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2 J. Theor. Phys.motion are solved. The solutions exhibit a quasi-stationary regime, and the single-partile energiesare omputed. The orresponding polarization �eld is stati, in the sense that the eletri �eldis vanishing and only a stati magneti �eld is present. The polarized vauum gets magnetized.Under the ation of an external �eld (monohromati plane wave), the single-partile energies arequasi-loalized in spae and aquire the shape of a stationary wave driven by the external �eld.The number of pairs, the pairs energy and the polarization energy are omputed. The number ofpairs is determined by the external �eld energy. The resulting values are extremely small, evenfor reasonably high external �elds and energy densities. This is due, mainly, to the Comptonwavelength of the eletrons whih is muh smaller than the size of the spae region over whih theexternal energy is foused. The magneti suseptibility is also evaluated (the refrative index) forthe polarized vauum, and, similarly, it is found to aquire very low values.As it is well-known, the eletromagneti radiation �eld is desribed by the vetor potential
A(r) =

∑
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√

2π~c2

V ωk
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eµ(k)aµke
ikr + e∗

µ(k)a∗µke
−ikr

] (1)in the standard Fourier representation, with the transverse gauge divA = 0, where c is theveloity of light, V is the volume, ωk = ck is the frequeny and eµ(k) are the polarization vetors,
eµ(k)k = 0, eµ(k)e∗

ν(k) = δµν (µ, ν = ±1), e−µ(−k) = e∗
µ(k). The eletri and magneti �eldare given by E = −(1/c)∂A/∂t and, respetively, H = curlA, and three Maxwell's equationsare satis�ed: curlE = −1

c
∂H/∂t, divH = 0, divE = 0. The time dependene is inluded in theFourier oe�ients aµk, a∗µk (photon annihilation and, respetively, reation operators).The lagrangian of the radiation �eld
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(2)leads to the equation of motion̈
aµk + ä∗−µ−k + ω2

k

(

aµk + a∗−µ−k

)

= 0 , (3)whih is the fourth Maxwell's equation curlH = (1/c)∂E/∂t.The standard Dira �eld for eletrons and positrons is written as
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, (4)where ε =
√

c2p2 +m2c4, m is the eletron mass,σ = ±1 is the spin label and the bispinors upσ,
vpσ are given by
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; (5)here n = p/p is the unit vetor along the momentum p, −→σ denote the Pauli matries and
wσ, w′

σ = −σyw−σ are normalized spinors, w∗
σwσ′ = δσσ′ , w′∗

σ w
′∗
σ = δσσ′ (otherwise arbitrary).The notation ∗ means transposition together with omplex onjugation. In general, we use the



J. Theor. Phys. 3notations and onventions from Refs. [28, 29℄. As it is well known, the free hamiltonian of thefermions reads
H0 =

∑

σp

ε
(

b∗pσbpσ − cpσc
∗
pσ

)

, (6)whih leads to the equation of motion i~ḃpσ = εbpσ, i~ċpσ = εcpσ for the eletron and positrondestrution operators bpσ, cpσ.Making use of equations (1) and (4) we ompute the interation hamiltonian
Hint = −e

c

∫

drψ∗(r)jψ(r)A(r) , (7)where −e is the eletron harge and j = c−→α is the partile urrent,
−→α =

(

0 −→σ
−→σ 0

) (8)being the Dira α-matries. The omputation of the matrix elements of the urrent j betweendi�erent eletron-positron states involved in equation (7) is lengthy but straightforward. It isworth noting that the urrent density for interating eletrons (positrons) di�ers from the groupveloity c2p/ε of the free eletrons (positrons). The general form of the interation matrix elementsan be represented as Mµ
σσ′(p,p′). They ontain the matrix elements (

−→
σ )σσ′ = w∗

σ
−→σ wσ′ of to thePauli maries −→σ . In general, the spinors may depend on the momenta p (as for heliities), suhthat (

