral
∫

dR
eiKR+iωR/vt

R
= − 4πv2

t

ω2 − v2
t K2

(10)we get easily the solution given by equations (3) and (4). We apply herein this method of Kir
hho�potential, inspired from the theory of ele
tromagnetism,[11℄ to the elasti
 waves generated in asemi-in�nite body by for
es lo
alized either beneath, or on the body surfa
e.3 Semi-in�nite body. Surfa
e wavesWe 
onsider a semi-in�nite isotropi
 body extending over the region z < 0, with a plane surfa
eat z = 0. We may 
onsider also a for
e f a
ting on this body, either inside it or lo
alized on itssurfa
e, and look for solutions of equation (1), i.e. for the waves propagating in the body. Of
ourse, we assume that u, f = 0 for z > 0 (outside the body). This is Lamb's problem.[2℄ Usually,it is assumed that for
e f is lo
alized, either on the body surfa
e or beneath it, and the problemis approa
hed by making use of a remarkable property of equation (1).Indeed, as it is well known, equation (1) is another form of the more 
ompa
t equation written as
ρüi =

∂σij

∂xj
+ ρfi , (11)where

σij = λullδij + 2µuij (12)
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uij =

1

2

(

∂ui

∂xj

+
∂uj

∂xi

) (13)is the strain tensor and i, j, l, et
, denote the 
oordinates axes. We take a small volume en
ir
linga point on the body surfa
e and apply the Gauss theorem for equation (11). It is easy to see that,for a for
e distributed in the body volume, we get
σijnj = 0 , (14)for any point on the body surfa
e, where n is the unit ve
tor normal to the body surfa
e. Equation(14), whi
h plays the role of a boundary 
ondition, tells that the body surfa
e is free (from anyfor
es). If there exists a for
e lo
alized on the body surfa
e, say fδ(z), then it is easy to see thatthe same pro
edure leads to

σijnj + fi = 0 , (15)whi
h tells again that the total for
e on the surfa
e is vanishing. In addition, equation (15) tellsthat the quantity σijnj is the surfa
e elasti
 for
e (for
e per unit area) a
ting on the surfa
e. It isalso easy to see that the same pro
edure 
an be applied, at least in prin
iple, to a for
e lo
alizedonto a point, a surfa
e, region, et
 inside the body. In all these 
ases we write solutions forthe homogeneous equation (11) and impose upon them the 
ontinuity and the "jump" boundary
ondition of the type given by equation (15). This way, the general solution of equation (11)is obtained. This was the method used by Lamb in treating su
h problems.[2℄ Apart from lessinteresting two-dimensional problems, Lamb treated also parti
ular 
ases of a for
e lo
alized onthe surfa
e of a semi-in�nite isotropi
 body and sket
hed an integral representation of the solutionfor a for
e lo
alized beneath the surfa
e of su
h a body.It is worth noting also that the "free-surfa
e" 
ondition given by equation (14) has been used byRayleigh[1℄ to identify the damped "free" surfa
e waves (∼ eκz, κ real) propagating on the surfa
eof a semi-in�nite body in the absen
e of any for
e.A di�erent pro
edure is adopted in this paper. A parti
ular solution is obtained by using Kir
hho�potential, as determined by the external for
e f ("for
ed waves"), and "free waves" of the form
ut,l are added to it, i.e. solutions of the homogeneous equation, in order to satisfy the boundary
onditions of the type given by equations (14) and (15). We 
arry out expli
it 
al
ulations for apoint-like for
e lo
alized beneath the body surfa
e and for a point-like for
e lo
alized on the bodysurfa
e. As we shall see, the damped "free" surfa
e waves are not ex
ited by lo
alized externalfor
es, though they may be ex
ited by surfa
e damped for
es.4 For
e lo
alized beneath the surfa
eWe 
onsider a for
e

f(R, t) = a3
f(t)δ(R − R0) (16)lo
alized at depth d beneath the plane surfa
e z = 0 of a semi-in�nite elasti
 body extendingto the region z < 0, su
h as R0 = (0, 0,−d). The 
hara
teristi
 length a is, mu
h smaller thanthe relevant distan
es, is introdu
ed on one hand for reasons of dimensionality and, on the other,for having a representation of the spatial extension of the "fo
us" onto whi
h the for
e a
ts. Inequation (16) the position ve
tor is given by R = (x, y, z) = (r, z) and t denotes the time. Thepropagating spheri
al waves produ
ed by this point-like for
e in an in�nite body are well known
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e Ref. [9℄). We derive here the waves produ
ed by su
h a sour
e in a semi-in�nitebody. We represent the displa
ement �eld as
u = (v, u3)θ(−z) , (17)where v is the in-plane 
omponent (parallel to the surfa
e), u3 is the transverse 
omponent (per-pendi
ular to the surfa
e) and θ(z) = 0 for z < 0, θ(z) = 1 for z > 0 is the step fun
tion. We useFourier transforms of the form

v(r, z; t) =
∑

k

∫

dωv(k, ω; z)eikr−iωt , (18)and a similar one for u3(r, z; t), where k is the in-plane waveve
tor. Usually, we leave asidethe arguments k, ω, while preserving expli
itly the z-dependen
e of the fun
tions v(k, ω; z) and
u3(k, ω; z). The divergen
e o

urring in equation (9) 
an then be written as

divu =

(

divv +
∂u3

∂z

)

