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- Lasers for physicists: resonant cavity, pumped, laser emis-
sion (diaphragm); usully in pulses, say 50fs; width 15µ, pretty
monochromatic (1eV ) (quasi-plane wave; also Gaussian beams))
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-Pay attention: the width (breath) of this thin slab of light as
large as 20-40cm

-Propagates in (slightly) ionized gases (density cca 1019cm−3)

-Electrons may be accelerated by such quasi-plane waves (though
in pulses)

-Big difference between plane waves and focused beams

-First, for instance, refraction requires a rather large beam width
(Huygens construction). At the same time, “ghost” waves (Som-
merfeld, Brillouin,1914), plasma oscillations (infinite wavelength);
narrow beams (pencils, long), do not refract (but reflect) (MA,
RJP (2013)); bullets refract and reflect like particles
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-Focused pulses (beams): different. (Of course, a focused beam
is not a superposition, a wavepacket! it is a “condensed” pulse).
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A bullet in the focus (3-4cm); high polarization, compensating
electric field, electrons accumulated on its surface and carried
on by the pulse (for 3-4cm); this is the acceleration mechanism
of the polaritonic pulse (MA&Gan, JAP (2011)). It is based on
the exctinction theorem (Ewald, Oseen, 1914-1915). No field
inside, relatively stable entity. Carry a macroscopic charge, co-
herent Compton scatt (Thomas, backscatt), γ-laser. The same
happens behind and beyond the focal region, but it is necessary
to have a zero slope for the beam envelope to be effective
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I. Introduction

Breit-Wheeler process

γ + γ → e− + e+

still unobserved

A similar process: multi-photon collision

γ + nω → e− + e+

seen indirectly by multi-photon Compton effect

e− + nω → e− + γ
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Electron in laser field collides with n optical photons, produces
γ which interact with n optical photons, releasing “dressed”
positrons which are observed! (and “dressed” electrons)

1st issue: charge in laser field
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2nd issue: Vacuum breakdown

Constant electric field: eE · ℏ/mc = mc2, Schwinger limit E =
m2c3/eℏ ≃ 4.4 × 1013statvolt/cm (1statvolt/cm = 3 × 104V/m),
breaks the vacuum

Constant magnetic field: similar, (eℏ/mc)H = mc2, no break-
down!

Klein paradox: more reflected electrons from vacuum, in high
electric field

Non-linear Electrodynamics, two invariants E2−H2 and EH; not
in radiation!

Vacuum birefringence, photon splitting

Vacuum polarization (MA, JMO (2011))
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II. Classical charge in an electromagnetic plane wave

Classical relativistic electron in radiation field
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Classical relativistic electron

(
1

c
E −

e

c
Φ)2 = m2c2 + (p−

e

c
A)2

Hamilton-Jacobi equation

gij
(
∂S

∂xi
+
e

c
Ai

)(
∂S

∂xj
+
e

c
Aj

)
= m2c2

Plane wave, Ai functions of the phase ξ = kix
i only

Solution

S = −
1

2
γ(ct+x)−

m2c2 + κ2

2γ
ξ+κr+

e

cγ

ˆ ξ
dξ

′
κA−

e2

2c2γ

ˆ ξ
dξ

′
A2

γ = kif
i, fif i = m2c2, f i is the momentum of a free particle
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Momenta: ∂S/∂xi, coordinates: ∂S/∂f i = const

y =
κy
γ ξ −

e
cγ

´ ξ dξ′Ay
z = κz

γ ξ −
e
cγ

´ ξ dξ′Az

x = 1
2

(
m2c2+κ2

γ2
− 1

)
ξ − e

cγ2

´ ξ dξ′κA+ e2

2c2γ2
´ ξ dξ′A2

and
py = κy − e

cAy

pz = κz − e
cAz

px = −1
2γ + m2c2+κ2

2γ − e
cγ
−→κ−→
A + e2

2c2γ
A2
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Energy

E = c(γ + px) , (γ = mc)

Charge at rest at x = y = z = 0 at the initial moment of time
t = 0 A = Az = A0 cos(ωt − kx) = A0 cos