−→
σ )σσ′(p,p′) = w∗

σ(p)−→σ wσ′(p′). It is important to note that there is an arbitrariness inthese matrix elements, due to the arbitrariness in the spinors wσ(p). The matrix −→
σ is relatedto the polarization matrix of eah elementary at of interation, but the spinors do not redueneessarily to the well-de�ned spin states in the rest frame, nor the vetor −→

σ redues to thepolarization vetor measured usually in sattering experiments. In the interation proess neitherthe spin, nor the heliities are onserved, i.e. both are undetermined. There is no reason tohave a "spin" dependene in the interation, so we omit the spin label in the eletron-positronoperators and the polarization label in the photon operators. The interation matrix elements anthen be summed over the spin and polarization labels,M(p,p′) =
∑

µσσ′ M
µ
σσ′(p,p′). The generalstruture of the interation hamiltonian is then given by
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,

(9)where the oe�ients A, B and C (the matrix elementsM(p,p′)) are given in Appendix A. Themost general struture of the vetor −→σ =
∑

σσ′ w∗
σ
−→σ wσ′ is given in Appendix B. In aordanewith our assumption that the interation matrix elements should not depend on the "spin" ori-entation we take the mean value of this vetor over all possible polarizations, and get (

−→
σ )av = 0.This amounts to a statistial (uniform) average of the interation hamiltonian over "spin" states.The oe�ients A, B and C simplify then appreiably, and the interation hamiltonian beomes
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(10)
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A(p,p′) = 1√

εε′

[

en
√
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(11)
and ε′ =

√

c2p′2 +m2c4, e =
∑

µ eµ(k). We emphasize the dependene on k of the oe�ients
A(p,p′) and B(p,p′), through the polarization vetor e. For brevity, we use notations like p±k for
p ± ~k. The interation hamiltonian given by equation (10) ontains eletron-eletron, positron-positron interations (the terms with the oe�ients A(p,p∓k)) and the reation and annihilationof pairs (the terms with the oe�ients B(p,−p ± k)). The orresponding equations of motionread

äk + ä∗−k + ω2
k(äk + ä∗−k) = 2ec

∑
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(12)and
i~ḃp = εpbp−

−ec∑
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i~ċp = εpcp+

+ec
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]
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(13)
It is easy to hek that the interation hamiltonian given by equation (10) onserves the harge
Q =

∑

p

(

b∗pbp − c∗pcp
). This is the standard framework (not manifestly ovariant) provided bythe quantum eletrodynamis for an ensemble of interating eletrons, positrons and photons. Forthe reation and annihilation of eletron-positron pairs in the proess of polarization of a piee ofmarosopi vauum we adopt here a speial route.In general, the states of interating fermions with spin one-half are admixtures of empty (|0〉) andoupied (|1〉) states. The reation and destrution operators an then be expressed by one salar.For instane, let |s〉 = α |0〉+β |1〉 be suh a state, with oe�ients α, β. The destrution operator

b has only one non-vanishing matrix element, 〈0| b |s〉 = β, or 〈s| b |1〉 = α. For de�niteness, wehoose 〈0| b |s〉 = β. The oupation number is given by 〈s| b∗b |s〉 = |β|2. Sine the states |s〉for an ensemble of interating fermions are not, in general, well-de�ned single-partile states, |β|2is not subjeted to the restrition |β|2 ≤ 1. Consequently, we an take suh matrix elements inthe �rst equation (13), whih amounts to work with fermioni amplitudes whih are c-numbers,instead of operators. These amplitudes an be viewed as lassial �elds. The harge onservation
Q = 0 for pairs suggests the replaement

bp → βp , c
∗
−p → βp , (14)in aordane with the partile-hole symmetry. Similarly, we replae the photon operators by

c-numbers,
ak + a∗−k → Ak , (15)



J. Theor. Phys. 5where Ak are viewed as lassial �elds. As it is well known, this amounts to employ oherentstates and a oherent interation of matter and radiation.[30℄ Then, the interation hamiltonianbeomes
Hint = −2ec

∑

pk

√

2π~

V ωk
B(p,−p + k)β∗

pβp−kAk , (16)and the equations of motion read
Äk + ω2

kAk = 4ec
∑

p

√

2πωk

~V
B(p,−p − k)β∗

pβp+k ,

i~β̇p = εpβp − 2ec
∑

k

√

2π~

V ωk

B(p,−p + k)βp−kAk .