θ(−z) − u3(0)δ(z) , (19)where we 
an see the o

urren
e of spe
i�
 surfa
e 
ontributions asso
iated with u3(0) = u3(z = 0).We 
ompute grad · divu a

ording to equations (18) and (19) and introdu
e it, together withthe for
e given by equation (16), in equation (9). The intervening integrals redu
e to the knownintegral[12℄
∫ ∞

|z|
dxJ0

(

k
√

x2 − z2
)

eiωx/c =
i

κ
eiκ|z| , (20)where J0 is the Bessel fun
tion of the �rst kind and zeroth order and

κ =

√

ω2

v2
t

− k2 . (21)In addition, we introdu
e the 
onvenient notations v1 = vk/k, v2 = vk⊥/k and similar ones for
f1,2, where k⊥ is a ve
tor perpendi
ular to k, kk⊥ = 0, and of the same magnitude k. The for
eterm in equation (9), whi
h we denote by F, 
an easily be evaluated. Its Fourier transform isgiven by

F = − a3
f

2v2
t κ

sin κ |z + d| , (22)where κ2 = ω2/v2
t − k2 > 0. Applying the pro
edure des
ribed above we get straightforwardlyfrom equation (9)

v2 = F2 = − a3f2

2v2
t κ

sin κ |z + d| (23)and the set of 
oupled integral equations
v1 = − iqk2

2κ

∫ 0 dz′v1(z
′)eiκ|z−z′| − qk

2κ
∂
∂z

∫ 0 dz′u3(z
′)eiκ|z−z′| + F1 ,

u3 = − qk
2κ

∂
∂z

∫ 0 dz′v1(z
′)eiκ|z−z′| + iq

2κ
∂2

∂z2

∫ 0 dz′u3(z
′)eiκ|z−z′| + F3 .

(24)In deriving these equations it is worth noting the non-invertibility of the derivatives and theintegrals, a

ording to the identity
∂

∂z

∫

0
dz′f(z′)

∂

∂z′
eiκ|z−z′| = κ2

∫

0
dz′f(z′)eiκ|z−z′| − 2iκf(z) (25)
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tion f(z), z > 0; it is due to the dis
ontinuity in the derivative of the fun
tion eiκ|z−z′|for z = z′. These equations imply the relationship
u3 = − i

k

∂v1

∂z
− i

k

∂F1

∂z
− F3 . (26)Introdu
ing u3 from this equation into the �rst equation (24) and performing the integrations byparts, we get a single integral equation

(1 + q)v1 = − iqω2

2v2

t
κ

∫ 0 dz′v1(z
′)eiκ|z−z′| + q

2
v1(0)e−iκz + (1 − q)F1−

− iqκ
2

∫ 0 dz′F1(z
′)eiκ|z−z′| + q

2
F1(0)e−iκz + qk

2κ
∂
∂z

∫ 0 dz′F3(z
′)eiκ|z−z′| .

(27)Taking the se
ond derivative with respe
t to z in this equation we �nd
∂2v1

∂z2
+ κ′2v1 =

q

1 + q

(

κ2F1 + ik
∂F3

∂z

)

, (28)where κ′2 = ω2/v2
l − k2. Now, it is easy to get the solution for v1. It is given by

v1 =
a3

2ω2
[κf1 sin κ |z + d| + ikf3sgn(z + d) cos κ(z + d)] (29)and, by equations (22) and (26),

u3 =
a3k

2ω2κ
[kf3 sin κ |z + d| + iκf1sgn(z + d) cosκ(z + d)] . (30)We 
an see that all these solutions v1,2, u3 are stationary waves along the dire
tion perpendi
ularto the surfa
e, as generated by the stationary os
illating for
e given by equation (22). In addition,they are regular fun
tions for κ → 0, though v2 and u3 may in
rease inde�nitely for κ → 0,

v2(κ → 0), u3(κ → 0) ∼ |z + d|; this in
rease indi
ates the transition to the damped regime. It isalso worth noting the dis
ontinuity o

urring at z = −d.It is interesting to note that the waveve
tors k and κ in the lo
alized for
e given by equation (16)are independent and real variables. Out of them, the equation of the elasti
 waves sele
ts onlythose waveve
tors whi
h satisfy the 
ondition ω2 = v2
t (k

2 + κ2), and assigns them to the allowedpropagating waves. This is the mathemati
al me
hanism through whi
h extended elasti
 wavesare generated by lo
alized for
es. Another observation is that, the above waves being stationary,the polarization is meaningless for them, although they are asso
iated with the velo
ity vt of thetransverse elasti
 waves. On the other hand, we must noti
e that the solution of the homogeneousequation (28) is the "free" longitudinal wave propagating with the waveve
tor κ′, i.e. with thevelo
ity vl of the longitudinal waves, and similarly, the solution of the homogeneous wave equation(8) is the "free" transverse wave propagating with the waveve
tor κ and the velo
ity vt.5 Surfa
e displa
ementThe displa
ement of the surfa
e z = 0, as 
aused by the "for
ed waves" obtained above, 
an be
omputed by using the inverse Fourier transforms of v1,2(K) and u3(K) given by equations (23),(29) and (30), where K = (k, κ). As usually, we leave aside for the moment the argument ω in
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√

