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Abstract

The propagation of elastic waves in isotropic bodies is investigated by a new method,
based on the electromagnetic Kirchhoff potentials. This method is applied herein to elastic
waves produced in a semi-infinite (half-space) isotropic body by the action of an external force
localized beneath, or on the body surface. The method leads to coupled integral equations
for the wave amplitudes, which are solved for the both cases. The waves produced by a force
localized beneath the surface are stationary waves along the normal to the surface. For a
force localized on the body surface two transverse waves are identified, corresponding to the
two polarizations (normal and parallel to the propagation plane). Another longitudinal wave
appears as an eigenmode. The surface displacement and the force exerted on the surface
are computed in both cases. All these quantities exhibit a characteristic decrease with the
distance on the body surface and an oscillatory behaviour. A brief discussion is included
regarding some possibilities of extending the present method to treating the effect of the
inhomogeneities on the waves propagation.
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1 Introduction

The propagation of elastic waves in bodies with special, restricted geometries was originally inves-
tigated by Rayleigh[1] and Lamb,[2] and underwent various developments during the time.|[3| It is
sometimes known as Lamb’s problem in seismology.[4] The problem exhibits a certain complex-
ity related to difficulties arising mainly from the lack of an adequate treatment of the boundary
conditions. Of particular importance is the determination of the waves produced in such elastic
bodies by external forces, either localized on the body surface, or within the bulk, or extended
over certain spatial volumes. Even more interesting, and more difficult, is the problem of treating
the effect of the inhomogeneities, either localized or extended, on the wave propagation in finite
elastic bodies. Apart from their practical importance in engineering, such problems are of great
relevance for the effect of the seismic waves on the Earth’s surface|5]-|9].

A new method is presented here for studying the wave propagation in isotropic elastic bodies
with a finite (or partially finite) structure, based on the Kirchhoff potentials of the wave equation



2 J. Theor. Phys.

with sources, borrowed from electromagnetism. This method is employed herein to determine
the elastic waves produced in a semi-infinite (half-space) body by external forces localized either
beneath, or on the body surface. For the force localized beneath the body surface the elastic waves
are stationary waves along the direction perpendicular to the body surface. For the force localized
on the surface we determine two transverse waves propagating in the body and a longitudinal one
which appears as an eigenmode. The surface displacement and the force exerted on the surface are
computed in both cases. All these quantities exhibit a characteristic decrease and an oscillatory
behavior along the in-plane distance on the body surface. In both cases, the present method leads
to coupled integral equations for the wave amplitudes, which are solved. By means of the method
presented herein new results are obtained for a point-like force localized under the surface and
one of Lamb’s problem (force localized on the surface) is generalized. The generalization consists
in treating a general distribution of the force acting on the body surface and a general orientation
of this force. In addition, in both cases, the effects of a localized pressure are analyzed. Finally,
a brief discussion is given regarding the extension of the present method to include the effect of
the inhomogeneities on the wave propagation in elastic bodies with finite geometries.

2 General theory

The elastic waves in isotropic bodies are governed by the equation of motion|[10]
pu = pAu+ (A + p) grad - diva + pf | (1)

where p is the density, u is the displacement field, p and A are the Lame coefficients and f is an
external force per unit mass (acceleration). By a Fourier transform of the form

u(R, 1) / dwu(K, w)eKR-iwt 2)

and a similar one for the force f, equation (1) becomes
(—pw® + pK?)u == (A+ p) (KK + pf (3)

where we dropped out the arguments K, w for simplicity. Equation (3) can easily be solved. Its
solution is given by
(vf — v?) (Kf) f

= — K- 4
" (w2 — v K?) (w? — VP K?) w2 —viK? (4)

oy — \f AT 2“ (5)

are the velocities of the transverse and, respectively, longltudinal waves. We can see from equation
(4) that for a longitudinal force f = fK/K the displacement field is longitudinal and has the
eigenfrequencies w = v K, while for a transverse force, Kf = 0, the field is transverse and has
the eigenfrequencies w = v, K. As it is well known, the Lame coefficients can be expressed by the
Young modulus £ and the Poisson ratio o,

where

Eo E

A Tr -2 T t0)

(6)
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and, for reasons of stability, £ > 0 and —1 < ¢ < 1/2 (actually, for usual bodies, 0 < o < 1/2).
In particular, the ratio

2
0 A 1
1 v? ,u+ 1—20 0

satisfies the inequality ¢ > 1/3 (actually ¢ > 1)[10]. In general, the solution of the homogeneous
equation (1) ("free waves") must be added to the particular solution given by equation (4) ("forced
waves').

As it is well known, another, more direct, method can be used for solving equation (1), without
resorting to Fourier transforms. The method consists in writing the displacement u as a sum
of two functions, u = u; + u;, satisfying the conditions divu; = 0, as for transverse waves, and
curlu; = 0 corresponding to longitudinal waves. Then, it is easy to see that functions u; satisfy
the wave equations with velocities vy, respectively.