(17)We an see that the sattering of individual eletrons (or positrons) disappears from the interationhamiltonian (the terms with the A-oe�ients in equation (10)), and the interation is determinedby the vauum polarization (reation and annihilation of pairs), as expeted. The produt β∗
pβp−kin the interation hamiltonian an also be viewed as orresponding to the exitation (and dis-exitation) of an ensemble of partiles, eah with two energy levels (labelled by p and −p + k),the levels orresponding to positive and, respetively, negative energy states. This latter featureis inorporated in the struture of the B-oe�ients. As it is well-known, suh an ensemble ofpartiles an be exited (polarized) in a stationary regime by an external lassial �eld of radiation,whih pumps energy in the ensemble, resembling to some extent the laser e�et. We note alsothat the produt β∗

pβp+k appearing in the rhs of the �rst equation (17) for the eletromagneti�eld is related to the medium polarization (more exatly to the polarization urrent).For reasonable energies we may limit ourselves to p, ~k < p0 ≪ mc, where p0 is a momentumuto�, and expand the oupling oe�ients B(p,p ± k) in powers of p and k. Similarly, weapproximate εp in equations (17) by ε0 = mc2. For suh small values of the momenta the angulardependene of the oupling funtion B(p,−p+k) is irrelevant for the qualitative behaviour of thesolutions of the system of equations (17). The struture of this system shows that the relevantoupling funtion is the produt B(p,−p − k)B(p,−p + k). Averaging over p we get
b =

[

B(p,−p − k)B(p,−p + k)
]1/2

=
p2

0√
35mε0

. (18)The onstant b plays the role of an e�etive oupling oe�ient. Introduing the oupling onstant
gk = 2ecb

√

2π/V ~ωk, the system of equations (17) beomes
Äk + ω2

kAk = 2ωkgk

∑

p
β∗

pβp+k ,

iβ̇p = Ωβp − ∑

k gkβp−kAk ,

(19)where Ω = ε0/~. It is easy to see that equations (19) are solved by the Fourier transforms
βp =

1

V

∫

drβ(r)e−
i

~
pr , β(r) =

∑

p

βpe
i

~
pr . (20)The number of pairs is given by

N = 4
∑

p

|βp|2 =
4

V

∫

dr |β(r)|2 ; (21)



6 J. Theor. Phys.we have also
∑

p

β∗
pβp+k =

1

V

∫

dr |β(r)|2 e−ikr . (22)The solution is immediately given by
β(r) = B(r)e−iΩt+i

R

t dt′λ(r,t′) , (23)where λ(r, t) =
∑

k gkAke
ikr; B(r) is a "onstant" of integration, given by

N =
4

V

∫

dr |B(r)|2 . (24)From equation (23) we an see that the pair dynamis is quasi-stationary, in the sense that itonserves the "oupation" number |β(r)|2 = |B(r)|2. Similarly, from the �rst equation (19) andequation (22), we an see that the polarization �eld does not depend on the time, so we get
Ak =

2gk

ωk

1

V

∫

dr |B(r)|2 e−ikr ; (25)it follows
λ(r, t) = λ(r) =

∑

k

gkAke
ikr =

∑

k

2g2
k

ωk

1

V

∫

dr′ |B(r′)|2 e−ik(r′−r) (26)and
β(r) = B(r)e−iΩt+iλ(r)t . (27)The single-partile energy ~Ω − ~λ(r) has a spatial dependene, re�eting the loal fore exertedon the pairs by the polarization �eld. If one assumes the pairs on�ned to a spatial region of �niteextent, we an see that this fore tends to loalize the pairs in that region, as expeted.It is reasonably to assume that the pairs are distributed uniformly in spae, i.e. B(r) = B =√