ω2/v2
t − k2 is not an independent variable. TheFourier 
omponents of the for
e are given by f(K) = a3

feiκd. We 
hoose an in-plane referen
eframe with one axis oriented along the in-plane radius r (radial axis r) and another perpendi
ularto the former (tangential axis t). We denote by α the angle between the for
e ve
tor f and radius
r so that the for
e ve
tor 
an be written as (f cos α, f sin α, f3), where f denotes the in-plane(horizontal) for
e and f3 denotes the verti
al for
e. We also denote by ϕ the angle between the in-plane waveve
tor k and radius r, su
h that k = k(cos ϕ, sin ϕ) and k⊥ = k(− sin ϕ, cos ϕ). Then,we 
an 
ompute easily the for
e proje
tions f1,2,3 appearing in equations (23), (29) and (30). Theyare given by f = (f cos(α−ϕ), f sin(α−ϕ), f3). It is worth noting that on 
hanging k → −k, i.e.
ϕ → π +ϕ, the quantities f1,2 
hange sign, as they should do; similarly, f3, being the proje
tion ofthe for
e along the waveve
tor 
omponent κ, must 
hange sign under the reversal of the dire
tionof this 
omponent, κ → −κ. Making use of the above notations and of v(K) = v1k/k + v2k⊥/kwe 
an obtain immediately the radial and tangential 
omponents of the displa
ement, vr(K) and
vt(K) , respe
tively. However, it is worth noting that for a real displa
ement the Fourier transformsmust satisfy the symmetry relationship v

∗(−K) = v(K), and, similarly, u∗
3(−K) = u3(K). Takinginto a

ount the 
hange of sign of the for
e 
omponents f1,2,3 under this operation, we 
an seethat a fa
tor sgn(π − ϕ) must be introdu
ed, in general, wherever relevant, in order to get realdispla
ements. The integrals with respe
t to angle ϕ in the Fourier transforms imply the Besselfun
tions J0,1. Some of these integrals are 
olle
ted in Appendix.The surfa
e displa
ement 
anbe written as

vr(r) = a3f
4πω2 (I1 − 1

r
I2) cos α − a3f

4πv2

t
r
I3 cos α − a3f3

4πω2 I4 ,

vt(r) = a3f
4πω2r

I2 sin α − a3f
4πv2

t

(I5 − 1
r
I3) sinα ,

u3(r) = a3f3

4πω2 I6 − a3f
4πω2 I4 cos α ,

(31)where
I1 =

∫ ω/vt

0 dkκk sin κd · J0(kr) , I2 =
∫ ω/vt

0 dkκ sin κd · J1(kr) ,

I3 =
∫ ω/vt

0 dk 1
κ

sin κd · J1(kr) , I4 =
∫ ω/vt

0 dkk2 cos κd · J1(kr) ,

I5 =
∫ ω/vt

0 dk k
κ

sin κd · J0(kr) , I6 =
∫ ω/vt

0 dk k3

κ
sin κd · J0(kr) .

(32)We estimate these integrals in the fast os
illating limit ωr/vt , ωd/vt ≫ 1. In this 
ase, the main
ontribution 
omes from k ∼ 0 and extends over a range ∆k ∼ 1/r for r ≫ d or ∆k ∼ 1/d for
d ≫ r. The leading 
ontributions for r ≫ d are given by

vr(r) ∼
a3f

ωvtr2
cos α , vt(r) ∼

a3f

ωvtr2
sin α , u3(r) ∼

a3f

ω2r3
cos α , (33)where os
illating fa
tors of the form sin ωd/vt, cos ωd/vt are left aside. We 
an see the dire
tional
hara
ter of the surfa
e displa
ement (through angle α) and the verti
al 
omponent (u3) whi
h ismu
h smaller (by a fa
tor ωr/vt) than the horizontal 
omponents. We shall see that the dire
tional
hara
ter as given in equation (33) for the "for
ed waves" is amended by the 
ontribution of the"free waves". It is also worth noting that the leading 
ontribution to the verti
al displa
ement is
aused by the in-plane for
e f , and, in general, the verti
al 
omponent of the for
e brings a smaller
ontribution. This is due to the stationary 
hara
ter of the waves along the verti
al dier
tion.Let us assume now a for
e derived from a lo
alized pressure p. The for
e 
omponents are thengiven by f1 = ipk/ρ, f2 = 0 and f3 = (−ipκ/ρ)eiκd. In 
omputing the Fourier transforms of the
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e displa
ement we must take 
are again of the general symmetry relations v
∗(−K) = v(K)and u

∗
3(−K) = u3(K). We get

vr(r) = a3p
4πω2ρ

∫ ω/vt

0 dkκk2 sin κd(1 − cos κd)J1(kr) ,

vt(r) = a3p
2π2ω2ρr

∫ ω/vt

0 dkκk cos2 κd sin(kr) ,

u3(r) = a3p
4πω2ρ

∫ ω/vt

0 dkk3(sin2 κd + cos κd)J0(kr) .