We present here a third method, which is used in the present paper, based on Kirchhoff potentials.
Indeed, making use of the notations introduced above we write equation (1) as

1 f

—U— Au=q-grad - divu+ — (8)
Ut Ut

where we can recognize the wave equation with sources ¢ - grad - divu and f/v?. As it is well

known, its (particular) solution is given by the retarded (Kirchhhoff) potential

u(R, t) = % J"dR/grad.divu(‘II{{’ff_{‘llR_Rl‘/vt)+

(9)

1 f(R/t—|R—R/|/v)
+47rv§ de/ R—R/| “
Indeed, making use of the Fourier transform given by equation (2) and using also the well-known

integral
iIKR+iwR /v 2
/vt 4oy

e
_ — ].
/dR R w? — P K2 (10)

we get easily the solution given by equations (3) and (4). We apply herein this method of Kirchhoff
potential, inspired from the theory of electromagnetism,|11| to the elastic waves generated in a
semi-infinite body by forces localized either beneath, or on the body surface.

3 Semi-infinite body. Surface waves

We consider a semi-infinite isotropic body extending over the region z < 0, with a plane surface
at z = 0. We may consider also a force f acting on this body, either inside it or localized on its
surface, and look for solutions of equation (1), i.e. for the waves propagating in the body. Of
course, we assume that u, f = 0 for z > 0 (outside the body). This is Lamb’s problem.|2| Usually,
it is assumed that force f is localized, either on the body surface or beneath it, and the problem
is approached by making use of a remarkable property of equation (1).

Indeed, as it is well known, equation (1) is another form of the more compact equation written as

= +pfi (11)

where
oij = Aupdi; + 2pu;; (12)
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is the stress tensor,

1 (Ou; | Ouy
Wj“?(axj+‘&m> (13)

is the strain tensor and ¢, j, [, etc, denote the coordinates axes. We take a small volume encircling
a point on the body surface and apply the Gauss theorem for equation (11). It is easy to see that,
for a force distributed in the body volume, we get

Oijhy = 0 y (14)

for any point on the body surface, where n is the unit vector normal to the body surface. Equation
(14), which plays the role of a boundary condition, tells that the body surface is free (from any
forces). If there exists a force localized on the body surface, say f(z), then it is easy to see that
the same procedure leads to

OiT;j + fz =0 s (15)

which tells again that the total force on the surface is vanishing. In addition, equation (15) tells
that the quantity o;;n; is the surface elastic force (force per unit area) acting on the surface. It is
also easy to see that the same procedure can be applied, at least in principle, to a force localized
onto a point, a surface, region, etc inside the body. In all these cases we write solutions for
the homogeneous equation (11) and impose upon them the continuity and the "jump" boundary
condition of the type given by equation (15). This way, the general solution of equation (11)
is obtained. This was the method used by Lamb in treating such problems.|2] Apart from less
interesting two-dimensional problems, Lamb treated also particular cases of a force localized on
the surface of a semi-infinite isotropic body and sketched an integral representation of the solution
for a force localized beneath the surface of such a body.

It is worth noting also that the "free-surface" condition given by equation (14) has been used by
Rayleigh[1] to identify the damped "free" surface waves (~ "%  k real) propagating on the surface
of a semi-infinite body in the absence of any force.

A different procedure is adopted in this paper. A particular solution is obtained by using Kirchhoff
potential, as determined by the external force f ("forced waves"), and "free waves" of the form
u,; are added to it, i.e. solutions of the homogeneous equation, in order to satisfy the boundary
conditions of the type given by equations (14) and (15). We carry out explicit calculations for a
point-like force localized beneath the body surface and for a point-like force localized on the body
surface. As we shall see, the damped "free" surface waves are not excited by localized external
forces, though they may be excited by surface damped forces.

4 Force localized beneath the surface

We consider a force

£(R, 1) = a*£(t)5(R — Ry) (16)

localized at depth d beneath the plane surface z = 0 of a semi-infinite elastic body extending
to the region z < 0, such as Rg = (0,0, —d). The characteristic length a is, much smaller than
the relevant distances, is introduced on one hand for reasons of dimensionality and, on the other,
for having a representation of the spatial extension of the "focus" onto which the force acts. In
equation (16) the position vector is given by R = (z,y,2) = (r, 2) and ¢ denotes the time. The
propagating spherical waves produced by this point-like force in an infinite body are well known
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(see for instance Ref. [9]). We derive here the waves produced by such a source in a semi-infinite
body. We represent the displacement field as

u=(v,u3)f(—z2) , (17)

where v is the in-plane component (parallel to the surface), us is the transverse component (per-
pendicular to the surface) and 6(z) =0 for z < 0, 6(z) = 1 for z > 0 is the step function. We use
Fourier transforms of the form

v(r,zt) =3 / dwov(k, w; z)ele—iet (18)
k

and a similar one for wus(r, z;t), where k is the in-plane wavevector. Usually, we leave aside
the arguments k, w, while preserving explicitly the z-dependence of the functions v(k,w;z) and
ug(k,w; z). The divergence occurring in equation (9) can then be written as

diva = (divv + %) 0(—z) —u3(0)o(2) , (19)

where we can see the occurrence of specific surface contributions associated with uz(0) = us(z = 0).

