ELI-NP at Magurele - "Puise and Impulse of ELI"

1) "Polaritonic pulse and coherent X - and gamma rays from Compton (Thomson) backscattering" (MA\&MGan), J. Appl. Phys. 109013307 (2011) (1-6)
2)'Dynamics of electron-positron pairs in a vacuum polarized by an external radiation field'" (MA), Journal of Modern Optics, 58611 (2011)
3)" Classical interaction of the electromagnetic radiation with two-level polarizable matter" (MA), Optik 123193 (2012)
4)" Coherent polarization driven by external electromagnetic fields" (MA\&MGan), Physics Letters A374 4848 (2010)
5)"Coupling of (ultra-) relativistic atomic nuclei with photons" (MA\&MGan), AIP Advances 3112133 (2013)
6)'Propagation of electromagnetic pulses through the surface of dispersive bodies" (MA), Roum J. Phys. 581298 (2013)
7)" Giant dipole oscillations and ionization of heavy atoms by intense electromagnetic pulses' (MA), Roum. Reps. Phys. 67 837 (2015)
8)"Parametric resonance" in molecular rotation spectra" (MA\&LCCun Chem. Phys. 472262 (2016)
9)" Motion of an electric charge under the action of laser fields" (MA)-2016

INSTITUTE of PHYSICS and NUCLEAR ENGINEERING Magurele-Bucharest

Motion of an electric charge under the action of laser fields

M Apostol

2016

- Lasers for physicists: resonant cavity, pumped, laser emission (diaphragm); usully in pulses, say $50 f s$; width 15μ, pretty monochromatic (1 eV) (quasi-plane wave; also Gaussian beams))

-Pay attention: the width (breath) of this thin slab of light as large as $20-40 \mathrm{~cm}$
-Propagates in (slightly) ionized gases (density cca $10^{19} \mathrm{~cm}^{-3}$)
-Electrons may be accelerated by such quasi-plane waves (though in pulses)
-Big difference between plane waves and focused beams
-First, for instance, refraction requires a rather large beam width (Huygens construction). At the same time, "ghost" waves (Sommerfeld, Brillouin,1914), plasma oscillations (infinite wavelength); narrow beams (pencils, long), do not refract (but reflect) (MA, RJP (2013)); bullets refract and reflect like particles

-Focused pulses (beams): different. (Of course, a focused beam is not a superposition, a wavepacket! it is a "condensed" pulse).

A bullet in the focus ($3-4 \mathrm{~cm}$); high polarization, compensating electric field, electrons accumulated on its surface and carried on by the pulse (for $3-4 \mathrm{~cm}$); this is the acceleration mechanism of the polaritonic pulse (MA\&Gan, JAP (2011)). It is based on the exctinction theorem (Ewald, Oseen, 1914-1915). No field inside, relatively stable entity. Carry a macroscopic charge, coherent Compton scatt (Thomas, backscatt), γ-laser. The same happens behind and beyond the focal region, but it is necessary to have a zero slope for the beam envelope to be effective

I. Introduction

Breit-Wheeler process

$$
\gamma+\gamma \rightarrow e^{-}+e^{+}
$$

still unobserved

A similar process: multi-photon collision

$$
\gamma+n \omega \rightarrow e^{-}+e^{+}
$$

seen indirectly by multi-photon Compton effect

$$
e^{-}+n \omega \rightarrow e^{-}+\gamma
$$

Electron in laser field collides with n optical photons, produces γ which interact with n optical photons, releasing "dressed" positrons which are observed! (and "dressed" electrons)

1st issue: charge in laser field

2nd issue: Vacuum breakdown

Constant electric field: $e E \cdot \hbar / m c=m c^{2}$, Schwinger limit $E=$ $m^{2} c^{3} / e \hbar \simeq 4.4 \times 10^{13}$ statvolt $/ \mathrm{cm}$ (1 statvolt $/ \mathrm{cm}=3 \times 10^{4} \mathrm{~V} / \mathrm{m}$), breaks the vacuum

Constant magnetic field: similar, $(e \hbar / m c) H=m c^{2}$, no breakdown!

Klein paradox: more reflected electrons from vacuum, in high electric field

Non-linear Electrodynamics, two invariants $E^{2}-H^{2}$ and $E H$; not in radiation!

