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Abstract

The energy spectrum of the one-pair states of electrons with opposite spins is computed
for the Hubbard model in a cubic lattice. It is shown that the one-pair energy spectrum of
the Hubbard hamiltonian consists of the free-electron band and a band of collective modes.
The eigenstate introduced by Yang (C. N. Yang, Phys. Rev. Lett. 63 2144 (1989)) in
connection with the so-called n-pairing is such a collective mode; this mode is unstable, in
the sense that it may decay on one-pair states of lower energy.

In a recent publication, Yang[1] introduced the notion of 7-pairing in connection with a certain
eigenstate of a typical Hubbard model. The model is described by the hamiltonian

H =Y e (afar+bbx) + U afabd, | (1)
k r

where ay (by) are the fermion operators for the electron states of wavevectors &k and spin up (down),
r denotes the lattice sites, U is the interaction strength, and

e =¢€(6—2cosky —2cosky —2cosk,) , €>0 , (2)

are the free energy levels of the one-electron states, corresponding, for convenience, to a cubic
lattice. Yang's eigenstate

| tho(m \/—Zem a b | 0) (3)

where N is the total number of lattice sites, consists of a superposition of electron pairs with
opposite spins, has the energy 12¢ + U and momentum 7, and exhibits off-diagonal long-range
order. The operator acting in (3) upon the vacuum | 0) is denoted by 7™, and, by applying it
repeatedly, one can construct a macroscopic eigenstate of both the energy and the momentum;
in addition, for a large enough negative U this eigenstate is sufficiently low in energy, so that it
may be tempting to associate it with a true superconducting state. However, as Yang points out,
there exist mixing states, as, for instance, those constructed from Cooper's state

+b+

| o) = : (4)

X
whose average energy is equal with Yang's eigenenergy, whence it follows that Yang's eigenstate
is not the ground-state. Yang suggested that this eigenstate would be metastable, by decaying on
two-electron states lower in energy via a precursor tunneling through two excited one-pair states.
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We compute in this paper the energy spectrum of the one-pair states of electrons with opposite
spins, and show that Yang's eigenstate is unstable with respect to one-pair states. In addition,
we suggest that n-superconductivity would be more properly referred to as a m-superconductivity.
We show also that the one-pair energy spectrum of the Hubbard hamiltonian consists of the
free-electron band and a band of collective modes.

Without any loss of generality we may take

| ou(@) = % (af b, £ bfat,) | 0) (5)

as the basic set of one-pair states of electrons with opposite spins; both k£ and ¢ in (5) run over
the entire Brillouin zone, and ¢ — k is also reduced, whenever necessary, to the Brillouin zone.
These states are orthogonal to each other and have a well-defined momentum ¢. They correspond
to a singlet or triplet pair of electrons, and we can use them as the basic set for the Hubbard
hamiltonain since this hamiltonian preserves the spin. These basic states have a twofold spin
degeneracy, and we shall keep it in mind, without, however, write it explicitly. Applying the
hamiltonian (1) on these states we obtain

H | ¢(q)) = (er +eq-k) | 0x(0)) + — Z|90k+k : (6)

where one can see that the hamiltonian does not change the momentum ¢g. Consequently we can
look for the eigenstates of the form

| Yk (q ch | e(q)) (7)

in each g-sector, where the coefficients ¢, are solutions of the system of equations
U
(5k+€q7k_)‘)ck+ﬁzck:0 ; (8)
k

A being the eigenvalues.

For ¢ = m one may check easily that ¢}, = exp(ikr)/v/' N, the eigenstates are

| r(m \/—Ze”"lsok ™) (9)

and the eigenvalues are given by A\o(7m) = 12¢ + U, and a degenerate band A\, = 12¢ for r # 0.
In addition, we see easily that | 1y (7)) given by (9) for the singlet case is Yang's eigenstate (3).
We note also that the degenerate band )\, = 12¢ for r # 0 is actually the two-electron band
corresponding to the free electron states with opposite spins.[2]

For g # m we obtain from (8)

)=y =1 (10)

ekt gk — A
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The analysis of this equation for A is classical. In the limit of large /V it has a band of solutions
in the pair continuum, which extends from e,,(q) = min, (e + €4—x) to €p(¢) = maxy, (e, + £4-k),
and a collective mode. The eigenvalues in the pair-continuum band are twofold degenerate. We
describe these solutions below. Beforehand, we note, however, that

em(q) = 12¢ [1 — % (cosqgy/2 + cosqy,/2 + cosqz/Q)] ,
(11)

enm(q) = 12¢ [1 + 3 (cos gz /2 + cos gy /2 + cosqz/2)] ,

as follows from a straightforward analysis of the function e + ¢,_ with ¢ given by (2).