We compute grad - divu according to equations (18) and (19) and introduce it, together with
the force given by equation (16), in equation (9). The intervening integrals reduce to the known
integral|12]

/|O|O dxJy (k;\/ x? — 22) elwe/e — %ei’ﬂz‘ : (20)

where Jj is the Bessel function of the first kind and zeroth order and
kK=4— — k2. (21)

In addition, we introduce the convenient notations v; = vk/k, vo = vk, /k and similar ones for
f1.2, where k, is a vector perpendicular to k, kk; = 0, and of the same magnitude k. The force
term in equation (9), which we denote by F, can easily be evaluated. Its Fourier transform is

given by
3f
F=—
207K

sink |z +d| (22)

where x? = w?/v? — k* > 0. Applying the procedure described above we get straightforwardly
from equation (9)

a’f

2 .
vy = Fy = — sink |z +d 23
)= By~ s+ d (23)
and the set of coupled integral equations
v = —% [P dz' vy (2)elFm | — LD 0 gty (et 4 By
(24)
Uz = —%% [0 dz'vy (2)e = 4 ;—Zaa—; [0 dz'us(2) el =% 4 Fy .

In deriving these equations it is worth noting the non-invertibility of the derivatives and the
integrals, according to the identity

0 0 e s
/ / iklz—2'| _ .2 / Netklz=2"| _ 9,
0z /odz Us )02’6 " /odz f(2)e 2inf(2) (2



6 J. Theor. Phys.

for any function f(2), z > 0; it is due to the discontinuity in the derivative of the function e!*=%'
for z = 2/. These equations imply the relationship
1 81}1 1 8F1
U3 = ——— — ——— — Fj . 26
s k 0z k 0z s (26)

Introducing uz from this equation into the first equation (24) and performing the integrations by
parts, we get a single integral equation

2

(14 q)vr = =2 [0 dzvi ()™=~ + Lu;(0)e™™* + (1 — q) Fy—

21}?/{
(27)
_iqTH J"O dZ/Fl(z/)einlz—z’l 4 %Fl(o)e—inz + %% fO dz/Fg(Z/)em\z—z'\ .
Taking the second derivative with respect to z in this equation we find
= — 4+ ik—= 28
az2+l-€ O T K Fy +1 5 | (28)
where k2 = w?/v? — k% Now, it is easy to get the solution for v;. It is given by
3
u =5 [kfisink |z 4 d| + ik fssgn(z + d) cos k(z + d)] (29)
w
and, by equations (22) and (26),
a’k
us = 5 [kf3sink |z 4+ d| + ik fisgn(z + d) cos k(z + d)] . (30)
w2k

We can see that all these solutions vy 2, ug are stationary waves along the direction perpendicular
to the surface, as generated by the stationary oscillating force given by equation (22). In addition,
they are regular functions for k — 0, though v, and us may increase indefinitely for k — 0,
ve(k — 0), ug(k — 0) ~ |z + d|; this increase indicates the transition to the damped regime. It is
also worth noting the discontinuity occurring at z = —d.

It is interesting to note that the wavevectors k and x in the localized force given by equation (16)
are independent and real variables. Out of them, the equation of the elastic waves selects only
those wavevectors which satisfy the condition w? = v2(k? 4 £?), and assigns them to the allowed
propagating waves. This is the mathematical mechanism through which extended elastic waves
are generated by localized forces. Another observation is that, the above waves being stationary,
the polarization is meaningless for them, although they are associated with the velocity v; of the
transverse elastic waves. On the other hand, we must notice that the solution of the homogeneous
equation (28) is the "free" longitudinal wave propagating with the wavevector ', i.e. with the
velocity v; of the longitudinal waves, and similarly, the solution of the homogeneous wave equation
(8) is the "free" transverse wave propagating with the wavevector x and the velocity v;.

