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Abstract

Quantal wavepackets suggestive of classical particles which move along clasical trajectories
are shown to be instantaneously teleported at the same time through potential barriers. The
rate constant of the chemical reactions is derived as an application of such quantal motion of
classical objects.

We focus on a particle of coordinate ¢ in quasi-bound states in a potential well around the origin,
capable of passing through a potential barrier to the right and perfectly reflected at the origin in
its motion to the left; such a motion is supposed to illustrate a chemical reaction; we are interested
in the probability P(q,t) of locating the particle at g at the moment of time ¢; P(t) = [, dg-P(q,t)
is the probability of chemical reaction, where ¢; denotes conventionally the outer boundary of the
potential barrier.

Let ¢(F, q) be the eigenfunctions of the motion corresponding to energies E. The original wave-
function of the particle unperturbed by the potential barrier is a superposition

P(q,t) =Y c(E)p(E, q)e " ; (1)

E

the corresponding probability is given by

P(q,t) =Y c* (E)e(E")¢"(E,q)¢(E', q)e &=t (2)
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For relatively high energies F, as those close to the top of a high barrier, the states are dense
and the eigenfunctions are quasi-plane waves; they may be labelled by wavevectors k; this is a
quasi-classical description, and the above probability reads

1 Iy .
P(Qa t) = % / dkdk, - Cp * Ck:ez(k _k)qe—’t(Ek/—Ek)t/fL : (3)

the coefficients ¢, depend slightly on &k around a certain k-value corresponding to the energy Ej,
so that one may expand them in powers of k' — k and write also Ey = Ej + hv(k' — k), where
v = 0F/hok is the group velocity; indeed, doing so we get a wavepacket

1 .
P(,1) = o [ dk- e % = (g —v1) | (4)



propagating to the right with velocity v; since E} is quadratic in £, there exists another wavepacket
d(gq + vt) propagating to the left, which, however, at ¢,¢ = 0 vanishes; we may discard it. If the
quadratic, or higher-order terms would be retained in the energy expansion the integral would give
another representtion of the J-function; actually, such terms are irrelevant, though they spread
out the packet in time, because the limits of integration in (4) are in fact limited to a certain Ak
range around k; this is done conveniently by introducing a gaussian a-cutoff in (4), leading to
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P(q,t) = Py /dk Lo gila—vik — %6_(‘1_”)2/4”‘ , (5)
i.e. a gaussian instead of a d-peak, and we assume that the localization time in the potential
well is much shorter than the diffusion time of the packet as due to its own time evolution; this
assumption is consistent with the quasiclassical description. Indeed, quadratic or higher-order
terms in energy expansion introduce a wavevector uncertainty of the order of k£ (and the position
uncertainty is of the order of g;), which means that they spread out the wavepacket over a distance
of the order of the wavelength A = 1/k (rigorously speaking the width of the §-function in (4) is
of the order of \); the perturbing potential barrier produces however a tighter k-uncertainty, as
expressed by the a-cutoff in (5), so the wavepacket is spread over a distance A larger than A, but
of course much shorter than gq; we can see, therefore, that the effect of the time-diffusion terms on
the wavepacket is substantial only after a very long time; as it is well-known this time is measured
by vAt ~ A% and vAt ~ qo. This is a worth noting point, because it tells that the width of the
quantal wavepackets is governed by the wavelength A, in contrast with statistical wavepackets
which are governed by a mean-free path similar to the length A above. In addition, it is also
worth noting that the normalization of the wavepacket above is extended to the whole space;
this is convenient because we are interested in transmission and reflection coefficients through the
potential barrier which are fractions of the square amplitude of the original wavepacket, so that
the normalization constant is immaterial.