ω
c (ct − x) = A0 cos

ω
c ξ

(lin pol)

z = −eA0
mc2

λ sin(ωt− kx) , y = 0 ,

x =
e2A2

0/4m
2c4

1+e2A2
0/4m

2c4

[
ct+ λ

2 sin 2(ωt− kx)
]

px =
e2A2

0
2mc3

cos2(ωt− kx) , pz = −eA0
c cos(ωt− kx) , py = 0

and energy

E = mc2 +
e2A2

0

2mc2
cos2(ωt− kx)
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Effective mass, time-average

E2/c2 − p2x = m∗2c2 , m∗2 = m2
(
1+

e2A2
0

2m2c4

)

Note: 1) oscillations 2ω along the propagation direction

2) drift along the propagation direction, η = eA0/2mc
2

3) negative energy, negative momentum px,

E = c(−γ − px); Note the linear dep on px!
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Application to laser fields, 1

Parameter

η =
eA0

2mc2

Drift velocity of the charge

v ≃
η2

1+ η2
c

Coordinates:

x ≃ vt+ 1
2
vλ
c sin 2(ω − kv)t = vt+ 1

2
vλ
c sin 2ω(1− v

c)t

z = −2ηλ sinω(1− v
c)t , E = mc2(1 + η2)

Current J = ev along the direction of propagation of the radiation
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-Duration of the transient (accelerating) regime: 1− e−t/∆t

∆t - time needed to introduce the charge in the beam

∆t ≃ ω−1 (pulse duration τ ≃ sω−1, s ≥ 10

electron is accelerated very quickly

-high intensities, electron moves almost with the pulse velocity c
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-oscillation phase ≃ ωξ/c = ωt/(1 + η2)

for t = τ , phase ωτ/(1 + η2) = s/(1 + η2) ≪ 1: oscillations may
be neglected (frequency very small, ξ ≪ λ)

coordinate z ≃ ληs/(1 + η2) = dη/(1 + η2) ≪ d

el stays in the pulse

-coordinate y = κyξ/γ ≪ κyλ/γ, momentum κy should be suffi-
ciently small for the electron to stay inside of the pulse
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Estimation of η

Usually, η ≪ 1

Laser intensity I = 1022w/cm2 (high), focalized in a pulse of
dimension d =⇒ generates an electric field E0 =

√
8πI/c =

1010statvolt/cm, very high; vector potential A0 = cE0/ω = 10−5E0 =

105statvolt for the optical frequency ω = 3 × 1015s−1; eA0 =

10−5 = 30MeV ≫ mc2 = 0.5MeV ; η = eA0/2mc
2 = 30. This

energy is much higher than the rest energy of the electron mc2 =

0.5MeV , so that the ratio η = eA0/2mc
2 = 30 ≫ 1
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It follows: 1) electron accelerated up to ultra-relativistic veloc-
ities

Note: 2) in vacuum; in a gaseous plasma, pulse wavepacket
(Ap, RJP (2013)), which distributes the electrons over its sur-
face, such as to compensate the radiation field; no field available
in the pulse to accelerate charges (the charges are accelerated by
the the transport motion of the wavepacket (pulse; pulsed po-
lariton) (Ap&Gan, JAP (2011)); distinct (and complementary)
mechanism of acceleration
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III. Quantum charge in an electromagnetic plane wave

For many purposes the rel el is classical

2nd order Dirac eq

[(p−
e

c
A)2 −m2c2 −

i

2

eℏ
c
Fµνσ

µν]ψ = 0

Fµν = ∂µAν − ∂νAµ - the strength of the elm field, σµν = (α, iΣ),

α =

(
0 σ
σ 0

)
, Σ =

(
σ 0
0 σ

)
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(a,b) =


0 ax ay az

−ax 0 −bz by
−ay bz 0 −bx
−az −by bx 0


Elm potentials functions of the phase ξ = kx only

Solution (Volkov)

ψpσ =
1√
2εV

[
1+

e

2c

(γk)(γA)

(pk)