(34)In the same limit ωr/vt ≫ ωd/vt ≫ 1 the leading 
ontributions to the above displa
ements aregiven by
vr(r), vt(r) ∼

a3p

ωvtρr3
, u3(r) ∼

a3p

ω2ρr4
. (35)We 
an see that the displa
ements produ
ed by pressure fall o� faster with distan
e than the
orresponding displa
ements 
aused by a for
e (equation (33)).6 For
e exerted on the surfa
eWe are interested now in the for
e exerted on the surfa
e z = 0 by the "for
ed waves" produ
edbeneath the surfa
e. As shown above, the for
e exerted by a displa
ement �eld u per unit area ofa surfa
e with unit normal n is given (in our notations) by ρf s

i = σijnj , where σij = λullδij +2µuijis the stress tensor and uij = (1/2)(∂ui/∂xj + ∂uj/∂xi) is the strain tensor. Using the referen
eframe de�ned by k, k⊥ and z we get
f s

1 (k, ω) =
a3v2

t
κ

ω2 [κf1 cos κd − ikf3 sin κd] ,

f s
2 (k, ω) = −a3f2 cos κd ,

f s
3 (k, ω) =

a3v2

t
k

ω2 [kf3 cos κd − iκf1 sin κd] .

(36)We note that the dilatation vanishes, v11 + v22 + u33 = 0, in a

ordan
e with the fa
t that thesesolutions, given by equations (23), (29) and (30), are 
onstru
ted from transverse waves.We 
ompute the inverse Fourier transforms of these for
es with respe
t to the wave
tor k a

ord-ing to the pro
edure des
ribed above for the surfa
e displa
ement. The asymptoti
 expressions(ωr/vt ≫ ωd/vt ≫ 1) are given by
f s

r (r) ∼ a3f

r2
cos α , f s

t (r) ∼ a3f

r2
sin α , f s

3 (r) ∼ a3fvt

ωr3
cos α ; (37)they are similar with the surfa
e displa
ements given by equation (33), ex
ept for an additionalfa
tor ω. In the same manner we 
an 
ompute the for
e exerted on the surfa
e by a lo
alizedpressure.7 General solutionThe general solution of the problem is obtained by adding to the parti
ular solution given byequations (23), (29) and (30) the solutions of the homogeneous equations (8) and (28). These are
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ut =

(

A1, A2,−
k

κ
A1

)

eiκz (38)and a longitudinal wave
ul =

(

B, 0,
κ′

k
B

)

eiκ′z , (39)where the 
onstants A1,2, B are determined from the 
ondition of a vanishing total surfa
e for
e,in a

ordan
e with equation (14). On equations (38) and (39) one 
an 
he
k the transversality
ondition divut = 0 and the 
ondition curlul = 0 for longitudinal waves. The "free waves"solutions given by equations (38) and (39) are written in the referene
 frame de�ned by k, k⊥ and
z.We 
ompute the surfa
e for
e ρf 0s

i = λu0
llδi3 +2µu0

i3, where u
0 = ut +ul, and impose the 
ondition

f 0s
i + f s

i = 0 , (40)where f s
i , given by equations (36), 
orrespond to the surfa
e for
e generated by the parti
ularsolution ("for
ed waves"). It is worth noting here that equation (40) holds for any point on thesurfa
e z = 0, i.e. it is multiplied in fa
t by the fa
tor eikr with the same in-plane waveve
tor k.Sin
e ω is the same for both the parti
ular solution and the "free waves", and ω2 = v2

t (κ
2 + k2),

ω2 = v2
l (κ

′2 + k2) in both 
ases, it follows that κ, κ′ are the same, i.e. they are real variables, as
orresponding to lo
alized external for
es. Consequently, the "free waves" are propagating waves.Damped "free" surfa
e waves (i.e. waves with κ, κ′ purely imaginary) 
an be ex
ited by dampedexternal for
es.[13℄Condition (40) leads to
A2 = −i

a3f2

v2
t κ

cos κd (41)and the system of equations
(κ2 − k2)A1 + 2κκ′B = a3κ2

ω2 (kf3 sin κd + iκf1 cos κd) ,

2k2A1 − (κ2 − k2)B = −a3k2

ω2 (κf1 sin κd + ikf3 cos κd) ,

(42)whose solution 
an be written as
A1 = −4κκ′k2

∆
v1 + 2κ3(κ2−k2)

k∆
u3 ,

B = 4κ3k
∆

u3 + 2k2(κ2−k2)
∆

v1 ,

(43)where ∆ = (κ2 − k2)2 + 4κκ′k2. In
identally, we note here that ∆ = 0 for κ → iκ and κ′ → iκ′gives the dispersion relation ω(k) for the Rayleigh surfa
e waves.The surfa
e displa
ements brought about by the "free waves" are given by v0
1 = A1 + B, v0

2 = A2and u0
3 = −k

κ
A1 + κ′

k
B. We 
ompute their inverse Fourier transforms by the same pro
edure asthat des
ribed in Se
tion 5. Under the same 
onditions as those employed in this Se
tion weget the asymptoti
 behaviour

vtot
r (r) ∼ a3f

ωvtr2 cos α , a3f
ωvtr2 sin α ,

vtot
t (r) ∼ a3f

ωvtr2 sin α , a3f
ωvtr2 cos α ,

utot
3 (r) ∼ (1 − vt/vl)

a3f
ω2r3 cos α , a3vtf

ω2vlr3 sin α

(44)
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ement u
tot = u

0 + u. We 
an see that the "free waves" do not 
hangethe r-dependen
e, but introdu
e an additional dire
tional 
hara
ter. In addition, the verti
aldispla
ement is a�e
ted by fa
tors depending on vt/vl. A similar 
on
lusion (ex
ept for thedire
tional 
hara
ter) holds for a for
e derived from pressure.8 For
e lo
alized on the surfa
eWe 
onsider a semi-in�nite isotropi
 elasti
 body extending over the region z > 0 and assume alo
alized for
e
f(R, t) = a

