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Abstract
The forced oscillatory motion with damping is reviewed and amplification factors are

defined and computed at resonance for displacement, velocity and acceleration. The amplifi-
cation for external shocks is also estimated.

1 Forced oscillatory motion with attenuation

Let a particle of mass m and coordinate z(t) be subjected to an elastic force —kz, a friction force
—at and an external force f(t); k denotes the elastic force constant and « is the friction coeficient.
The corresponding equation of motion reads

mi+krx+at=7f. (1)

We introduce the frequency w given by w? = k/m and look for a solution x = £e~*'. For
a/2mw = A we obtain

£+ = (f/m)e" (2)
where w' = w(1 — A2)Y2. We introduce n = £ + iw'¢ which obeys

0 —w'n = (f/m)e* (3)

and look for a solution 7 = ue™’t. We find the new equation

0= (f/m)e—iw’t+Awt ’ (4)

whose solution is

u= /t dr(f /m)e™ ' THT Ly (5)
0 0 >

where ug is the initial condition. It follows

t L L
n= /O d,r(f/m)ezw (t—7)+AwT + uoezwt ’ (6)



and £ = (1/w")Imn, i.e.

£= %/Ot dr(f/m)e*Tsinw'(t — ) + % lug| sin(w't + ) , (7)

where ¢ is an initial phase. Finally we obtain the coordinate

1 rt 1
T=— / dr(f/m)e ¢ sinw'(t — 1) + — |uq e~ tsin(W't + ) . (8)
w' Jo w

We choose uy = 0 and get the forced oscillations with attenuation

T = %/Ot dr(f/m)e ¢ sinw' (t — 1) 9)
and
i = i/ /t dr(f/m)e [ Awsinw'(t — 7) + W' cosw'(t — 7)] , (10)
w' Jo

which both satisfy the initial conditions z(0) = 0 and %(0) = 0. We get also

i=f/m- =% Jgdr(f/m)e 2 [(1 = 222 w?sinw!(t — 7)+
(11)

+2 ww'cosw'(t — 7)]

for acceleration, which originally equals the external acceleration #(0) = f(0)/m. Usually, the
damping parameter ) is small (A < 1), so that we may replace w' in the above equations by w.

2 Periodic external force

With the notations introduced above we may rewrite equation (1) as

i+ Wit + 2 wi = f/m | (12)

and assume a periodic external force as given by

f = focoswypt . (13)

The solution z(t) of the equation (12) is obtained from (9) by introducing there this force as given
by (13) (for vanishing initial conditions). The same solution is also obtained as z = x¢+ x1, where
xg is the solution of the homogeneous equation and z; is a particular solution of the inhomogeneous
equation. It is easy to check that g is given by o = ae=*! cos(w't + ), where the amplitude a
and the phase o are not yet determined. The particular solution of the inhomogeneous equation
reads z; = bcos(wot + ), where

h= 7 fo/m
(w2 —w2)24+422w2w2 ’
0 0 (14)

2)
tan 8 = wgfgg .

The phase § is always negative, —7 < 8 < 0, i.e.



sin 8 = —2)\ww0/\/(w2 — wd)? + 4AN2W2%Wd
(15)

cos B = (w? — cug)/\/(w2 — wd)? + 4N202%0E

so that the particle laggs always behind the external force. The amplitude b is maximal for
wo = w(1 —2X%)1/2, For A < 1 the resonance occurs for wy = w. Let wy = w + €; then

b — f0/2mw
Vel tata?
(16)
tan f = \w/e .
In the absence of the damping the phase of the oscillation undergoes a jump at resonance (b
changes the sign), while the damping smooths this jump out (5 = —m/2 at resonance).

The friction force —az can be derived from —9F/0i where F = (1/2)ai? is the dissipation
function. It follows that the Euler-Lagrange equations reads

d oL 0L

—— =— —0F/01 1

dos ~on  OF/0% (17)
where L is the Lagrange’s function. The energy E changes in time according to

dEdt = %(:baL/aac )= @[%(aL/a@) OLJox] = —i0F )03 = —2F . (18)

For a time long enough the motion is stabilized, 7.e. x = x;and the energy is constant. The
particle absorbs continuously energy from the external force and dissipates it through friction.
The dissipated average energy per unit time is given by

I(wo) = 2F = 2mAwwib®sin®(wot + B) = mAwwib® | (19)
and close to the resonance
I
I =29 " 20
(wo) 4m e? + \2w? (20)
which is a dispersive function of the frequency . Its integral does not depend on frequency,
JoC dwol (wo) = 7 fE /4m.

We now turn back to the general solution

r = ae” ! cos(wt + a) + beos(wot + B) (21)

where we neglected the small effect of the damping on the frequency, i.e. W' = w, and impose the
vanishing initial conditions x(0) = £(0) = 0. Making use of (14) and (15) we obtain

fo \/(w2 — wd)? + N2(w? + wd)? 0
- (w? — w})? + 4\2w2w} (22)

and

AMw? + w)
w2 —wi

tano = — (23)



At resonance the phase o passes through /2, i.e.

sina = \(w? + wg)/\/(uﬂ —wd)? + A2 (w? + wd)?
(24)

cosa = —(w? — wg)/\/(w2 —wd)? + N (w? 4+ wd)? .

Also at resonance the amplitude

a = fo/2mIw? (25)
equals the amplitude b = fy/2mAw? as given by (16).

We also establish now the coordinates for a motion of the particle proceeding solely under the ac-
tion of the external force f . Since f = fy cos wyt it follows that acceleration is ac = (fy/m) coswot,
which has a maximum value acpe: = fo/m. The velocity is given by v = (fo/mwy) sin w,t, which

initially vanishes and has a maximum value vy, = fo/mwy. Finally, the displacement d is given
by

d = —(fo/mwy) coswot + (fo/mwy) = (2fo/mw}) sin®(wet/2) | (26)

for a vanishing initial displacement; its maximum value is dyee = 2fo/mw?.