In its motion to the right the wavepacket reaches the inner boundary ¢y of the potential barrier
after ty = qo/v time; actually, the velocity v may depend slightly on position, according to its

quasiclassical expression v = /2m(E — V), where m is the mass of the particle and V' denotes
the potential well over its regions of slight variations; however, this only brings small corrections
to the time ¢y, which may be discarded. At this very moment ¢, a similar wavepacket appears at
the outer boundary of the potential barrier, of the form |T|*6(q — g1 — v(t — t,)), where T is the
transmission coefficient through the potential barrier. This is a teleportation of the wavepackets
through potential barriers, as required by Schrodinger’s equation and the superpositions (2) and
(3). Indeed, such superpositions of waves interfere vanishingly outside the packet ¢ ~ vt-region,
but their components are continuous (together with their derivatives) at the boundaries of the
potential barrier; just when the packet reaches the inner boundary of the barrier this superposition
becomes "constructive" at the other boundary of the barrier too, and the wavepacket is therefore
teleported over there instantaneously. This is not a propagation of the signal with an infinite
velocity, because the signal vanishes and does not propagate inside the barrier; it is instead an
instantaneous teleportation of the signal, as required by the non-local nature of the waves obeying
Schrodinger’s (or wave) equation. This can be seen more directly perhaps if we have in mind
Schrodinger’s equation (—h*/2m)y" = (E — V); then, we can see that for a free motion V = 0
the second derivative of the wavefunction is positive for a negative wavefunction and negative for
a positive wavefunction (for E' > 0 of course); this implies an oscillatory motion which propagates;
on the contrary, inside the potential barier (£ < V') both 9" and 1 have the same sign, which
implies the teleportation through the barier.

Turning back now to the wavepacket motion one can see that at the same moment ¢, when it



reaches the inner gp-boundary of the barrier the wavepacket is not only transmitted through the
barrier but it is also reflected by this boundary into |R|* §(go— g —1v(t —t,)) that propagates to the
left, where R is the reflection coefficient of the barrier; there, it is perfectly reflected rightwards
and transmited as |R|* |T|” after a time 2to; and so on, so that after time

the probability of finding the particle outside the barrier is

P(t) =T+ |RP|T)” + |R*"|T| + ... =

2 1-|R?(»+D) 2(n+1
= TP i = 1= (R
it is easy to see that P(¢) can also be written as
P(t) -1 ‘R|t/t0 =-1— e(1n\R|/t0)t ’ (8)

for long times, which is the well-known law of chemical reactivity and of e “*-decay for the survival
probability 1 — P(t), where

C=—-In|R|/to=—vIn|R| /qo 9)

is the rate constant of the chemical reaction. It is worth noting that it is derived here by working
with localized wavepackets suggestive of a classical motion (and classical trajectories), which move
classically (are reflected for instance by a potential barier), but obeying at the same time quantal
laws of motion as concerns the teleportation, for instance, through the potential barrier, as well
as the reflection and transmission coefficients; the wave transmitted through the potential barrier
appears as a succession of packets, which may be termed quanta of chemical reactivity, smaller
and smaller, as indicated by the geometric series (7), and more and more flat on increasing the
time.

This succession of peaks is reminiscent of the interference of the transmitted trains of waves;
indeed, for wave packets sufficiently large we may write down for the transmitted wave

Tei(q—vt)k + TRei(q—('ut—Qto))k + TRQei(q—v(t—4t0))k + . (10)
which leads to a square amplitude
T2 1+e ¢t - 2e~ 2 cos(vk + By /2tg)t (11)
1+ |R|” — 2 |R| cos(2vkty + o)

for long times, where ®, is the phase of the reflection coefficient; or, because 2vkt, + &, = 2,
this square amplitude given by (10) becomes

14 e % —2e7C2 cos 2mt [ty (12)

which exhibits small oscillations around unity. Equation (12) is to be compared with the proba-
bility P(t) given by (8) for wavepackets; one can see the presence of the interference oscillatory
contributions in the transmitted wave (12).