The pair-continuum band given by equation (10) has the eigenstates

| ¥e(q)) = | wr(a)) (12)

in the limit of large N,[3] corresponding to the eigenvalues A\x(q) = e + €4—x. We note that this
pair-continuum band is actually the two-electron band of free electron states with opposite spins.
We note also that there exists a mixing singlet state

D) = ﬁ > | oula) (13)

whose average energy is 12 + U, i.e. it is equal with the energy of Yang's eigenstate | (7)) and
Cooper's state | ®). For U > 0 Yang's eigenvalue 12¢ + U is higher than the upper limit 12¢ of
the free electron band, so that Yang's eigenstate is unstable in this case with respect to the decay
on the one-electron continuum.

The collective mode can be computed easily for |U| > 12¢ by expanding f()\) in (10) in powers
of (ex + €4—k) /A. The calculations are straightforward and one obtains

2
Xo(g) =124+ U + 8 ((:032 qz/2 + cos? qy/2 + cos? qz/Q) . % + ..., (14)

corresponding to the singlet eigenstate

£k + Eq—k — 12¢

@) = g5 2 (14 T ) ) (15)

The picture of the eigenvalues given by (10) for U < —12¢ is shown in Fig.1 for ¢ # 7. We
note that Yang's eigenenergy 12¢ + U (and the average energy of the mixing state given by (13))
is always lower or higher than \o(q) for U > 0 or, respectively, U < 0, for any ¢ # 7. The ground-
state is | 1(0)), for U < 0, and one can see that it is made of a superposition of Cooper's pairs. In
the case of large, negative U we see that the ground-state energy is \o(0) = 126 + U +8¢2/U + ...,
corresponding to | 10(0)) given by (15). The energy spectrum is shown schematically in Fig.2 for
U< —12e.

The collective modes | 1o(q)) are made of superpositions of singlet electron pairs and possess
off-diagonal long-range order. They admit, in principle, a macroscopic occupancy. In addition,
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for U < 0 they are the ”ground-states” of their own g-sectors, so that they may be called ”super-
conducting” states. Yang's eigenstate is a member of this group of states, corresponding to ¢ = ,
so that n-superconductivity would be better referred to as a m-"superconductivity”. However, for
U < 0 these states are unstable with respect to the true ground-state | 10(0)), which is made of a
superposition of Cooper's pairs. The macroscopic occupancy of this ground-state differs from the
BCS superconducting state in that it corresponds to a well-defined number of electrons, while, on
the contrary, in the latter.the number of electrons is not fixed; as it is well known, the BCS state
has a phase coherence and a true symmetry breaking. The superconducting transition to | 1y(0))
for U < 0 proceeds by a Bose-Einstein condesation.

Finally, we note that the hamiltonian given by (1) has also one-electron eigenstates of energy e,
corresponding to the free electron states with parallel spins. As we remarked, the pair-continuum
bands found above correspond in fact to the two-electron bands of free electron states with opposite
spins. Therefore, one may conclude that the one-pair energy spectrum of the Hubbard hamiltonian
consists of the free one-electron states £ (which extend from 0 to 12¢) and a band of collective
modes Ag(¢g). The latter is always above €)/(¢) (and 12¢) for U > 0, and below ¢,,(¢) (and ¢,)
for U < 0. In the first case it is unstable with respect to the one-electron continuum, while in
the second case it is unstable with respect to the ground-state | 14(0)). The physical picture is
that electrons have enough room to avoid each other for U > 0, thus behaving practically as free
electrons, while they pair themselves in spin singlets with opposite momenta (Cooper’s pairing)
for U < 0, in order to take advantage of the attraction.
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Figure 1: Graphical representation of equation f(\) =1 for U < —12¢, with f()) given by (10).
The eigenvalues in the pair continuum are indicated by small, open circles; the cross represents
the average energy of the mixing state | ®,).
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Figure 2: A schematic representation of the energy spectrum of the one-pair states of electrons
with opposite spins in various ¢-sectors for U < —12¢. The shaded areas correspond to the pair
continuum, the solid lines at the bottom of each sector represent the collective modes, and the
dashed lines above the collective modes represent the mixing states | ®,). The collective mode in
the m-sector is Yang's eigenstate, and the one in the sector ¢ = 0 is the ground state.