Vacuum birefringence, photon splitting
Vacuum polarization (MA, JMO (2011))
II. Classical charge in an electromagnetic plane wave

Classical relativistic electron in radiation field

Classical relativistic electron

$$
\left(\frac{1}{c} \mathcal{E}-\frac{e}{c} \Phi\right)^{2}=m^{2} c^{2}+\left(\mathbf{p}-\frac{e}{c} \mathbf{A}\right)^{2}
$$

Hamilton-Jacobi equation

$$
g^{i j}\left(\frac{\partial S}{\partial x^{i}}+\frac{e}{c} A_{i}\right)\left(\frac{\partial S}{\partial x^{j}}+\frac{e}{c} A_{j}\right)=m^{2} c^{2}
$$

Plane wave, A_{i} functions of the phase $\xi=k_{i} x^{i}$ only

Solution
$S=-\frac{1}{2} \gamma(c t+x)-\frac{m^{2} c^{2}+\kappa^{2}}{2 \gamma} \xi+\kappa r+\frac{e}{c \gamma} \int^{\xi} d \xi^{\prime} \boldsymbol{\kappa} \boldsymbol{A}-\frac{e^{2}}{2 c^{2} \gamma} \int^{\xi} d \xi^{\prime} A^{2}$
$\gamma=k_{i} f^{i}, f_{i} f^{i}=m^{2} c^{2}, f^{i}$ is the momentum of a free particle

Momenta: $\partial S / \partial x^{i}$, coordinates: $\partial S / \partial f^{i}=$ const

$$
\begin{gathered}
y=\frac{\kappa_{y}}{\gamma} \xi-\frac{e}{c \gamma} \int^{\xi} d \xi^{\prime} A_{y} \\
z=\frac{\kappa_{z}}{\gamma} \xi-\frac{e}{c \gamma} \int^{\xi} d \xi^{\prime} A_{z} \\
x=\frac{1}{2}\left(\frac{m^{2} c^{2}+\kappa^{2}}{\gamma^{2}}-1\right) \xi-\frac{e}{c \gamma^{2}} \int^{\xi} d \xi^{\prime} \kappa A+\frac{e^{2}}{2 c^{2} \gamma^{2}} \int^{\xi} d \xi^{\prime} A^{2}
\end{gathered}
$$

and

$$
\begin{gathered}
p_{y}=\kappa_{y}-\frac{e}{c} A_{y} \\
p_{z}=\kappa_{z}-\frac{e}{c} A_{z} \\
p_{x}=-\frac{1}{2} \gamma+\frac{m^{2} c^{2}+\kappa^{2}}{2 \gamma}-\frac{e}{c \gamma} \vec{\kappa} \vec{A}+\frac{e^{2}}{2 c^{2} \gamma} A^{2}
\end{gathered}
$$

Energy

$$
\mathcal{E}=c\left(\gamma+p_{x}\right), \quad(\gamma=m c)
$$

Charge at rest at $x=y=z=0$ at the initial moment of time $t=0 A=A_{z}=A_{0} \cos (\omega t-k x)=A_{0} \cos \frac{\omega}{c}(c t-x)=A_{0} \cos \frac{\omega}{c} \xi$ (lin pol)

$$
\begin{gathered}
z=-\frac{e A_{0}}{m c^{2}} \lambda \sin (\omega t-k x), y=0, \\
x=\frac{e^{2} A_{0}^{2} / 4 m^{2} c^{4}}{1+e^{2} A_{0}^{2} / 4 m^{2} c^{4}}\left[c t+\frac{\lambda}{2} \sin 2(\omega t-k x)\right] \\
p_{x}=\frac{e^{2} A_{0}^{2}}{2 m c^{3}} \cos ^{2}(\omega t-k x), p_{z}=-\frac{e A_{0}}{c} \cos (\omega t-k x), p_{y}=0
\end{gathered}
$$

and energy

$$
\mathcal{E}=m c^{2}+\frac{e^{2} A_{0}^{2}}{2 m c^{2}} \cos ^{2}(\omega t-k x)
$$

Effective mass, time-average

$$
\mathcal{E}^{2} / c^{2}-p_{x}^{2}=m^{* 2} c^{2}, m^{* 2}=m^{2}\left(1+\frac{e^{2} A_{0}^{2}}{2 m^{2} c^{4}}\right)
$$

Note: 1) oscillations 2ω along the propagation direction
2) drift along the propagation direction, $\eta=e A_{0} / 2 m c^{2}$
3) negative energy, negative momentum p_{x},
$\mathcal{E}=c\left(-\gamma-p_{x}\right) ;$ Note the linear dep on p_{x} !