3 Amplification factors at resonance

According to the results derived above at resonance a = b = fy/2mAw?, o = 7/2 and 8 = —7/2.
Then, the general solution given by (21) becomes

_ ok
2mAw?

We look for the local minima of this function, i.e. the solutions of the equation

x (1—e ") sinwt . (27)

1
tan wt = _X(E)M —-1); (28)

they are close to

wt = (2k +1)7/2 (29)

(and slightly above), where £ = 0,1,2.... The maximum values of the coordinate modulus are
given by

~ Jo
|x|m‘” T Omaw? (1

The amplification factor of the displacement is defined as the ratio

_ e—)\(Qk—I—l)w/Z) ) (30)

1
Fd = ‘x‘maz /dmaw = a(l - G_A(2k+1)7r/2) : (31)
For small values of the damping coefficient A the amplification factor may attain considerably
higher-than-unity values. Indeed, for A(2k + 1)7/2 < 1 we get



Fy= (2k + 1)7/8 (32)

from (31). Typical values for A allows the integer k£ go up to k = 1, 2,3, 4, where the amplification
factor reaches the values 1.18, 1.96, 2.75 and 3.53, respectively, for times ¢ = (2k + 1)7/4, where
T is the period of the oscillations. For higher values of the damping ( A > 0.25, for instance) the
amplification factor is less than unity.

A similar analysis holds for the velocity

2miw

which reaches the maximum modulus values

[Ae !sinwt + (1 — e ") coswt] , (33)

] & 10 (1= M) (34)

maz — 2mAw

for wt = km, k = 1,2, 3...(the maximum placed between 0 and 7/2 is left aside). The amplification
factor for velocities is defined by

1
F, =i > —(1—e M),
v |‘T‘maz /vmaz 2)\( € ) (35)

For small values of the damping coefficient the amplification factor is given by

F,~kr/2 | (36)

and it may attain higher values than the amplification factor for displacement (up to 27 for
instance, corresponding to k = 4).

Within the approximation Awt < 1 and A < 1 employed here the acceleration can be written as

. fo :
T = -—(wtsinwt — 2 coswt) ; 37
o ) (37
its modulus attains maximum values for wt satisfying tan wt = —wt/3. The approximate solutions

of this equations, corresponding to higher values of the acceleration, are given by wt = (2k+1)7/2
for k = 2,3.... The amplification factor for acceleration is defined by

. 1 :
Fo = |Z|,00 /0Cmaz = 3 |wt sin wt — 2 cos wt| (38)

Its maximum values are (slightly less than) F, = (2k + 1)7 /4.

Far from resonance the amplification factors decrease. It is worth noting that the amplification
factors are higher than unity because of the large amplitudes of oscillations at resonance, and far
from resonance these amplitudes decrease according to (14) and (22), and, consequently, the am-
plification factors decrease too. Indeed, it is worth analyzing the energy forced into the oscillating
particle for zero damping. From (6) we obtain

= [ ar(pmyeer (39)

in this case, for a very large duration ¢ and vanishing initial conditions at ¢ — —oo. On the other
hand the energy of the particle is E = m(i? + w?z2)/2 = m|n|* /2, i.e.



1| [+ or 2
E=— ‘/ drfe ™"
2m |J—co

which shows that the pumped energy is associated with the Fourier component of the external force
corresponding to the particle frequency. For f = f;coswgt we obtain E = 72 f2§%(Aw)/2m close
to resonance, where Aw = wy — w. The energy per unit time leads to [ = F/t = 7 f2§(Aw)/4m,
since tAw = 27; it may also be written as

, (40)

/3 Aw

[=J0 "
am (Aw)? + N2w? ’

(41)
¢ where ) is a vanishing parameter, which coincides with the dissipated energy per unit time given
by (20). The latter equation shows that the energy absorbed from the external force equals the
dissipated energy and it has a maximum value at resonance.

4 Shocks

In more realistic cases the external force is distributed around a certain frequency wy, of the order
of the frequency w, as given by a gaussian

= const - [y wie T ’ 2(:oswlt,
c dw, e~ (W1=w0)"/24 42

where A is the frequency extension of the external spectrum. If A < wy,w then the external
wavepacket is similar with a monochromatic wave, and the results for the amplification factors are
similar with those given in the previous sections. More interesting is the opposite limit A > wq, w,
which corresponds to a shock of a short duration as given by

f=—folAte2"/2 (43)

extending over a time interval ¢ ~ 1/A. Such a force is obtained as a gaussian distribution of the
form

f = (fo/V2rA) / doon[— (w1 — wo)/Ale~ @179 /28% gin iyt (44)

Now, it is easy to compute the maximum value of the acceleration under the action of such an
external force, acmar = fo/m/e, as well as the velocity vme: = fo/mA and the displacement

d = (fo/mA) /_t dre ¥ (45)

which gives a maximum value dpq; = V27 fo/mAZ.

The coordinate of the particle can easily be obtained by introducing the force f given by (43)
into the general solution of the form given by (9). We may neglect the small contribution of the
damping in this case, and make use of the inequalities A > wp,w in estimating the integral (9.
We obtain

_ Jfo tefA2t2/2

- mA ’ (46)



which has a maximum value |z| = (fo/mA?\/e). Therefore, the amplification factor for dis-
placement is

F;=1/V2me . (47)

Similarly, we get the amplification factors F,, = 1 for velocity, and F, = 2.28 for acceleration. As
one can see, the amplification is less than unity for displacement, equal to unity for velocity and
higher than unity for acceleration for shocks of very short duration.
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