5 Surface displacement

The displacement of the surface z = 0, as caused by the "forced waves" obtained above, can be
computed by using the inverse Fourier transforms of v; 2(K) and u3(K) given by equations (23),
(29) and (30), where K = (k, k). As usually, we leave aside for the moment the argument w in
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these expressions. It is worth noting that x = \/w?/v? — k2 is not an independent variable. The
Fourier components of the force are given by f(K) = afe’®®. We choose an in-plane reference
frame with one axis oriented along the in-plane radius r (radial axis ) and another perpendicular
to the former (tangential axis t). We denote by « the angle between the force vector f and radius
r so that the force vector can be written as (fcosq, fsina, f3), where f denotes the in-plane
(horizontal) force and f3 denotes the vertical force. We also denote by ¢ the angle between the in-
plane wavevector k and radius r, such that k = k(cos ¢, sin ) and k| = k(—sin ¢, cos¢). Then,
we can compute easily the force projections fi o3 appearing in equations (23), (29) and (30). They
are given by f = (f cos(a — @), fsin(a — ¢), f3). It is worth noting that on changing k — —k, i.e.
¢ — T+, the quantities f; change sign, as they should do; similarly, f3, being the projection of
the force along the wavevector component s, must change sign under the reversal of the direction
of this component, K — —k. Making use of the above notations and of v(K) = v1k/k + vk /k
we can obtain immediately the radial and tangential components of the displacement, v,.(K) and
v (K) , respectively. However, it is worth noting that for a real displacement the Fourier transforms
must satisfy the symmetry relationship v*(—K) = v(K), and, similarly, u(—K) = u3(K). Taking
into account the change of sign of the force components f; 43 under this operation, we can see
that a factor sgn(m — ¢) must be introduced, in general, wherever relevant, in order to get real
displacements. The integrals with respect to angle ¢ in the Fourier transforms imply the Bessel
functions Jy ;. Some of these integrals are collected in Appendix.The surface displacement can
be written as

_ d¥f 1 a*f a® f3
v (r) = =25 (11 — - 1y) cosa — 4m}t2Tlg cosa — =51,

3 . 3 .
v (r) = 4$wér]2 sin v — 4‘;512([5 — %Ig) sina (31)

[13 CL3
uz(r) = ﬁ[ﬁ — 47ro.{2[4 cosa

where

I, = fﬁ”t dkrksin kd - Jo(kr) , I = fSJ/vt dkrsinkd - Jy(kr) |
Iy = [ dkfsinsd - Jy(kr) | Io= [ dkk? cos md - Jy(kr) (32)

Iy = [&/ dkEsinkd - Jo(kr) , I = Jlve dkk—,: sinkd - Jo(kr) .

We estimate these integrals in the fast oscillating limit wr /v, ,wd/v; > 1. In this case, the main
contribution comes from k£ ~ 0 and extends over a range Ak ~ 1/r for r > d or Ak ~ 1/d for
d > r. The leading contributions for r > d are given by
3 3 3
a a , a
cosa , v(r) ~ sina , ug(r) ~

v (1) ~ cosa , (33)

W2 W2 w2rs

where oscillating factors of the form sinwd/v;, coswd /v, are left aside. We can see the directional
character of the surface displacement (through angle «) and the vertical component (u3) which is
much smaller (by a factor wr/v;) than the horizontal components. We shall see that the directional
character as given in equation (33) for the "forced waves" is amended by the contribution of the
"free waves". It is also worth noting that the leading contribution to the vertical displacement is
caused by the in-plane force f, and, in general, the vertical component of the force brings a smaller
contribution. This is due to the stationary character of the waves along the vertical dierction.

Let us assume now a force derived from a localized pressure p. The force components are then
given by fi = ipk/p, fo = 0 and f3 = (—ipr/p)e’*®. In computing the Fourier transforms of the
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surface displacement we must take care again of the general symmetry relations v*(—K) = v(K)
and uj(—K) = u3(K). We get

v(r) = a’p fow/vt dkrk?sin kd(1 — cos kd)Jy (kr)

T 4mw?p

ve(r) = 27T§”i’2’pr [ dkrk cos? kd sin(kr) | (34)

us(r) = ;i’;p I k3 (sin? kd + cos kd) Jo(kr) .

In the same limit wr/v; > wd/v; > 1 the leading contributions to the above displacements are
given by

a’p a’p

vp(r), v (r) ~ u(r) ~ (35)

wogprs w2prt
We can see that the displacements produced by pressure fall off faster with distance than the

corresponding displacements caused by a force (equation (33)).

6 Force exerted on the surface

We are interested now in the force exerted on the surface z = 0 by the "forced waves" produced
beneath the surface. As shown above, the force exerted by a displacement field u per unit area of
a surface with unit normal n is given (in our notations) by pff = o;;n;, where o;; = Auyd;; + 2w,
is the stress tensor and u;; = (1/2)(0u;/0x; + Ou;/0x;) is the strain tensor. Using the reference
frame defined by k, k; and z we get

filk,w) = avix [k f1 cos kd — ik fysin kd] |

w2

f3(k,w) = —a®fycos kd (36)

f5(k,w) = auik [k f3 cos kd — ik fy sin kd] .

w2

We note that the dilatation vanishes, vi; + v99 + u33 = 0, in accordance with the fact that these
solutions, given by equations (23), (29) and (30), are constructed from transverse waves.