N/2. This amounts to a ondensation of the fermions on the p = 0 state; in fat, the pairs aredistributed ("ondensed") over the low-momenta fermioni states. The �eld Ak (equation (25)),and the single-partile energy λ (equation (26)) exhibit a singularity for k → 0, as expeted forsuh an in�nite uniform distribution. In pratie, the pairs are distributed quasi-uniformly inspae over a region of �nite linear size d, so we may take Ak ≃ gkN/2ωk for k < k0 = 1/d. Thesingle-partile energy beomes
−~λ ≃ −2e2b2

πd
N , (28)and equation (20) gives βp = Be−iΩt+iλt for p → 0. From the onservation of the number ofpartiles

N = 4
∑

p

|βp|2 = 4B2 V

(2π)3~3

4πp3
0

3
= 4B2 (29)we get the momentum uto� p0/~ = (6π2)1/3/d , whih is of the order of 1/d, as expeted. It isworth noting to see now the oupling oe�ient b given by equation (18),

b =
p2

0√
35mε0

=
(6π2)2/3

√
35

(

λc

d

)2

, (30)



J. Theor. Phys. 7where λc = ~/mc is the eletron Compton wavelength. Sine λc ≃ 0.3× 10−10cm, we an see thatthe oupling oe�ient b aquires an extremely small value. The single-partile energy given byequation (28) an be written as
−~λ ≃ −2e2b2

πd
N = −12

35
(6π2)1/3 e

2

d

(

λc

d

)4

N , (31)whih is extremely small. It is worth noting the ourrene of the Coulomb energy e2/d of aneletron loalized in a spatial region of linear size d.Making use of equation (1), we an ompute the magneti �eld H = curlA and the eletromagnetienergy Eem stored by the polarization �eld Ak ≃ gkN/2ωk for k < k0 = 1/d. We get
Eem =

2e2b2

πd
N2 =

12

35
(6π2)1/3 e

2

d

(

λc

d

)4

N2 . (32)The number of pairs an be obtained from the onservation of energy
Eem + 2mc2N =

12

35
(6π2)1/3 e

2

d

(

λc

d

)4

N2 + 2mc2N = W , (33)where W is the total energy and we have negleted the single-partile energy −~λ. It is easyto see that the N2-term brings an extremely small ontribution (due to the fourth power of theratio λc/d ≪ 1), so the number of pairs is given by N ≃ W/2mc2. For a numerial referene, wean take W = 1J and get N ≃ 1013 pairs. We an see that the pairs number does not dependpratially on the size of the spot where the energy is onentrated.It is also worth ommenting upon the solutions
β(r) = Be−iΩt+iλt (34)(for r < d). Aording to equation (23) they represent the single-partile eigenstates. We an seethat they orrespond to eletrons (positrons) loalized in spae. We an divide the spae in small,idential ells of volume v ≪ V , and write the number of partiles (equation (24)) as

N =
4

V

∫

dr |B(r)|2 =
4v

V

∑

r

B2 =
vN

V

∑

r

1 , (35)whene one an see that the �oupation� number in eah ell of volume v is unity, as for fermions.This substantiates the piture of eletrons ( positrons) loalized in spae and represented by �eldsgiven by equation (34).We an see that the vauum an be polarized with eletron-positron pairs, whih reate a polar-ization �eld and aquire an additional −~λ energy for eah eletron (positron). Even for veryhigh energy densities the number of pairs, the polarization energy and the single-partile ener-gies are extremely small. Comparing the �rst equation (19) with the lassial wave equation
∂2A/∂t2 − c2∆A = 4πcj, where j is the density of the polarization urent, we get

j(k) = ecb
V

∑

p β
∗
pβp+k = 4ecb

V 2

∫

dr |B(r)|2 e−ikr ≃

≃ ecb
V
N = 1√

35
(6π2)2/3 ec

V

(

λc

d

)2
N , k < 1/d ,

(36)for the Fourier tranform of the urrent density (for one polarization). This is a very small urrentdensity.



