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Abstract

The scaling hypothesis underlying the theory of the critical point is briefly presented, and
its application to earthquakes is outlined. The relevance of the "self-organized criticality" is
emphasized for the critical behaviour of the probabilistic seismic events.

The main characteristic of the earthquakes is probably their large-scale behaviour. Indeed, the
famous Gutenberg-Richter law|1] reads

InE =11+ 35M | (1)

where E (in J) is the released energy and M denotes the magnitude of the earthquake; the latter
may go up to 7 — 8, which implies an enormous range of energies. This only observation suffices
to suggest a phase-transition nature at least for those earthquake focuses that display a rich
distribution in magnitudes, as those associated with a seismic fault network, for instance. Such a
standpoint is taken in the present paper.

As it is known, the phase transitions are understood by means of the so-called theory of the
critical point. This theory has two basic ingredients: the renormalization group|2| and the scaling
hypothesis.|3] The former gives critical exponents (at least in principle), as based on the general
statistical principles of the phase transitions; this part has a limited applicability to earthquakes,
as long as the adequacy of such general principles to earthquakes is not yet fully known. The
latter part however, the scaling hypothesis that underlines the phase transitions, is sufficiently
general as to make it a reasonable hypothesis for the critical behaviour of a very large class of
complex systems, earthquakes included.

The probability for a randomly-distributed earthquake to occur within the energy range dE with
an energy release F is proportional to dE/E. Making use of (1) it is easy to see that such a
probability implies a uniform distribution in magnitudes, dE/E ~ dM. Except for the background
of small seismic events, such a uniform distribution in magnitudes seems to be a reasonable
empirical knowledge. Consequently, we adopt here such type of probability distribution. Since
a seismic event occurs in time dt at a moment ¢ of time, the same probability would be ~ dt/t,
so that we might write dE//E = Adt/t, where A is a constant originating in the normalization of
the probabilities. However, the critical behaviour involves an accelerating evolution towards the
critical time ., and an accelerated seismicity, which might be a representative of what is called a
"self-organized criticality".[4] Consequently, the probability is not uniformly distributed in time.
It is given in fact by h(t)dt, where h(t.) — o0.|5] For an earthquake ¢, may be considered the



failure time. Using the notation 7 = t. — ¢ we can write the rate h of probability as a function of
time 7, h(7) = h(t. —t), where —oo <t < ¢, and h(0) — oco. Therefore, we may write down

dE/E = Ah(r)dt . 2)

The "self-organized criticality" of the new phase occurring at the critical point suggests a general
scaling hypothesis

h(ar) = Bh(r) , (3)

where o and 8 are positive-valued parameters (# 1) characterizing the transition. The general
solution to (3) is[6]

h(r) = Tlnﬂ/lnaf(ln 7/Ina) , (4)

where f is a periodic function with period 1. Consequently, this latter function has a Fourier
expansion

f(ln 7_/ In a) — Z aneiZﬁ(lnT/lna)n ’ (5)
where n are integers. We may say that function A is characterized by a set of complex exponents
InB/Ina + i(2r/Ina)n. The scaling hypothesis (3) requires a divergent h(0). Therefore, we
introduce the critical exponent m = —In 3/ In «, which must be positive for a critical point, and
limit ourselves to the first terms in expansion (4), corresponding to slow oscillations. The rate of
probability A can then be represented as

h7) =hot ™[l +acos(2rIn7/Ina + ¢)] , (6)

where a < 1. Such a function exhibits characteristic log-oscillations in time-to-failure 7. Moreover,
leaving aside the log-oscillations, we get t. = t + (ho/h)Y™ from (6); the derivatives of ¢, with
respect to time ¢ must vanish, hence one obtains 0 < m < 1 for the critical exponent m. The
small log-oscillations preserve this limitation imposed upon the critical exponent.

If the largest earthquake expected from a given focus in a certain epoch is viewed as the critical
point of a phase transition occurring in a critical region surrounding that focus, then the probability
dP = hdt must be normalized,

te
hdt =1 | (7)

to
over the duration 7y = t.—to, where ¢, is the time of occurrence of the preceding largest earthquake
produced by the same focus. We obtain hy = (1 — m)/7, ™™ from (7) (leaving aside the log-
oscillations), where 7y is the duration from the preceding largest earthquake up to the next largest
earthquake. Consequently, the probability of occurrence of a critical seismic event is given by

1—

To

dP = h(r)dt = — (1 /ro)~™dt . (8)

It is worth noting that immediately after the largest preceding seismic shock (7 = 73) the density
of probability of another shock is finite, though extremely low ((1 —m)/7).[7]