∑

k

∫

dωf(k, ω)eikr−iωtδ(z) (45)a
ting on the body plane surfa
e z = 0, where a is a 
hara
teristi
 length, R = (r, z) and k is thein-plane waveve
tor. This is a generalization of one of Lamb's problems.[2℄We represent the displa
ement �eld as
u = (v, u3)θ(z) , (46)where v is the in-plane 
omponent (parallel to the surfa
e), u3 is the transverse 
omponent (per-pendi
ular to the surfa
e) and θ(z) = 0 for z < 0, θ(z) = 1 for z > 0 is the step fun
tion. Thedivergen
e o

urring in equation (9) 
an then be written as

divu =

(

divv +
∂u3

∂z

)

θ(z) + u3(0)δ(z) , (47)where we 
an see the o

urren
e of spe
i�
 surfa
e 
ontributions asso
iated with u3(0) = u3(z = 0).As before, we use a Fourier transform of the form
v(r, z; t) =

∑

k

∫

dωv(k, ω; z)eikr−iωt , (48)and a similar one for u3(r, z; t). Usually, we leave aside the arguments k, ω, while preservingexpli
itly the z-dependen
e of the fun
tions v(k, ω; z) and u3(k, ω; z). We 
ompute grad · divua

ording to equations (47) and (48) and introdu
e it, together with the for
e given by equation(45), in equation (9). As for a for
e lo
alized beneath the surfa
e, the intervening integrals redu
eto the known integral[12℄
∫ ∞

|z|
dxJ0

(

k
√

x2 − z2
)

eiωx/c =
i

κ
eiκ|z| , (49)where

κ =

√

ω2

v2
t

− k2 . (50)We use also the same 
onvenient notations v1 = vk/k, v2 = vk⊥/k and similar ones for f1,2, where
k⊥ is a ve
tor perpendi
ular to k, kk⊥ = 0, and of the same magnitude k. Then, equation (9)redu
es to

v2 =
iaf2

2v2
t κ

eiκz (51)and to a set of two 
oupled integral equations whi
h read
v1 = − iqk2

2κ

∫

0 dz′v1(z
′)eiκ|z−z′| − qk

2κ
∂
∂z

∫

0 dz′u3(z
′)eiκ|z−z′|+

+ iaf1

2v2

t
κ
eiκz

(52)
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u3 = − qk

2κ
∂
∂z

∫

0 dz′v1(z
′)eiκ|z−z′| + iq

2κ
∂2

∂z2

∫

0 dz′u3(z
′)eiκ|z−z′|+

+ iaf3

2v2

t
κ
eiκz .

(53)We note here again that in deriving these equations it is worth observing the non-invertibility ofthe derivatives and the integrals, a

ording to the identity
∂

∂z

∫

0
dz′f(z′)

∂

∂z′
eiκ|z−z′| = κ2

∫

0
dz′f(z′)eiκ|z−z′| − 2iκf(z) (54)for any fun
tion f(z), z > 0; it is due to the dis
ontinuity in the derivative of the fun
tion eiκ|z−z′|for z = z′. From equations (52) and (53) we get easily

u3 = − i

k

∂v1

∂z
− ia (κf1 − kf3)

2v2
t κk

eiκz . (55)Equation (51) gives the transverse wave v2 (for κ real) propagating with the velo
ity vt, a

ordingto equation (50). Its polarization is normal to the plane of propagation (the plane determined bythe ve
tors k and κ). This wave is usually known as the s-wave in the theory of ele
tromagnetism(from the German word "senkre
ht" whi
h means "perpendi
ular "). From equation (51) we 
ansee that the s-wave be
omes singular for κ = 0.We pass now to the system of 
oupled equations (52) and (53), and the relationship given byequation (55). We introdu
e u3 from equation (55) into equation (52) and get
(1 + q) v1 = − iqω2

2v2

t
κ

∫

0 dz′v1(z
′)eiκ|z−z′|+

+ iaq
4v2

t
κ2 (κf1 − kf3)

∂
∂z

∫

0 dz′eiκz′eiκ|z−z′| + 1
2

[

iaf1

v2

t
κ

+ qv1(0)
]

eiκz .

(56)This equation 
an easily be solved by taking the se
ond derivative with respe
t to z and using thenon-invertibility equation (54). We get
∂2v1

∂z2
+ κ

′2v1 = − iaq

2v2
t (1 + q)

(κf1 − kf3) eiκz , (57)where
κ

′

=

√

√

√

√

ω2

v2
l

− k2 . (58)For a longitudinal for
e κf1−kf3 = 0 we obtain from equation (57) longitudinal waves propagatingwith waveve
tor κ′ (for κ′ real) and with the velo
ity vl. For a general for
e, equation (57) hasthe parti
ular solution
v1 =

ia

2ω2
(κf1 − kf3) eiκz (59)and

u3 = − iak

2ω2κ
(κf1 − kf3) eiκz . (60)We 
an see that v1 and u3 given above 
orrespond to a transverse wave, kv1 + κu3 = 0, whosepolarization lies in the plane of propagation. This is 
alled the p-wave, where p stands for "par-allel". We 
an see also that v1is a regular fun
tion, while u3 may exhibit the same singularity as

v2 does for κ = 0.
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e displa
ement 
aused by a for
e lo
alized on thesurfa
eThe displa
ement of the surfa
e z = 0 
an be 
omputed by using the inverse Fourier transformsof v1,2(K) and u3(K) given by equations (51), (59) and (60), where K = (k, κ). As usually,we leave aside for the moment the argument ω in these expressions. It is worth noting that
κ =