]
e
i
ℏSupσ

S = −px−
ˆ ξ

dξ
′
[

e

c(pk)
(pA)−

e2

2(pk)c2
A2
]
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upσ =

(
(ε+mc2)1/2wσ

(ε−mc2)1/2(nσ)wσ

)
, u−p−σ =

(
(ε−mc2)1/2(nσ)w

′
σ

(ε+mc2)1/2w
′
σ

)

where n = p/p, w
′
σ = −σyw−σ (wσ eigenvectors of σz); upσupσ′ =

2mc2δ
σσ

′ , u−pσu−pσ′ = −2mc2δ
σσ

′

Dirac matrices are

γ0 =

(
1 0
0 −1

)
, γ =

(
0 σ
−σ 0

)
Note: 1) orthogonality ψpσ (completeness) (wavepackets)

2)phase classical mechanical action; it contains the drift
motion of the electron along the propagation direction of the
wave

23



3)the pre-exponential factor includes the oscillations of
the electron in the radiation field

The current jµ = cψγµψ

jµ =
c

εV

{
pµ −

e

c
Aµ+ kµ

[
e

c(pk)
(pA)−

e2

2(pk)c2
A2
]}

The momentum

qµ = ψ∗
pσ(p

µ − e
cA

µ)ψpσ = pµ − e
cA

µ+ kµ
[

e
c(pk)(pA)−

e2

2(pk)c2
A2
]
+

+kµ ie
8ℏ(pk)εFλν(u

∗σλνu)
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Time average

qµ = pµ − kµ
e2A2

2(pk)c2

q2 = p2 −
e2A2

c2
= m2c2(1− e2A2/m2c4)

effective mass m∗, which increases with increasing interaction
(A2 = −A2).
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Application to laser fields, 2

Consider an elm wave as before:

1+
e

2c

(γk)(γA)

(pk)
= 1−

eA0 cos
ω
c ξ

2mc2

(
−iσ2 σ3
σ3 −iσ2

)

S = −
(
mc2 +

e2A2
0

4mc2

)
t+ pyy+

e2A2
0

4mc3
x−

e2A2
0

8mc2ω
sin

2ω

c
ξ

High-intensity interaction: drift momentum (in localization re-
gions)

Px ≃
e2A2

0

4mc3
energy

E ≃ mc2 +
e2A2

0

4mc2
= mc2 + cPx
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phase velocity

vx ≃
E
Px

=
1+ e2A2

0/4m
2c4

e2A2
0/4m

2c4
> c

Group velocity ≃ c

Very high elm field, eA0/2mc
2 ≫ 1 (injection of electrons in a

laser beam focalized in vacuum):

1) The charge becomes ultra-relativistic (group velocity)

2) Simplification

ψpσ ≃
1√
2V

(
wσ
σ2wσ

)
e
i
ℏS , ψ−p−σ ≃ −

1√
2V

(
w−σ
σ2w−σ

)
e−

i
ℏS
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where

S ≃ −
e2A2

0

4mc2
t+

e2A2
0

4mc3
x = −

e2A2
0

4mc3
(ct− x)

3) very similar to a free particle (oscillations lost, nω?)

4) ψ−p−σ corresponds to negative energy (and momentum); neg-
ative electrons; they get lower and lower (negative) energy (as if
they would have a negative mass); the gap between the negative-
and positive-energy states increased by the radiation
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El-Pos pair production, e.g. by

γ + nω → e+ + e−

γ injected in the laser focus

E− = mc2 +
e2A2

0

4mc2
(= mc2 + cPx)

E+ = −mc2 −
e2A2

0

4mc2
(= −mc2 − cPx)

∆E = E− − E+ = 2mc2 +
e2A2

0

2mc2

enhanced by radiation; pair production in radiation?
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Injection of the electrons in the laser beam

Adiabatic injection of electrons in laser beam

Uncertainties: ∆t = dm/py, ∆x = c∆t = cdm/py, ∆Px =

ℏpy/cdm, ∆E = ℏpy/dm, ∆v = ℏpy/dmE in velocity
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Notes:

1) Electron transported by the radiation field with ultra-relativistic
velocities along the direction of propagation of the radiation

2) Oscillations of the charge become slow in this case, the phase
ξ = ct− x is vanishing (phase velocity close to c)

3) Motion is uniform and the charge does not radiate (Lorentz
reaction?)
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4) Accelerated electron "feels" not anymore the radiation; fields
in rest frame

E
′
z =

ωA0

c
sin

ω

c
(ct−x)·

√√√√1− v/c

1+ v/c
, H

′
y = −

ωA0

c
sin

ω

c
(ct−x)·

√√√√1− v/c

1+ v/c

and frequency

ω
′
= ω

√√√√1− v/c

1+ v/c

(Doppler effect); for v → c these quantities vanish

Electron wavelength λ ≃ ℏ/ηmc≪ λCompton : Classical Approxi-
mation!