8 J. Theor. Phys.We introdue now a (polarized) external �eld Aext
k0

= Aext
−k0

= A0 = 2a0 cosω0t (monohromatiwave), with the frequeny ω0 = ck0. The seond equation (19) beomes
iβ̇p = Ωβp −

∑

k

gkβp−kAk − g0(βp−k0
+ βp+k0

)A0 , (37)where g0 = 2ecb
√

2π/V ~ω0. The solution is given by
β(r) = B(r)e−iΩt+iλt+iϕ(r,t) , (38)where
ϕ(r, t) =

4g0a0

ω0

sinω0t cosk0r . (39)This phase implies a loalized energy
δε(r, t) = −4~g0a0 cosω0t cosk0r = −2~g0a0 [cos(k0r − ω0t) + cos(k0r + ω0t)] , (40)for the eletron-positron pairs, whih appears as a stationary wave driven by the external �eld. Itis worth noting that, in ontrast with the polarization energy −~λ given by equation (31), whihis quadrati in the oupling oe�ient b, the energy aused by the external �eld is linear in b, asexpeted. It is onvenient to estimate the mean value of this energy by making use of the external�eld energy W0 = 2~ω0 |a0|2. We get straightforwardly

δε =
4√
35

(6π2)2/3 c

ω0d

(

λc

d

)2
√

e2W0

d
, (41)whih, even for reasonably high energy densities, is still a very low energy. The energy of theexternal �eld is distributed over the energy of the polarization �eld (whih is very low) and theenergy of the pairs, aording to equation (33). It is worth noting that the above results aresensitive to dereasing d (exept for the number of pairs), so we an enhane the relevant valuesby the foalization of the energy in very small volumes. However, for usually available energiesthis enhanement is still insu�ient for getting any appreiable result.The external �eld indues a polarization �eld whih is stationary (the vetor potential does notdepend on the time), as a onsequene of the stationary dynamis of the eletrons and positrons.Therefore, the polarization eletri �eld is vanishing, and we are left only with a stati magneti�eld. Under the ation of an external �eld the vauum gets magnetized. The orresponding vetorpotential of the polarization �eld is given by Apol

0 = g0N/2ω0, aording to the disussion madeabove. This polarization �eld depends on the strength A0 of the external �eld through the �eldenergy W0 whih generates the number of pairs N . Consequently, we an de�ne a stati magnetisuseptibility of the polarized vauum. We get straightforwardly the magneti permeability
µ = 1 +

eb

4mcω0
H0 = 1 +

(6π2)2/3

4
√

35

(

λc

d

)2
eH0

mcω0
, (42)where it is worth noting the linear dependene on the strength H0 of the external magneti �eld.As expeted, the vauum polarized under the ation of an external �eld, aquires a (very small,stati) magneti suseptibility, and, onsequently, a refrative index n =
√
µ (slightly greater thanunity). It is worth noting in equation (42) the ratio of the magneti energy (Bohr magneton inthe magneti �eld H0) to the energy quanta ~ω0 of the external �eld.In onlusion, we may say that the vauum gets polarized with eletron-positron pairs under theation of an external lassial �eld of eletromagneti radiation. The polarization �eld is stati,



J. Theor. Phys. 9i.e. the eletri �eld is vanishing and the vauum sustains only a stati magneti �eld. Theorresponding magneti permeability (the refrative index of the vauum) has been omputed foran external monohromati wave. The eletron-positron pairs are ondensed on low-momentastates and exhibit a quasi-stationary dynamis. They aquire a single-partile energy, whih isquasi-loalized in spae as a stationary wave driven by the monohromati external �eld. Thenumber of pairs are determined by the external energy, while the single-partile energies and theenergy of the polarization �eld depend on the energy density of the external �eld. All thesenumerial results are extremely small, even for reasonably high external energies and energydensities. An important role in the magnitude of these e�ets is played by the Compton wavelengthof the eletron, whih is very small in omparison with the extent of the spatial region overwhih we an onentrate the energy of the external �eld. The results presented here have beenderived by treating the eletron-positron and photon dynamis by means of lassial �elds, aproedure justi�ed by the polarization proess, whih implies ontinuous reation and annihilationof eletron-positron pairs under the ation of a lassial �eld of radiation, resembling a plasma ofeletron-positron pairs. The oupled non-linear equations of motion have been solved for these�elds, and the solution led to the results desribed above.Appendix A: The oe�ients A, B and C in equation (9)Making use of the bi-spinor de�nition (equations (5)) and the algebra of the Pauli spin matries(in partiular σiσj = δij + iεijkσk, where εijk is the totally antisymmetri tensor of rank 3), theoe�ients A, B and C appearing in the interation hamiltonian (equation (9)) an be omputedstraightforwardly (leaving aside the spin dependene in the eletron-positron operators). Theyare given by
A(p,p′) = 1