We compute the inverse Fourier transforms of these forces with respect to the wavector k accord-
ing to the procedure described above for the surface displacement. The asymptotic expressions
(wr/ve > wd/v, > 1) are given by
3 3 3
a a’f . a’ fuy
fi(r) ~ —3 cosa, fi(r) ~ —3 sina, fi(r) ~

5 Cosa ; (37)
wr

they are similar with the surface displacements given by equation (33), except for an additional
factor w. In the same manner we can compute the force exerted on the surface by a localized
pressure.

7 General solution

The general solution of the problem is obtained by adding to the particular solution given by
equations (23), (29) and (30) the solutions of the homogeneous equations (8) and (28). These are
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given by a transverse wave
k .
W = (Ah Ay, ——A1> e (38)
K
and a longitudinal wave
/
w = (B,O,EB> er's (39)

where the constants A, 5, B are determined from the condition of a vanishing total surface force,
in accordance with equation (14). On equations (38) and (39) one can check the transversality
condition divu; = 0 and the condition curlu; = 0 for longitudinal waves. The "free waves"
solutions given by equations (38) and (39) are written in the referenec frame defined by k, k; and
z.

0

We compute the surface force pf?* = Aul)d;z+2puly, where u® = u; +u;, and impose the condition

fr+fi=0, (40)

where f?, given by equations (36), correspond to the surface force generated by the particular
solution ("forced waves"). Tt is worth noting here that equation (40) holds for any point on the
surface z = 0, i.e. it is multiplied in fact by the factor e’** with the same in-plane wavevector k.
Since w is the same for both the particular solution and the "free waves", and w? = v?(k? + k?),
w? = v}(k"? + k%) in both cases, it follows that x, x’ are the same, i.e. they are real variables, as
corresponding to localized external forces. Consequently, the "free waves" are propagating waves.
Damped "free" surface waves (i.e. waves with k, £’ purely imaginary) can be excited by damped
external forces.[13|

Condition (40) leads to

a’ fa

VK

Ay = —i

cos rkd (41)

and the system of equations

(K2 — k2)A, + 2kK'B = 2 (k fy sin kd + ik f1 cos kd) |

w2
(42)
2k%A; — (K2 — k*)B = — 5 (i fy sin kd + ik f3 cos kd)
whose solution can be written as
/ HS HQ_ 2
A, = _4H2k2vl + 2 (kA k )U3 7
(43)

3 2k2 2—k‘2
B = 4/iAku3_|_ (HA )Ul ,

where A = (k? — k?)? + 4kk'k%. Incidentally, we note here that A = 0 for k — ix and " — ix’
gives the dispersion relation w(k) for the Rayleigh surface waves.

The surface displacements brought about by the "free waves" are given by v? = A; + B, vJ = A,
and ug = —%Al + %B. We compute their inverse Fourier transforms by the same procedure as

that described in Section 5. Under the same conditions as those employed in this Section we
get the asymptotic behaviour

3 3 .
vt (r) ~ L cosa, “Lisina,

r wvrr? ’ wogr?
vtet(r) ~ 2L sina , 2L cosa (44)
t wvopr? Y wuer? )

uf(r) ~ (1 — vt/vl)% cosa %% sin o«
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for the total displacement u’® = u® + u. We can see that the "free waves" do not change
the r-dependence, but introduce an additional directional character. In addition, the vertical
displacement is affected by factors depending on v;/v;. A similar conclusion (except for the
directional character) holds for a force derived from pressure.

8 Force localized on the surface

We consider a semi-infinite isotropic elastic body extending over the region z > 0 and assume a
localized force

f(R,t) = a ; / dwf (k, w)er=itg( ) (45)

acting on the body plane surface z = 0, where a is a characteristic length, R = (r, z) and k is the
in-plane wavevector. This is a generalization of one of Lamb’s problems.|2|

We represent the displacement field as
u=(v,u3)0(z) , (46)

where v is the in-plane component (parallel to the surface), us is the transverse component (per-
pendicular to the surface) and 6(z) = 0 for z < 0, 8(z) = 1 for z > 0 is the step function. The
divergence occurring in equation (9) can then be written as

0

divu = (divv + %) 0(2) + u3(0)8(2) | (47)
2

where we can see the occurrence of specific surface contributions associated with ugz(0) = us(z = 0).

