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In two classical papers|1, 2| Sommerfeld and Brillouin examined the propagation velocity of the
electromagnetic radiation in matter (see also Refs. [3, 4]). Matter is known to be dispersive. This
investigation was motivated by phase velocities which exceed the speed of light in vacuum ¢, in
relation to the Theory of Relativity.

From ancient times it is known from experiment the Snell’s law refraction law sinr/sini = 1/n,
where 7 is the refraction angle, 7 is the incidence angle and n is the refraction index. It is known
from Huygens theory the law sinr/sini = v,/c = w/ck, where w is the frequency and k is the
wavevector of a monochromatic plane wave with the phase velocity vy = w/k. From Maxwell
equations it is also known ew? = ¢?k? (for non-magnetic matter), where ¢ is the dielectric constant
(or epw? = c*k? for magnetic matter, where p is the magnetic permeability). The Snell’s law of
refraction reads )
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It is known from experiment that €, vy, k, € and n depend all on the frequency w. For some
frequencies, v, may trespass the speed of light c as, for instance, near a vanishing ¢. The situation
is further complicated by the anomalous dispersion region, where € is negative (actually, the
relation cw? = c?k? must be satisfied with € > 0, so the expression of the Snell’s law with e
has a limited validity). The nature of the refraction law, as well as many others aspects related
to the propagation of the electromagnetic waves in matter has been clarified recently to a large
extent by the theory of polarizable matter and polaritonic eigenmodes. However, the problem of

superluminic phase velocities persists.

In this context, it is worth recalling that the theory of polarizable matter and plasmonic and
polaritonic eigenmodes is based on the Drude-Lorentz (plasma) model.[5]-[7] It is also known
of long ago the so-called extinction theorem, which tells that free electromagnetic waves, i.e.
electromagnetic waves propagating with the speed of light in vacuum ¢, cannot be propagated in
matter.|8|-[10]

The propagation of the electromagnetic waves in matter implies both a separation surface of the
body from the vacuum (or an interface between two bodies) and a signal of a finite duration (and
finite spatial extension). The presence of the surface leads to refraction and the lack of translational
symmetry, which complicates the analysis. A finite duration and a finite spatial extension imply a
superposition of frequencies and wavevectors, related through the phase velocity. In a simplifying
approach the analysis of Sommerfeld and Brillouin leads to an electromagnetic signal represented
by
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where Q(k) is the polaritonic frequency. The body is assumed to be infinite, the extension of the
wave along the transverse directions is supposed to be infinite (as for a plane wave, or a beam, ray
in geometrical optics, in order to leave only one component of the wavevector). Typical polaritonic

frequencies are given by Q(k) = /w2 + c2k? (e.g. for conductors) and Q(k) = vkwr/(vk +wr) for
dielectrics, where wris the so-called transverse-mode frequency and v = cwr/wr(< ¢), where wyis
the so-called frequency o the longitudianl modes (w; = /w2 + w7).

The analysis o Brillouin and Sommerfeld proeceds as follows. We divide the whole domain of
integration in equation (2) (—oo to +o00) by some intervals A; around some points k;, such as
within each interval A; we may approximate the frequency by
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where v; = Q'(k;) = 09/0k|,_,.. The integral in equation (2) becomes
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where Q; = Q(k;), Q; = Q" (k;) and ¢ = k — k; within each interval A;. If we may neglect the
second-order derivative and extend the integration over sufficiently large intervals, we can see that
we get pulses of the form §(z — v;t) propagating with velocity v;. This is called the group velocity.
The second-order derivative leads to an (approximate) Fresnel integral and makes the pulses flat,
with a spread increasing with increasing the time, according to an imaginary Gauss function (as
in an imaginary diffusion). Moreover, making use of the form of the polaritonic frequency Q(k)
we can see that the group velocity is always smaller than the speed of light in vacuum ¢, and
for high frequency it approaches ¢, i.e. the front of the wave moves almost with the speed of
light ¢ in matter. Therefore, the wave in dispersive matter moves as a set of groups, each with a
group velocity, getting flat in time; if there is one main group, there are others moving with higher
velocity (but smaller than the sped of light in vacum), which we call precursors (or forerunners),
beside others which lag behind the main group. This is the group-velocity picture based on the
method of stationary phase (steepest descent or saddle point method).[11]

Still, there is a discussion regarding superluminal velocities of electromagnetic signals.

Indeed, the picture described above is based on an approximation, concerning the extension of the
integration interval A; to, practically, infinity. Actually, the integration over a finite interval A;
leads to a wavepacket, of the form
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which, it is true, tends to wd(z — v;t) for A; — oo, but it extends to infinite x — v;t for a finite
interval A;. This means that each wave group extends instantaneously to infinity (of course, with
a decreasing amplitude), which suggests indeed a velocity much higher than the speed of light in
vacuum (practically an infinite one). This feature is due to the non-locality of the waves, and it
implies in fact the "propagation" of no signal.

The non-local picture of the waves can be seen in fact more directly on the integral in equation
(2). At t =0 we have
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and the signal is highly localized (on z = 0); at the next infinitesimal moment of time At we have
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and the signal is already extended over the whole space; since /At — oo for any x and At — 0
we may say that the signal has been propagated indeed with an infinite velocity.
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