√

ω2/v2
t − k2 is not an independent variable. First, we 
onsider a δ-type for
e lo
alized onthe surfa
e, f(R) = ab2

fδ(r)δ(z), where f is a 
onstant ve
tor and b is a 
hara
teristi
 lo
alizationlength on the surfa
e. Again, this is another generalization of one of Lamb's problems.[2℄ TheFourier 
omponents f(K) = ab2
f of this for
e do not depend on K (but they may have an ω-dependen
e). As before, we 
hoose an in-plane referen
e frame with one axis oriented along thein-plane radius r (radial axis r) and another perpendi
ular to the former (tangential axis t). Wedenote by α the angle between the for
e ve
tor f and radius r. Then, the for
e ve
tor 
an bewritten as f = (f cos α, f sin α, fv), where f denotes the in-plane (horizontal) for
e and fv denotesthe verti
al for
e. Similarly, we denote by ϕ the angle between the in-plane waveve
tor k andradius r, su
h that k = k(cos ϕ, sin ϕ) and k⊥ = k(− sin ϕ, cos ϕ). Then, the for
e proje
tions

f1,2,3 entering equations (51), (59) and (60) 
an be written as
f1 = b2f cos(α − ϕ) , f2 = b2f sin(α − ϕ) , f3 = b2fv . (61)It is worth noting that on 
hanging k → −k, i.e. ϕ → π + ϕ, the quantities f1,2 
hange sign, asthey should do; similarly, f3, being the proje
tion of the for
e along the waveve
tor 
omponent

κ, must 
hange sign under the reversal of the dire
tion of this 
omponent, κ → −κ. Making useof the above notations and of v(K) = v1k/k + v2k⊥/k we 
an obtain immediately the radial andtangential 
omponents of the displa
ement, vr(K) and vt(K) , respe
tively. However, it is worthnoting that for a real displa
ement the Fourier transforms must satisfy the symmetry relationship
v
∗(−K) = v(K), and, similarly, u

∗
3(−K) = u3(K). Taking into a

ount the 
hange of sign ofthe for
e 
omponents f1,2,3 under this operation, we 
an see that a fa
tor sgn(π − ϕ) must beintrodu
ed wherever relevant. The Fourier 
omponents of the displa
ement 
an be written as

vr(k) =
[

iab2

2ω2 κf cos(α − ϕ) cosϕ − iab2f
2v2

t
κ

sin(α − ϕ) sin ϕ
]

sgn(π − ϕ) − iab2

2ω2 kfv cos ϕ ,

vt(k) =
[

iab2

2ω2 κf cos(α − ϕ) sinϕ + iab2f
2v2

t
κ

sin(α − ϕ) cosϕ
]

sgn(π − ϕ) − iab2

2ω2 kfv sin ϕ ,

u3(k) = − iab2

2ω2 kf cos(α − ϕ) + iab2k2

2ω2κ
fvsgn(π − ϕ)

(62)
(for z = 0). Now we 
an take the inverse Fourier transforms of these quantities. It is easy tosee that the integrals over angle ϕ whi
h 
ontain fa
tors sin2 ϕ and cos2 ϕ are vanishing. For theradial 
omponent we are left with

vr(r) = − iab2f
2(2π)2ω2 sin α

∫ ω/vt

0 dk k3

κ

∫ 2π
0 dϕsgn(π − ϕ) sin ϕ cos ϕeikr cos ϕ−

− iab2fv

2(2π)2ω2

∫ ω/vt

0 dkk2
∫ 2π
0 dϕ cos ϕeikr cos ϕ .

(63)The integrals in equation (63) 
an be performed straightforwardly, by making use of the propertiesof the Bessel fun
tions.[12, 14℄ We get
vr(r) = − ab2

4πv2

t
r
(f sin α + fv)

[

J0(
ωr
vt

) − 2vt

ωr
J1(

ωr
vt

)
]

. (64)
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vr(r) ∼ωr/vt≫1 −

ab2

ω1/2
(f sin α + fv)

1

(vtr)3/2
cos(

ωr

vt
− π

4
) . (65)We 
an see that the radial 
omponent of the surfa
e displa
ement attains its maximum value alonga dire
tion perpendi
ular to the dire
tion of the for
e (α = π/2), as expe
ted for a transverse wavegenerated by su
h a lo
alized for
e. It has a 
hara
teristi
 os
illatory behaviour with the in-planedistan
e and goes like r−3/2 for long distan
es. The temporal Fourier transform of the spe
trumgiven by equation (65) for f and fv independent of ω (related to Fresnel integrals) exhibits a
hara
teristi
 os
illatory wave front of the form ∼ (r − vtt)