As before, we use a Fourier transform of the form

v(r, z:1) / dwov(k, w; z)ele—iet (48)

and a similar one for wus(r, z;t). Usually, we leave aside the arguments k, w, while preserving
explicitly the z-dependence of the functions v(k,w;z) and usz(k,w;z). We compute grad - divu
according to equations (47) and (48) and introduce it, together with the force given by equation
(45), in equation (9). As for a force localized beneath the surface, the intervening integrals reduce
to the known integral[12]

Cdwdy (kva? = 22) el = L ginll (49)

|| K

where

K= — —k?%. (50)

We use also the same convenient notations v; = vk/k, va = vk, /k and similar ones for f; 5, where
k, is a vector perpendicular to k, kk; = 0, and of the same magnitude k. Then, equation (9)
reduces to af
a2 ke
Vg = —5—€ 51
7 2k (51)

and to a set of two coupled integral equations which read

vr =~ fodz'oy () — gl deug(2)et
(52)
+zaf1 Kz

2vt K
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and

. _ . 2 . _
Uz = —%% Jy dz'vy (2")e =% 4 %% Jy dz'uz(2")e =14

(53)
iafs i
_‘_ﬁe“{z .
We note here again that in deriving these equations it is worth observing the non-invertibility of
the derivatives and the integrals, according to the identity

a a ; ! . /
% /0 dz'f(z')gem‘z_z‘ = K? /0 d2' f(2)e™ =1 — 2ikf(2) (54)
for any function f(z), z > 0; it is due to the discontinuity in the derivative of the function e!*=%'
for z = 2/. From equations (52) and (53) we get easily

1 81}1 a (/ﬁfl — k’fg) emz ' (55)
k 0z 20t kk

Equation (51) gives the transverse wave vy (for x real) propagating with the velocity v, according
to equation (50). Its polarization is normal to the plane of propagation (the plane determined by
the vectors k and ). This wave is usually known as the s-wave in the theory of electromagnetism
(from the German word "senkrecht" which means "perpendicular "). From equation (51) we can
see that the s-wave becomes singular for k = 0.

We pass now to the system of coupled equations (52) and (53), and the relationship given by
equation (55). We introduce us from equation (55) into equation (52) and get

(14 q)vr = =385 fy dz'vy (2')einl= 1+
(56)
+—4égi2 (kfi — kfs3) % Joder# etrlz== 4 1 {Z,ZT]: + qm(O)} e

This equation can easily be solved by taking the second derivative with respect to z and using the
non-invertibility equation (54). We get

Puy iaq :
= - - k; ez 57
82’2 + kK U1 2@3(1 T q) (/ﬁfl fg) e s ( )
where
’ (UZ
=5 -k 58
K=\ 5 (58)

For a longitudinal force x f; —k f3 = 0 we obtain from equation (57) longitudinal waves propagating
with wavevector «’ (for ' real) and with the velocity v;. For a general force, equation (57) has
the particular solution

’éa’ 1Kz
v = 2—(,<}2 (/ﬁfl — k‘fg) (& (59)
and m
Q :
ug = — 5o (kfy = kfy) (60)
WK

We can see that v; and us given above correspond to a transverse wave, kv; + kug = 0, whose
polarization lies in the plane of propagation. This is called the p-wave, where p stands for "par-
allel". We can see also that v;is a regular function, while ug may exhibit the same singularity as
vy does for k = 0.
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9 Surface displacement caused by a force localized on the
surface

The displacement of the surface z = 0 can be computed by using the inverse Fourier transforms
of v12(K) and u3(K) given by equations (51), (59) and (60), where K = (k,x). As usually,
we leave aside for the moment the argument w in these expressions. It is worth noting that
k = y/w?/v} — k? is not an independent variable. First, we consider a d-type force localized on
the surface, f(R) = ab?f5(r)d(z), where f is a constant vector and b is a characteristic localization
length on the surface. Again, this is another generalization of one of Lamb’s problems.|2| The
Fourier components f(K) = ab*f of this force do not depend on K (but they may have an w-
dependence). As before, we choose an in-plane reference frame with one axis oriented along the
in-plane radius r (radial axis r) and another perpendicular to the former (tangential axis t). We
denote by « the angle between the force vector f and radius r. Then, the force vector can be
written as f = (fcosa, fsina, f,), where f denotes the in-plane (horizontal) force and f, denotes
the vertical force. Similarly, we denote by ¢ the angle between the in-plane wavevector k and
radius r, such that k = k(cosp,sing) and k; = k(—siny,cosp). Then, the force projections
fi1.2.3 entering equations (51), (59) and (60) can be written as

fi=b*fcos(a— ), fo=bfsin(a— ), f3=>0"f,. (61)

It is worth noting that on changing k — —k, i.e. ¢ — ™+ ¢, the quantities f; o change sign, as
they should do; similarly, f3, being the projection of the force along the wavevector component
k, must change sign under the reversal of the direction of this component, x — —x. Making use
of the above notations and of v(K) = v1k/k + vk /k we can obtain immediately the radial and
tangential components of the displacement, v,.(K) and v,(K) , respectively. However, it is worth
noting that for a real displacement the Fourier transforms must satisfy the symmetry relationship
v (—K) = v(K), and, similarly, uj(—K) = u3(K). Taking into account the change of sign of
the force components f; 53 under this operation, we can see that a factor sgn(m — ¢) must be
introduced wherever relevant. The Fourier components of the displacement can be written as

v-(k) = {%/@f cos(a — @) cos p — ’2“%2,5 sin(a — ) sin go} sgn(m — ) — 22‘2’22 kf,cosyp |
vy(k) = {mb K[ cos(a — @) sing + 3 wb f L sin(o — ) cos go} sgn(m — @) — %k‘fv sing | (62)

ug(k) = — 55 kf cos(a — @) + 555 fusgn(m — ¢)

