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lassi
al papers[1, 2℄ Sommerfeld and Brillouin examined the propagation velo
ity of theele
tromagneti
 radiation in matter (see also Refs. [3, 4℄). Matter is known to be dispersive. Thisinvestigation was motivated by phase velo
ities whi
h ex
eed the speed of light in va
uum c, inrelation to the Theory of Relativity.From an
ient times it is known from experiment the Snell's law refra
tion law sin r/ sin i = 1/n,where r is the refra
tion angle, i is the in
iden
e angle and n is the refra
tion index. It is knownfrom Huygens theory the law sin r/ sin i = vφ/c = ω/ck, where ω is the frequen
y and k is thewaveve
tor of a mono
hromati
 plane wave with the phase velo
ity vφ = ω/k. From Maxwellequations it is also known εω2 = c2k2 (for non-magneti
 matter), where ε is the diele
tri
 
onstant(or εµω2 = c2k2 for magneti
 matter, where µ is the magneti
 permeability). The Snell's law ofrefra
tion reads
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. (1)It is known from experiment that ε, vφ, k, ε and n depend all on the frequen
y ω. For somefrequen
ies, vφ may trespass the speed of light c as, for instan
e, near a vanishing ε. The situationis further 
ompli
ated by the anomalous dispersion region, where ε is negative (a
tually, therelation εω2 = c2k2 must be satis�ed with ε > 0, so the expression of the Snell's law with εhas a limited validity). The nature of the refra
tion law, as well as many others aspe
ts relatedto the propagation of the ele
tromagneti
 waves in matter has been 
lari�ed re
ently to a largeextent by the theory of polarizable matter and polaritoni
 eigenmodes. However, the problem ofsuperlumini
 phase velo
ities persists.In this 
ontext, it is worth re
alling that the theory of polarizable matter and plasmoni
 andpolaritoni
 eigenmodes is based on the Drude-Lorentz (plasma) model.[5℄-[7℄ It is also knownof long ago the so-
alled extin
tion theorem, whi
h tells that free ele
tromagneti
 waves, i.e.ele
tromagneti
 waves propagating with the speed of light in va
uum c, 
annot be propagated inmatter.[8℄-[10℄The propagation of the ele
tromagneti
 waves in matter implies both a separation surfa
e of thebody from the va
uum (or an interfa
e between two bodies) and a signal of a �nite duration (and�nite spatial extension). The presen
e of the surfa
e leads to refra
tion and the la
k of translationalsymmetry, whi
h 
ompli
ates the analysis. A �nite duration and a �nite spatial extension imply asuperposition of frequen
ies and waveve
tors, related through the phase velo
ity. In a simplifyingapproa
h the analysis of Sommerfeld and Brillouin leads to an ele
tromagneti
 signal representedby

f(x, t) =
∫

dke−iΩ(k)t+ikx , (2)



2 J. Theor. Phys.where Ω(k) is the polaritoni
 frequen
y. The body is assumed to be in�nite, the extension of thewave along the transverse dire
tions is supposed to be in�nite (as for a plane wave, or a beam, rayin geometri
al opti
s, in order to leave only one 
omponent of the waveve
tor). Typi
al polaritoni
frequen
ies are given by Ω(k) =
√

ω2
p + c2k2 (e.g. for 
ondu
tors) and Ω(k) = vkωT/(vk + ωT ) fordiele
tri
s, where ωT is the so-
alled transverse-mode frequen
y and v = cωT/ωL(< c), where ωListhe so-
alled frequen
y o the longitudianl modes (ωL =

√

ω2
p + ω2

T ).The analysis o Brillouin and Sommerfeld proe
eds as follows. We divide the whole domain ofintegration in equation (2) (−∞ to +∞) by some intervals ∆i around some points ki, su
h aswithin ea
h interval ∆i we may approximate the frequen
y by
Ω(k) = Ω(ki) + vi(k − ki) +

1

2
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2 + ..., (3)where vi = Ω

′
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. The integral in equation (2) be
omes
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, (4)where Ωi = Ω(ki), Ω
′′

i = Ω
′′

(ki) and q = k − ki within ea
h interval ∆i. If we may negle
t these
ond-order derivative and extend the integration over su�
iently large intervals, we 
an see thatwe get pulses of the form δ(x− vit) propagating with velo
ity vi. This is 
alled the group velo
ity.The se
ond-order derivative leads to an (approximate) Fresnel integral and makes the pulses �at,with a spread in
reasing with in
reasing the time, a

ording to an imaginary Gauss fun
tion (asin an imaginary di�usion). Moreover, making use of the form of the polaritoni
 frequen
y Ω(k)we 
an see that the group velo
ity is always smaller than the speed of light in va
uum c, andfor high frequen
y it approa
hes c, i.e. the front of the wave moves almost with the speed oflight c in matter. Therefore, the wave in dispersive matter moves as a set of groups, ea
h with agroup velo
ity, getting �at in time; if there is one main group, there are others moving with highervelo
ity (but smaller than the sped of light in va
um), whi
h we 
all pre
ursors (or forerunners),beside others whi
h lag behind the main group. This is the group-velo
ity pi
ture based on themethod of stationary phase (steepest des
ent or saddle point method).[11℄Still, there is a dis
ussion regarding superluminal velo
ities of ele
tromagneti
 signals.Indeed, the pi
ture des
ribed above is based on an approximation, 
on
erning the extension of theintegration interval ∆i to, pra
ti
ally, in�nity. A
tually, the integration over a �nite interval ∆ileads to a wavepa
ket, of the form
∫

∆i

dqei(x−vit)q =
2 sin(x − vit)∆i/2

x − vit
, (5)whi
h, it is true, tends to πδ(x − vit) for ∆i → ∞, but it extends to in�nite x − vit for a �niteinterval ∆i. This means that ea
h wave group extends instantaneously to in�nity (of 
ourse, witha de
reasing amplitude), whi
h suggests indeed a velo
ity mu
h higher than the speed of light inva
uum (pra
ti
ally an in�nite one). This feature is due to the non-lo
ality of the waves, and itimplies in fa
t the "propagation" of no signal.The non-lo
al pi
ture of the waves 
an be seen in fa
t more dire
tly on the integral in equation(2). At t = 0 we have

f(x, t = 0) =
∫

dke−ikx = 2πδ(x) , (6)and the signal is highly lo
alized (on x = 0); at the next in�nitesimal moment of time ∆t we have
f(x, ∆t) =

∫

dke−iΩ(k)∆t+ikx , (7)
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e; sin
e x/∆t → ∞ for any x and ∆t → 0we may say that the signal has been propagated indeed with an in�nite velo
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