−1/2, as expe
ted. Su
h qualitative
hara
teristi
s of the solution to this problem are similar with those indi
ated long time ago byLamb[2℄ (See also Ref. [3℄).Similar 
al
ulations 
an be done for the tangential 
omponent vt(r) and the verti
al 
omponent
u3(r). The result for vt(r) 
an be obtained from equations (64) and (65) by putting formally
fv = 0 and repla
ing sin α by cos α. The verti
al 
omponent 
an be obtained from equations (64)and (65) by repla
ing sin α by 1 and putting fv = 0.Next, we 
onsider an in-plane lo
alized pressure pb2δ(r). The Fourier 
omponents of the for
e aregiven by f1 = (−ib2p/ρ)k, f2 = f3 = 0 and the Fourier 
omponents of the displa
ement are

v1(k) =
ab2p

2ρω2
κk (cos ϕ, sin ϕ) sgn(π − ϕ) , u3(k) = − ab2p

2ρω2
k2 . (66)The inverse Fourier transforms of these displa
ements gives vr(r) = 0 and

vt(r) = ab2pω
16πρv3

t
r

[

J1(
ωr
vt

) + J3(
ωr
vt

)
]

,

u3(r) = − ab2pω
4πρv3

t
r

[

J1(
ωr
vt

) − 2vt

ωr
J2(

ωr
vt

)
]

,

(67)where J2,3 are Bessel fun
tions of the �rst kind and se
ond and, repe
tively, third order Theleading term (∼ r−3/2) in vt is vanishing in the limit ωr/vt ≫ 1, while u3behaves like
u3(r) ∼ωr/vt≫1 −

ab2p

ρvt

ω1/2

(vrr)3/2
cos(

ωr

vt
− 3π

4
) . (68)The verti
al 
omponent of the surfa
e displa
ement has a wave front of the form ∼ (r − vtt)

−3/2.10 General solution for a for
e lo
alized on the surfa
eThe for
e exerted on the surfa
e by the "for
ed waves" is given by ρf s
i = σi3 = λullδi3 + 2µui3,where the parti
ular solution given by equations (51), (59) and (60) is used for 
omputing thestrain tensor. Its 
omponents are given by

f s
1 = −av2

t
(κ2−k2)

2ω2κ
(κf1 − kf3) ,

f s
2 = −af2

2
,

f s
3 =

av2

t
k

ω2 (κf1 − kf3) ,

(69)



14 J. Theor. Phys.where fi are given by equation (61). We 
an estimate this for
e following the same pro
eduredes
ribed in the pre
eding Se
tion for the displa
ement. The results are similar with the 
orre-sponding displa
ements. For instan
e, the asymptoti
 expression for the radial 
omponent of su
ha for
e is given by
f s

r (r) ∼ωr/vt≫1 −
ab2

r
(ω/vtr)

1/2f cos α cos(
ωr

vt

− 3π

4
) , (70)whi
h is similar with equation (65).The 
ontribution f 0s

i of the "free waves", as given by equations (38) and (39), must be added tothis for
e, in order to satisfy the "free-surfa
e" boundary 
ondition given by equation (15). Forthe in-plane Fourier transforms this 
ondition reads
f 0s

i + f s
i + afi = 0 . (71)The solutions of this system of equations are

A1 = − iaf1κ(κ2−k2)
2∆v2

t

+ iaκ
2ω2k

(kf1 − κf3) + ia(κ2−k2)3

2∆ω2k
f3 ,

A2 = iaf2

2v2

t
κ

,

B = − iaf1κk2

∆v2

t

+ iak(κ2−k2)
∆ω2 [2κkf1 + (κ2 − k2)f3] ,

(72)
where ∆ = (κ2 − k2)2 + 4κκ′k2. The surfa
e displa
ement 
aused by the free waves is given by

v0
1 = A1 + B , v0

2 = A2 , u0
3 = −k

κ
A1 +

κ′

k
B . (73)In the asymptoti
 limit ωr/vt ≫ 1 the main 
ontribution to the in-plane Fourier transforms of thequantities given by equation (73) in the referen
e frame de�ned by the radial axis r, tangentialaxis t and the verti
al axis z is brought by k ∼ 0. Within this approximation we �nd

v0
r(r) ∼

ab2fv

v2
t r

J0(
ωr

vt

) ∼ ab2fv

ω1/2(vtr)3/2
cos(

ωr

vt

− π

4
) (74)for the radial 
omponent, a similar expresion for the tangential 
omponent and

u0
3(r) ∼

ab2f

vlvtr
J0(

ωr

vt

) cos α ∼ ab2f

vl(vtω)1/2r3/2
cos α cos(

ωr

vt

− π

4
) (75)for the verti
al 
omponant of the displa
ement. As we 
an see, the "free waves" do not modifythe asymptoti
 r-dependen
e of the displa
ement 
aused by the "for
ed waves" (equation (65)),but introdu
e an additional angle dependen
e and amplitude fa
tors related to the velo
ity ofthe longitudinal waves. A similar 
on
lusion holds for the displa
ement 
aused by a point-likepressure lo
alized on the surfa
e.11 Temporal dependen
eThe asymptoti
 surfa
e displa
ements for a for
e lo
alized beneath the surfa
e 
ontains frequen
yfa
tors of the form 1/ω, 1/ω2 et
. In addition, for d ≪ r, they have also os
illating fa
tors of the