(for z = 0). Now we can take the inverse Fourier transforms of these quantities. It is easy to
see that the integrals over angle ¢ which contain factors sin® ¢ and cos? ¢ are vanishing. For the
radial component we are left with

ikrcosp

v,(r) = —2(22‘:5’)1; sina [/ dl{:k 2T dpsgn(m — @) sin @ cos e

(63)

- szf” 2 Jo oe dkk? ™ dy cos et o3¢

7'('

The integrals in equation (63) can be performed straightforwardly, by making use of the properties
of the Bessel functions.[12, 14] We get

un(r) = =32 (Fsina + £,) [Jo(22) — 227, (<2)] (64)
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In the limit wr/v; > 1 we get

2 wr o

ab 1
O (L) ~r o1 — i (fsina+ fv)W COS(U—t - Z) : (65)

We can see that the radial component of the surface displacement attains its maximum value along
a direction perpendicular to the direction of the force (o« = 7w/2), as expected for a transverse wave
generated by such a localized force. It has a characteristic oscillatory behaviour with the in-plane
distance and goes like =%/ for long distances. The temporal Fourier transform of the spectrum
given by equation (65) for f and f, independent of w (related to Fresnel integrals) exhibits a
characteristic oscillatory wave front of the form ~ (r — vt)7"/2, as expected. Such qualitative
characteristics of the solution to this problem are similar with those indicated long time ago by

Lamb|2]| (See also Ref. |3]).

Similar calculations can be done for the tangential component v;(r) and the vertical component
ug(r). The result for v,(r) can be obtained from equations (64) and (65) by putting formally
f» = 0 and replacing sin « by cos . The vertical component can be obtained from equations (64)
and (65) by replacing sin & by 1 and putting f, = 0.

Next, we consider an in-plane localized pressure pb?(r). The Fourier components of the force are
given by f; = (—=ib?p/p)k, fo = f3 = 0 and the Fourier components of the displacement are

b? b
vi(k) = gpw]; kk (cos @, sin ) sgn(m — ¢) , usz(k) = _gpw]; E* . (66)
The inverse Fourier transforms of these displacements gives v,(r) = 0 and
a, 2 W wTr wr
Ut(r) = 165)rp€,?7« [Jl(v_t) + J3(U_t)} )
(67)

us(r) = — 222 [y (<) — 22 Jy(e1)]

dmpvyT
where J3 are Bessel functions of the first kind and second and, repectively, third order The

leading term (~ r~%2) in v, is vanishing in the limit wr /v, > 1, while usbehaves like

ab’p w'/? wr 3w

U3 (1) ~r o1 o0 (o cos(v—t — Z) , (68)

The vertical component of the surface displacement has a wave front of the form ~ (r — v,t)=3/2,

10 General solution for a force localized on the surface

The force exerted on the surface by the "forced waves" is given by pf? = o5 = Auydis + 2uus,
where the particular solution given by equations (51), (59) and (60) is used for computing the
strain tensor. Its components are given by

av. R™— 2
fi= =) (o fy — kfs)

fégz_% ) (69)

f3 = (fff1 kf3) )



14 J. Theor. Phys.

where f; are given by equation (61). We can estimate this force following the same procedure
described in the preceding Section for the displacement. The results are similar with the corre-
sponding displacements. For instance, the asymptotic expression for the radial component of such
a force is given by

ab? wr 3w

FE) ~urpusr == (w/vr)' feosacos(= = =F) (70)

which is similar with equation (65).

The contribution f2* of the "free waves", as given by equations (38) and (39), must be added to
this force, in order to satisfy the "free-surface" boundary condition given by equation (15). For
the in-plane Fourier transforms this condition reads

P+ +afi=0. (71)

The solutions of this system of equations are

' 2_j2) —k2)3
Ay = L (ke — nfy) +

Ay = 5 (72)

; iak(k2—k?
B = — 10 4 O ukfy + (52 — k) fy]

where A = (k% — k%)? + 4rk'k?. The surface displacement caused by the free waves is given by

k K
:A1+B,Ug:A2’ug:——A1+EB. (73)
K
In the asymptotic limit wr/v; > 1 the main contribution to the in-plane Fourier transforms of the
quantities given by equation (73) in the reference frame defined by the radial axis r, tangential
axis ¢t and the vertical axis z is brought by k£ ~ 0. Within this approximation we find

0 ab®f, = wr ab®f, wr o
~ Jo(—) ~ ————= —_— — = 74
U (T) Utz?” 0( v, ) w1/2(vt7’)3/2 COS( v, 4) ( )

for the radial component, a similar expresion for the tangential component and

2 2
0 ab*f _ wr ab® f wr T

Jo(ZE ~ wrr 75
o o o ) cos a PRI cos a cos( o 4) (75)

for the vertical componant of the displacement. As we can see, the "free waves" do not modify
the asymptotic r-dependence of the displacement caused by the "forced waves" (equation (65)),
but introduce an additional angle dependence and amplitude factors related to the velocity of
the longitudinal waves. A similar conclusion holds for the displacement caused by a point-like
pressure localized on the surface.