32



IV. Standing electromagnetic wave
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Vector potential

A = Az =
1

2
A0[cos(ωt− kx) + cos(ωt+ kx)] = A0 cosωt cos kx

optical frequency ν = ω/2π ≃ 1015s−1, wavelength λ = 2π/k =

c/ν ≃ 3× 10−5cm = 0.3µm
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More: electrons injected into the st wave, thickness, say, 1mm,
spent a time 10−1/c = 3×10−12s which is much longer than the
wave period 1/ν = 10−15s; consequently: we may average the
Hamilton-Jacobi equation

1

c2
(∂S/∂t)2 = (gradS −

e

c
A)2 +m2c2

with respect to the time:

1

c2
(∂S/∂t)2 = (∂S/∂x)2+(∂S/∂y)2+(∂S/∂z)2+

e2A2
0

2c2
cos2 kx+m2c2

Solution:

S = ±
eA0√
2ω

cos kx+ pyy+ pzz − Et

energy

E2 = m2c4 +
1

2
e2A2

0 + (p2y + p2z)c
2
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“Oscillating (space varying)” drift motion: longitudinal mo-
mentum (along the x-direction)

Px =
∂S

∂x
= ±

eA0√
2c

sin kx

El-ph collision: conservation of energy and momentum, Comp-
ton effect:

E0 + ℏω =
√
m2c4 + c2p2t + e2A2

0/2+ ℏω′
,

p0x+ ℏk = ±eA0√
2c

sin kx+ ℏk′x

p0t = pt+ ℏk′t ;

E0 =
√
m2c4 + c2p20x+ c2p20t -energy of the incident electron

36



Obs: -spatial average of the
electron momentum Px = (±eA0/

√
2c) sin kx inside the wave is

zero

-for stability, we may suggests that spatial average of the photon
momentum after collision must be zero, k

′
x = 0

-since two photons with opposite momenta ±ℏk are present in
the standing wave in equal proportions, =⇒original momentum
of the electron along the x-direction must also be vanishing,
p0x = 0

-in order the wave be stable, spatial average of the transverse
momentum of the photon after collision must be zero, k

′
t = 0; it

follows pt = p0t

37



However, we must allow for fluctuations, so that we have

p2t = p20t+ ℏ2k
′2
t

and
e2A2

0

4c2
= ℏ2k

′2
x

Frequency shift

ℏ∆ω = ℏ(ω
′
− ω) = −

e2A2
0/4+ ℏ2ω2

2(E0 + ℏω)

since k
′2
t > 0 =⇒ eA0/2 < ℏω′

(eA0 > 0), =⇒eA0/2 < ℏω
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This indicates that: 1) either the electrons do not penetrate
the standing wave for high values of the electromagnetic field
(eA/2 > ℏω), or 2) the standing wave is destroyed by the elec-
tron beam, or 3) the electrons simply suffer Compton collisions,
without destroying the wave (and a “fluctuating” standing wave
is a too strong requirement, not valid)

Usual electron beams have a very weak electron flow; conse-
quently, the Compton effect they produce in a standing electro-
magnetic wave do not cause any damage to the wave
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Estimation of the photon density: moderate intensity I =

1018w/cm2; electric field ≃ E0 ≃
√
I/c = 107statvolt/cm (and a

similar magnetic field); energy density ≃ w ≃ I/c = 1014erg/cm3,
density of photons n ≃ 1025cm−3 (energy ℏω = 1eV ); photon
flow (flux) cn ≃ 1035/cm2 · s

Relativistic electrons: accelerated to an electric current ≃ 100mA,
=⇒≃ 1017 electrons per second; over a cross-sectional area
1cm2; =⇒ electron flow ≃ 1017/cm2 · s

