
1Journal of Theoretial PhysisFounded and Edited by M. Apostol 213 (2012)ISSN 1453-4428 Reading BrillouinM. ApostolDepartment of Theoretial Physis,Institute of Atomi Physis, Magurele-Buharest MG-6, POBox MG-35, Romaniaemail: apoma�theory.nipne.roIn two lassial papers[1, 2℄ Sommerfeld and Brillouin examined the propagation veloity of theeletromagneti radiation in matter (see also Refs. [3, 4℄). Matter is known to be dispersive. Thisinvestigation was motivated by phase veloities whih exeed the speed of light in vauum c, inrelation to the Theory of Relativity.From anient times it is known from experiment the Snell's law refration law sin r/ sin i = 1/n,where r is the refration angle, i is the inidene angle and n is the refration index. It is knownfrom Huygens theory the law sin r/ sin i = vφ/c = ω/ck, where ω is the frequeny and k is thewavevetor of a monohromati plane wave with the phase veloity vφ = ω/k. From Maxwellequations it is also known εω2 = c2k2 (for non-magneti matter), where ε is the dieletri onstant(or εµω2 = c2k2 for magneti matter, where µ is the magneti permeability). The Snell's law ofrefration reads
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. (1)It is known from experiment that ε, vφ, k, ε and n depend all on the frequeny ω. For somefrequenies, vφ may trespass the speed of light c as, for instane, near a vanishing ε. The situationis further ompliated by the anomalous dispersion region, where ε is negative (atually, therelation εω2 = c2k2 must be satis�ed with ε > 0, so the expression of the Snell's law with εhas a limited validity). The nature of the refration law, as well as many others aspets relatedto the propagation of the eletromagneti waves in matter has been lari�ed reently to a largeextent by the theory of polarizable matter and polaritoni eigenmodes. However, the problem ofsuperlumini phase veloities persists.In this ontext, it is worth realling that the theory of polarizable matter and plasmoni andpolaritoni eigenmodes is based on the Drude-Lorentz (plasma) model.[5℄-[7℄ It is also knownof long ago the so-alled extintion theorem, whih tells that free eletromagneti waves, i.e.eletromagneti waves propagating with the speed of light in vauum c, annot be propagated inmatter.[8℄-[10℄The propagation of the eletromagneti waves in matter implies both a separation surfae of thebody from the vauum (or an interfae between two bodies) and a signal of a �nite duration (and�nite spatial extension). The presene of the surfae leads to refration and the lak of translationalsymmetry, whih ompliates the analysis. A �nite duration and a �nite spatial extension imply asuperposition of frequenies and wavevetors, related through the phase veloity. In a simplifyingapproah the analysis of Sommerfeld and Brillouin leads to an eletromagneti signal representedby
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2 J. Theor. Phys.where Ω(k) is the polaritoni frequeny. The body is assumed to be in�nite, the extension of thewave along the transverse diretions is supposed to be in�nite (as for a plane wave, or a beam, rayin geometrial optis, in order to leave only one omponent of the wavevetor). Typial polaritonifrequenies are given by Ω(k) =
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p + c2k2 (e.g. for ondutors) and Ω(k) = vkωT/(vk + ωT ) fordieletris, where ωT is the so-alled transverse-mode frequeny and v = cωT/ωL(< c), where ωListhe so-alled frequeny o the longitudianl modes (ωL =
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T ).The analysis o Brillouin and Sommerfeld proeeds as follows. We divide the whole domain ofintegration in equation (2) (−∞ to +∞) by some intervals ∆i around some points ki, suh aswithin eah interval ∆i we may approximate the frequeny by
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. The integral in equation (2) beomes
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, (4)where Ωi = Ω(ki), Ω
′′
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(ki) and q = k − ki within eah interval ∆i. If we may neglet theseond-order derivative and extend the integration over su�iently large intervals, we an see thatwe get pulses of the form δ(x− vit) propagating with veloity vi. This is alled the group veloity.The seond-order derivative leads to an (approximate) Fresnel integral and makes the pulses �at,with a spread inreasing with inreasing the time, aording to an imaginary Gauss funtion (asin an imaginary di�usion). Moreover, making use of the form of the polaritoni frequeny Ω(k)we an see that the group veloity is always smaller than the speed of light in vauum c, andfor high frequeny it approahes c, i.e. the front of the wave moves almost with the speed oflight c in matter. Therefore, the wave in dispersive matter moves as a set of groups, eah with agroup veloity, getting �at in time; if there is one main group, there are others moving with higherveloity (but smaller than the sped of light in vaum), whih we all preursors (or forerunners),beside others whih lag behind the main group. This is the group-veloity piture based on themethod of stationary phase (steepest desent or saddle point method).[11℄Still, there is a disussion regarding superluminal veloities of eletromagneti signals.Indeed, the piture desribed above is based on an approximation, onerning the extension of theintegration interval ∆i to, pratially, in�nity. Atually, the integration over a �nite interval ∆ileads to a wavepaket, of the form
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, (5)whih, it is true, tends to πδ(x − vit) for ∆i → ∞, but it extends to in�nite x − vit for a �niteinterval ∆i. This means that eah wave group extends instantaneously to in�nity (of ourse, witha dereasing amplitude), whih suggests indeed a veloity muh higher than the speed of light invauum (pratially an in�nite one). This feature is due to the non-loality of the waves, and itimplies in fat the "propagation" of no signal.The non-loal piture of the waves an be seen in fat more diretly on the integral in equation(2). At t = 0 we have

f(x, t = 0) =
∫

dke−ikx = 2πδ(x) , (6)and the signal is highly loalized (on x = 0); at the next in�nitesimal moment of time ∆t we have
f(x, ∆t) =
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dke−iΩ(k)∆t+ikx , (7)
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