There is a large variety of computations for the transmission coefficient 7'; for a square potential
barrier it is given by the well-known formula



4k?K?
~ btsinh?ak + 4k2k2
where b% = k% + k2 = 2mV/h?, k* = 2mE/h* and a is the extension of the potential barrier, i.e.
a = q; — qo approximately, with our notations. It is naturally to assume a ~ ¢y, and E ~ V both
very high, i.e. k> 1/a (for low E the reflection coefficient tends to unity, on one side; and, on
the other it is not in accordance with our quasiclassical description assumed here); under these
circumstances one gets easily from (13) the reflection coefficient as given by |R|> = 1 — 4/b%a?
and the rate constant C' = h? /a?’m\/ﬁ. Among several interesting things (as, for instance, a
very low rate constant for a large mass) this later formula shows that the decay rate diminishes
on increasing the energy (at the top of the barrier, of course, i.e. increasing at the same time the
barrier t0o); this happens because the reflection coefficient increases, and the particle spends more
time in the potential well; in fact, slightly above the top of the potential barrier, the wavepacket
propagates, but with a very slow velocity; such quasi-bound, or, of course, quasi-free, states are

termed more properly resonant states. The transmission coefficient in this region (E > V) is given
by

T’ (13)

4k*K?
(k2 — k2)2sin” ak + 4k2k2 ’

where k? = 2m(E — V)/h® this time. One can see that the reflection coefficient is the same as
in the previous case, and, since the propagation time a/v is very long now, it follows that the
relevant time is 7 = 1/C, as before; this is also a teleportation, as the wavelength of the packet
in the region of the potential barrier is very long, in any case much longer than the width of the
barrier. Therefore, a characteristic time

T|* = (14)

T=1/C = —qo/vIn|R]| (15)

can be introduced, according to (9), as being the time needed for transmitting the wavepacket
through teleportation through a potential barrier, with an energy close the the top of the barier,
either below or above; it may be termed transmission time. The rate constant obtained above
can also be put in another form, namely C' = (v/a)(co/E), where gy = h”/ma? is the localization
energy in the potential well, and the transmission time is therefore given by

7= (a/v)(E/e0) , (16)
where E is close to V, either larger or smaller.

All of the above applies also to waveguides and the wave equation. Indeed, the wave equation
reads—1" = (w?/c?)1, where w denotes the frequency and c is the wave velocity; in a waveguide
the tranverse oscillations are steady waves and we are left with —¢" + (w?/c?)y) = (w?/c?)1), where
the cutoff (or critical) frequency w, is given by w. ~ mwc¢/d, d being the transverse dimension of the
waveguide; a similar equation holds also for waveguides with dielectric and magnetic media. The
similarity with Schrodinger’s equation is obvious, with notations w?/c? = 2mE/h* and w?/c® =
2mV/h2. The wavepackets propagates through the waveguide for w > w., as quantal particles
above the potential barriers, with a group velocity v = dw/0k, in a transit time 7, = [ /v, where [
is the length of the waveguide; the phase propagates with velocity w/k in a different time, and the
difference is a delay time; for w slightly above the critical frequency w, the wavepacket "resonates"
within the waveguide, and "dwells" for long there; this lingering time of the wavepacket inside the
guide is the transit time of course, with the only difference that it is very long because the group



velocity is very low. Below the critical frequency the propagation is "evanescent", i.e. there is
no propagation at all, but the wavepackets are teleported instantaneously through the guide. A
similar regime applies also for a frequency slightly above the critical frequency, so that in both
cases a rate constant C' and a characteristic time 7 = 1/C can also be derived for the teleportation
of the wavepackets through waveguides, similar with the rate constant of the chemical reactions
given by (9); however, they depend on the length ¢, of the start-up region of the guide; for instance,
the characteristic time of transmission of the wavepackets near the critical frequency is given by

T = ql*w?/2¢ (17)
according to (13) or (14), for a waveguide. Above the critical frequency it is relevant as long as
it is shorter than the transit time 7, = [/v (plus ¢o/c). A more detalied analysis requires the

dependence of the reflection coefficient on frequency (with w = /w2 + ¢2k2 in the propagating
region), as given by (13) and (14).
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