J. Theor. Phys. 15form sin(ωd/vt), cos(ωd/vt) (not in
luded in equations (44)). In the opposite 
ase r ≪ d theseos
illating fa
tors are of the form sin(ωr/vt), cos(ωr/vt), so we may take a general behaviour ofthe type sin(ωR/vt), cos(ωR/vt), where R is a length related to the distan
e from the sour
e tothe point on the surfa
e. In addition, the free waves may bring also 
ontributions propagatingwith velo
ity vl along the distan
e R, espe
ially for small values of the in-plane radius r.Consequently, for the time dependen
e of the surfa
e displa
ement we have to estimate, for in-stan
e, integrals of the form
I =

∫ ∆ω

0
dω

cosωτ

ω
, (76)where τ ∼ t − R/v , where v denotes a generi
 velo
ity and ∆ω is a range of frequen
ies. It iseasy to see that for small τ the integral in equation (76) is approximately given by I ∼ ln(∆ωτ).It tells that the front waves has an abrupt rise for τ = 0, as expe
ted.For the surfa
e displa
ements 
aused by a for
e lo
alized on the surfa
e the 
hara
teristi
 frequen
yfa
tor is ∼ ω−1/2 and we have to estimate integrals of the form

I =
∫ ∆ω

0
dω

cosωτ√
ω

. (77)By a 
hange of variable ωτ = z2 this integral 
an be redu
ed to a Fresnel integral. The Fresnelintegral is given by[11℄
∫ ∞

0
dzeiz2

=

√

π

2

1 + i

2
. (78)We 
an see that the wave front goes like τ−1/2 = (t − r/v)−1/2.12 Con
lusionsIn 
on
lusion, we may say that we have introdu
ed herein a new method of studying the propaga-tion of the elasti
 waves in isotropi
 bodies, based on the Kir
hho� potentials for wave equationwith sour
es, borrowed from the theory of ele
tromagnetism. The method implies 
oupled inte-gral equations for the waves amplitudes, whi
h we solved. Making use of this method we havedetermined the waves produ
ed in an isotropi
 elasti
 semi-in�nite body by an external for
e lo-
alized either on the body surfa
e or beneath the surfa
e at some distan
e d. In the latter 
asethe waves are stationary along the dire
tion perpendi
ular to the body surfa
e. We have also
omputed the surfa
e displa
ement produ
ed by these for
es as well as the for
e exerted on thesurfa
e as 
aused by a for
e lo
alized beneath. We have estimated these quantities in the fastos
illating regime (ωr/vt ≫ ωd/vt ≫ 1, where ω denotes the frequen
y and vt is the velo
ity of thetransverse waves). These quantities exhibit a 
hara
teristi
 de
rease along the in-plane distan
eon the body surfa
e and a 
hara
teristi
 os
illatory behaviour. By making use of this method wehave generalized one of Lamb's problem (for
e lo
alized on the surfa
e of the body) and obtainednew results for a point-like for
e lo
alized beneath the body surfa
e. Various other results 
an beobtained by means of this method, for various other geometries and for
e distributions.The present approa
h 
an be extended to determine the waves propagating in elasti
 bodies withspe
ial, �nite geometries, either as eigenmodes or 
aused by some external for
es (both lo
alizedor extended). More interesting, we 
an extend the present approa
h to in
lude the e�e
t of variousinhomogeneities pla
ed in elasti
 bodies, as 
aused by lo
al variations in the body density or elasti

onstants.
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e that a small irregularity δρ o

urs in the density ρ in equation (1).The 
orresponding term δρü 
an be transferred into the rhs of equation (8) and 
an be treated asa "wave sour
e". It will bring an additional 
ontribution to the "potential" given by equation (9),whi
h allows one to 
ompute the 
hanges brought by this inhomogeneity both in the eigenmodesand the elasti
 response of the body. Of parti
ular importan
e is the 
ase when this inhomogeneityis pla
ed on the body surfa
e. Obviously, a similar treatment 
an be applied to inhomogeneitieso

urring in the elasti
 
oe�
ients λ and µ, both on the body surfa
e or in the bulk. Some resultsin this dire
tion will be reported in a forth
oming publi
ation.A
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ussions.Appendix. A few integralsWe give here a few integrals o

urring in the 
al
ulations des
ribed in the main text:
∫ 2π
0 dϕ cos ϕeiz cos ϕ = 2iπJ1(z) ,

∫ 2π
0 dϕ sin ϕeiz cos ϕ = 0 ,

∫ 2π
0 dϕ cos2 ϕeiz cos ϕ = 2πJ0(z) − 2π

z
J1(z) ,

∫ 2π
0 dϕ sinϕ cos ϕeiz cos ϕ = 0 ,

∫ 2π
0 dϕ sin2 ϕeiz cos ϕ = 2π

z
J1(z) ,

∫ 2π
0 dϕsgn(π − ϕ)eiz cos ϕ = 0 ,

∫ 2π
0 dϕsgn(π − ϕ) cosϕeiz cos ϕ = 0 ,

∫ 2π
0 dϕsgn(π − ϕ) sin ϕeiz cos ϕ = 4 sin z

z
,

∫ 2π
0 dϕsgn(π − ϕ) cos2 ϕeiz cos ϕ = 0 ,

∫ 2π
0 dϕsgn(π − ϕ) sin2 ϕeiz cos ϕ = 0 ,

∫ 2π
0 dϕsgn(π − ϕ) sin ϕ cos ϕeiz cos ϕ = −4i ∂

∂z
sin z

z
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