(Compton ω
′
= ω[1+(ℏω/mc2)(1−cosφ0]−1, ∆ω = −(ℏωω′

/mc2)(1−
cosφ)).
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Conclusion: electron flows are much weaker than photon flows

Disruption of a standing electromagnetic wave by electron beams
is highly unlikely

Electrons in a standing electromagnetic wave suffer multiple
Compton collisions

Since the photon density is very high, an electron suffers many
collisions, its mean free path very short, moving practically
in a straight line; its mean free path much shorter than
the wavelength of the wave; electron does not "feel" the
structure of the standing wave; it behaves, practically, as a free
electron, sufering many collisions; therefore, its intrusion in
the standing wave has, practically, no effect (except the slight
Compton effect)
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Injection of electrons in a standing electromagnetic wave is
practically a multiple Compton effect in vacuum

Mean free path of the electron is of the order of the mean sep-
aration distance between the photons (≃ 10−8cm), the Comp-
ton cross-section σ is of the order of the square of the clas-
sical electromagnetic radius of the electron (re = e2/mc2 ≃
2.8 × 10−13cm), and the radiation wavelength is ≃ 3 × 10−5cm

(ℏω = 1eV )

43



Electron “stability” in a standing rad wave

Average, over Compton scatterings

Px = mvx/(1− v2x/c
2)1/2, oscillating acceleration

dpx

dt
= vx

dpx

dx
=

1

2
c
d

dx

√
m2c2 + p2x = mc2k

2η2 sin kx cos kx√
1+ 2η2 sin2 kx

coordinate x(t) obtained from

dx

dt
= vx = c

± eA0√
2mc2

sin kx√
1+

e2A2
0

2m2c4
sin 2kx

Solution: x = πnλ; delocalized over stable positions (optical
lattice); q-mech, non-rel treatment justified
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Creation of electron-positron pairs from vacuum in a standing
electromagnetic wave of high-power lasers

-Since el or pos Compton wlngth much shorter than radiation
wlngt: spatial variation of the standing wave disregarded

Left with a high electric field (variable in time), Schwinger limit?

No, far away

Moreover, magnetic field from sp variations diminish considerably
the rate of pair production
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-Catalytic creation by γ, enhance the effect of the electric field

(w ≃ (Eschw/E)2(time = mc2/ℏ)(vol = (mc/ℏ)3]e−
Eschw
E ·mc

2
ℏωγ )

Time needed for creating a pair much longer than the wave
period: time variation of the wave averaged!

-Apart from such dificulties, the enlargement of the gap:

√
m2c4 + e2A2

0/2 and −
√
m2c4 + e2A2

0/2

-Similar considerations for electron-positron pairs created in laser
fields in the presence of a Coulomb potential (Bethe-Heitler pro-
cess); pair creation unlikely
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V. Electron diffraction by a standing electromagnetic wave

Electron wavelengh a ≃ λ ≃ 10−5cm (radiation wvlgth)

Electron momentum p ≃ 6× 10−22g · cm/s, energy cp ≃ 10eV

It follows: non-relativistic quantum electrons

Electron velocity v = p/m ≃ 106cm/s; el motion takes a much
longer time than the radiation period; it follows, we may average
with the time

E =
1

2m
(p−

e

c
A)2 =

p2x
2m

+
p2y

2m
+

p2z
2m

−
e

mc
pzA+

e2

2mc2
A2

or

E =
p2x
2m

+
p2y

2m
+

p2z
2m

+
e2A2

0

4mc2
cos2 kx
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Periodic potential

U(x) =
e2A2

0

4mc2
cos2 kx

along the x-axis (with momentum px = (eA0/
√
2c) sin kx)

Energy bands; Diffraction (Kapitza-Dirac effect)

Born approximation

dσ = |f |2 do =
∣∣∣∣ m

2πℏ2

ˆ
dr

′
U(r

′
)eiq−q

′
)r

′∣∣∣∣2 do
Bragg condition for 2k (λ/2)
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Limitation of Born approx

mU0

ℏ2
V

r
≪ 1

(especially multiple scatterings)

-higher el energy and a thin standing wave, transmission diffrac-
tion, classical law λ

2 sin θ = na, n any integer (diffraction grating)

-high radiation intensity, reflection diffraction, same law (trun-
cated potential U(x))
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