2
√

εε′
{
√

(ε−mc2)(ε′ +mc2)
[

2en − i
−→
σ (e × n)

]

+

+
√

(ε+mc2)(ε′ −mc2)
[

2en′ + i
−→
σ (e × n′)

]

} ,

B(p,p′) = − 1

2
√

εε′
{
√

(ε+mc2)(ε′ +mc2)[2ey + i(e ×−→
σ )y]+

+
√

(ε−mc2)(ε′ −mc2)[2(en)n′
y − 2(nn′)ey + 2(en′)ny−

−i(en)(n′ ×−→
σ )y + in′

yn(e ×−→
σ ) + i(e

−→
σ )(n′ × n)y + i(n

−→
σ )(e × n′)y]} ,

C(p,p′) = 1

2
√

εε′
{
√

(ε−mc2)(ε′ +mc2)[2en− iσy(e × n)y−

−iny(e ×−→
σ )y + iey(n×−→

σ )y]+

+
√

(ε+mc2)(ε′ −mc2)[2(n′e) + iσy(e × n′)y+

+in′
y(e ×−→

σ )y − iey(n
′ ×−→

σ )y]} ,where ε =
√

c2p2 +m2c4, ε′ =
√

c2p′2 +m2c4, e =
∑

µ eµ(k) and −→
σ =

∑

σσ′ w∗
σ
−→σ wσ′ .



10 J. Theor. Phys.Appendix B: The vetor −→
σThe most general form of the spinor wσ(p) is

w+1 = e−iϕ cos θu+ eiϕ sin θv ,

w−1 = −e−iϕ sin θu+ eiϕ cos θv ,where u, v are the eigenvetors of the Pauli matrix σz (σzu = u, σzv = −v) and the angles θ, ϕ,orresponding to the wavevetor p, are arbitrary; for p′ (in wσ(p′)) we denote these angles by
θ′, ϕ′. It is worth noting that, in spite of some resemblane, these spinors are not those related tothe heliities. The alulations of the vetor −→

σ =
∑

σσ′ w∗
σ(p)−→σ wσ′(p′) is then straightforward.We get

σx = 2i sin(ϕ− ϕ′) sin(θ − θ′) + 2 cos(ϕ− ϕ′) cos(θ + θ′) ,

σy = 2i cos(ϕ− ϕ′) sin(θ − θ′) + 2 sin(ϕ− ϕ′) cos(θ + θ′) ,

σz = −2i sin(ϕ+ ϕ′) cos(θ − θ′) − 2 cos(ϕ+ ϕ′) sin(θ + θ′) .It is worth noting that −→
σ is a omplex vetor, whih depends on four parameters (the angles

ϕ, ϕ′, θ, θ′), as expeted for the polarization of an ensemble of two fermions of spin 1/2. Indeed,we have a polarization vetor for one fermion, relative to the diretion of the polarization vetorof the other fermion, i.e. 3 parameters, and another parameter for the magnitude of the formerpolarization vetor. We an have various hoies for −→σ , for instane we may take it perpendiularto the two wavevetors p, p′ (whih amouns to four equations with four unknowns). We an alsowrite−→σ as−→σ = 2is1+2s2, where s1,2 are two real, linearly independent vetors, and take s1 parallelwith p (in whih ase we are left with only one free parameter). None of suh hoies brings anappreiable simpli�ation in the interation matrix elements, and, in fat, any partiular hoie isarbitrary. The only meaningfull proedure is the averaging over angles, whih gives (
−→
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