11 Temporal dependence

The asymptotic surface displacements for a force localized beneath the surface contains frequency
factors of the form 1/w, 1/w? ete. In addition, for d < r, they have also oscillating factors of the
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form sin(wd/v;), cos(wd/v;) (not included in equations (44)). In the opposite case r < d these
oscillating factors are of the form sin(wr/v;), cos(wr/v;), so we may take a general behaviour of
the type sin(wR/v;), cos(wR/v;), where R is a length related to the distance from the source to
the point on the surface. In addition, the free waves may bring also contributions propagating
with velocity v; along the distance R, especially for small values of the in-plane radius 7.

Consequently, for the time dependence of the surface displacement we have to estimate, for in-

stance, integrals of the form
Aw
I / 2,587 | (76)
0

w

where 7 ~ t — R/v , where v denotes a generic velocity and Aw is a range of frequencies. It is
easy to see that for small 7 the integral in equation (76) is approximately given by I ~ In(Awr).
It tells that the front waves has an abrupt rise for 7 = 0, as expected.

For the surface displacements caused by a force localized on the surface the characteristic frequency
factor is ~ w™/? and we have to estimate integrals of the form

Aw  coswT
= / d . 7
0 v Vw (77)

By a change of variable wr = 22 this integral can be reduced to a Fresnel integral. The Fresnel

integral is given by|11|
o0 , 1+
dze® = \/f . 78
/0 - 2 2 (78)

-1/2.

We can see that the wave front goes like 77Y/2 = (t — r/v)

12 Conclusions

In conclusion, we may say that we have introduced herein a new method of studying the propaga-
tion of the elastic waves in isotropic bodies, based on the Kirchhoff potentials for wave equation
with sources, borrowed from the theory of electromagnetism. The method implies coupled inte-
gral equations for the waves amplitudes, which we solved. Making use of this method we have
determined the waves produced in an isotropic elastic semi-infinite body by an external force lo-
calized either on the body surface or beneath the surface at some distance d. In the latter case
the waves are stationary along the direction perpendicular to the body surface. We have also
computed the surface displacement produced by these forces as well as the force exerted on the
surface as caused by a force localized beneath. We have estimated these quantities in the fast
oscillating regime (wr /v, > wd/v; > 1, where w denotes the frequency and v; is the velocity of the
transverse waves). These quantities exhibit a characteristic decrease along the in-plane distance
on the body surface and a characteristic oscillatory behaviour. By making use of this method we
have generalized one of Lamb’s problem (force localized on the surface of the body) and obtained
new results for a point-like force localized beneath the body surface. Various other results can be
obtained by means of this method, for various other geometries and force distributions.

The present approach can be extended to determine the waves propagating in elastic bodies with
special, finite geometries, either as eigenmodes or caused by some external forces (both localized
or extended). More interesting, we can extend the present approach to include the effect of various
inhomogeneities placed in elastic bodies, as caused by local variations in the body density or elastic
constants.
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Indeed, suppose for instance that a small irregularity dp occurs in the density p in equation (1).
The corresponding term dpii can be transferred into the rhs of equation (8) and can be treated as
a "wave source". It will bring an additional contribution to the "potential" given by equation (9),
which allows one to compute the changes brought by this inhomogeneity both in the eigenmodes
and the elastic response of the body. Of particular importance is the case when this inhomogeneity
is placed on the body surface. Obviously, a similar treatment can be applied to inhomogeneities
occurring in the elastic coefficients A and p, both on the body surface or in the bulk. Some results
in this direction will be reported in a forthcoming publication.
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Appendix. A few integrals

We give here a few integrals occurring in the calculations described in the main text:
3 dp cos pe= P = 2imi(2) , [IT dipsin e P =0,
27 dip cos? pet* s ¢ = 21 Jo(z) — 277r<]1(z) . 2™ dysin o cos peir s = () |
027r dip sin® et s ® = 277r(]1(z) ’ f027r dpsgn(m — p)eizeose = |
JoT dpsgn(m — @) cos pe*e=? =0, [77 dpsgn(m — @) sin e’ ¥ = 45z

JZT dpsgn(m — @) cos? pe*5¢ =0, [Z7 dpsgn(m — @) sin? e ¢ =0 |

izcosp _ _4igsinz

T dpsgn(m — ) sin @ cos pe 5
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