The energy release F of the earthquake occurring at time ¢ can be obtained from (2) by integration,



E t
/ dE'/E' = A [ hdt 9)
Eq

to
where Ej is a scale energy. Making use of 8 we obtain

In(E/Ep) = A[l — (t/7)" ™] . (10)

The scale energy Ej can be associated with the occurrence of an "earthquake" of magnitude zero
at time 7 = 7y, i.e. In Ey = 11 according to (1). Similarly, the constant A can be associated with
the largest earthquake occurring at time 7 = 0, i.e. A = In(F4:/Eo) = 3.5Mppeqs. Therefore,
making use of the Gutenberg-Richter law (1), we obtain the time-dependence of the magnitudes

M = Mpaa[l — (7/7)™] . (11)

Equation (11) must be viewed as a fit to the recorded magnitudes M, the fit parameters being
the critical exponent m and the duration 7y up to the next largest seismic event. For times ¢ close
to the momentum ¢ of the preceding largest event we have 7 =t. —t = 79 — (¢t — tp), and we may
expand (11) in powers of ¢ — ty; we obtain M ~ M,..(1 — m)(t — ty)/70, which may fix the ratio
(1 —m) /7o from the temporal slope of M /M,,..; however, this slope is very small, and it may not
be very useful for analyzing the data.

A phase transition is a sudden change over a very large spatial range. Consequently it is charac-
terized by a length R, which, for earthquakes, may be taken as the radius of the critical seismic
region. The energy E released in a seismic event is proportional to the volume of the critical re-
gion. Consequently, we may write E = Fy(R/Ry)3, where Ry is the minimum value of the critical
region associated with "earthquakes" of magnitude zero (and energy Ej). It is worth emphasizing
that the scale energy Ey = e''J corresponding to magnitude M = 0 is very small in comparison
with the energy released in usual earthquakes, and, correspondingly, the associated scale length
Ry is very small in comparison with usual critical radii,|8] in agreement with the assumptions of
the critical-point theory. Introducing this R3-dependence of the energy into (10) we obtain the
critical temporal behaviour

In(R/Ry) = 1.17TMpa[1 — (7/70)' ™™ (12)

for the critical radius, and, by making use of (11), the linear law

In(R/Ry) =1.17TM (13)
which seems to be supported by the recorded data.|9]

In conclusion, we may say that an earthquake of magnitude M may appear at time 7 as given by
(11) with the probability dP given by (8), having a critical radius R given by (13) (or (12)). It is
worth noting that the scale length Ry may be determined by analyzing the experimental critical
radius R as function of magnitude, as given by (13). It is also worth noting that the probability
of occurrence of an earthquake of magnitude M is (1/A)dE/E according to (2), which leads to
dM /M qz; one can see that the earthquakes distribution is uniform in magnitudes, as expected,
the difference being made by the moment of their occurrence. Similarly, the probability of having
an earthquake with magnitude greater than M is given by

1-m

P>M:

I [ o)t = (7)™ = 1= MM (14



it appears after time t = ¢, — 7o(1 — M /Mmaz)l/ (1=m) and affects a critical region of radius larger
than Roe'!™ according to (13); this probability may be viewed as the hazard, or the seismic risk,
of a certain seismic area. More exactly, the hazard, or seismic rate, is h(7)/Psp = (1 — m)/7 =
(1 —m)(1 — M/Me)~Y0=™) /75, Tt is interesting that this rate of precursory events is similar
with Omori’s law of the aftershocks (~ 1/7), suggesting a time-reversal invariance of the critical
regime. Making use of the probability (8) and the magnitudes distribution (11) we can also
compute various probabilistic momenta of the magnitudes; for instance, the average magnitude is
M = Mpar (1 —m)?/(2 —m)(3 — 2m).

Finally, we note that the above formulae have been derived without the [og-oscillatory contribution
to (6). Including this contribution we obtain the normalization condition

“ it = hg T 2T -

s t= Ol_m[l—ka(l—m)cos(m nt+¢—vY) =1 (15)
for the probability, where tanty = 27/(1 — m)Ina. As we can see from (15) the log-oscillations
contribute little to the normalization condition, so that we may use approximately

1—-m

dP = h(r)dt ~ (1/70)"™[1 +acos(2mIn7/Ina + ¢)]dt (16)

To
for the probability given by (6). Under this approximation the critical radius R given by (12) and
the magnitudes given by (11) are left unchanged. However, the log-oscillations must be included
for a more accurate fitting to the recorded data .
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