Application to laser fields, 1

Parameter

$$
\eta=\frac{e A_{0}}{2 m c^{2}}
$$

Drift velocity of the charge

$$
v \simeq \frac{\eta^{2}}{1+\eta^{2}} c
$$

Coordinates:

$$
\begin{gathered}
x \simeq v t+\frac{1}{2} \frac{v \lambda}{c} \sin 2(\omega-k v) t=v t+\frac{1}{2} \frac{v \lambda}{c} \sin 2 \omega\left(1-\frac{v}{c}\right) t \\
z=-2 \eta \lambda \sin \omega\left(1-\frac{v}{c}\right) t, \mathcal{E}=m c^{2}\left(1+\eta^{2}\right)
\end{gathered}
$$

Current $J=e v$ along the direction of propagation of the radiation
-Duration of the transient (accelerating) regime: $1-e^{-t / \Delta t}$
Δt - time needed to introduce the charge in the beam
$\Delta t \simeq \omega^{-1}$ (pulse duration $\tau \simeq s \omega^{-1}, s \geq 10$
electron is accelerated very quickly
-high intensities, electron moves almost with the pulse velocity c
-oscillation phase $\simeq \omega \xi / c=\omega t /\left(1+\eta^{2}\right)$
for $t=\tau$, phase $\omega \tau /\left(1+\eta^{2}\right)=s /\left(1+\eta^{2}\right) \ll 1$: oscillations may be neglected (frequency very small, $\xi \ll \lambda$)
coordinate $z \simeq \lambda \eta s /\left(1+\eta^{2}\right)=d \eta /\left(1+\eta^{2}\right) \ll d$
el stays in the pulse
-coordinate $y=\kappa_{y} \xi / \gamma \ll \kappa_{y} \lambda / \gamma$, momentum κ_{y} should be sufficiently small for the electron to stay inside of the pulse

Estimation of η

Usually, $\eta \ll 1$
Laser intensity $I=10^{22} w / \mathrm{cm}^{2}$ (high), focalized in a pulse of dimension $d \Longrightarrow$ generates an electric field $E_{0}=\sqrt{8 \pi I / c}=$ 10^{10} statvolt $/ c m$, very high; vector potential $A_{0}=c E_{0} / \omega=10^{-5} E_{0}=$ 10^{5} statvolt for the optical frequency $\omega=3 \times 10^{15} \mathrm{~s}^{-1} ; e A_{0}=$ $10^{-5}=30 \mathrm{MeV} \gg m c^{2}=0.5 \mathrm{MeV} ; \eta=e A_{0} / 2 m c^{2}=30$. This energy is much higher than the rest energy of the electron $m c^{2}=$ 0.5 MeV , so that the ratio $\eta=e A_{0} / 2 m c^{2}=30 \gg 1$

It follows: 1) electron accelerated up to ultra-relativistic velocities

Note: 2) in vacuum; in a gaseous plasma, pulse wavepacket (Ap, RJP (2013)), which distributes the electrons over its surface, such as to compensate the radiation field; no field available in the pulse to accelerate charges (the charges are accelerated by the the transport motion of the wavepacket (pulse; pulsed polariton) (Ap\&Gan, JAP (2011)); distinct (and complementary) mechanism of acceleration

III. Quantum charge in an electromagnetic plane wave

For many purposes the rel el is classical

2nd order Dirac eq

$$
\left[\left(p-\frac{e}{c} A\right)^{2}-m^{2} c^{2}-\frac{i}{2} \frac{e \hbar}{c} F_{\mu \nu} \sigma^{\mu \nu}\right] \psi=0
$$

$F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}$ - the strength of the elm field, $\sigma^{\mu \nu}=(\boldsymbol{\alpha}, i \boldsymbol{\Sigma})$,

$$
\alpha=\left(\begin{array}{ll}
0 & \sigma \\
\sigma & 0
\end{array}\right), \Sigma=\left(\begin{array}{cc}
\sigma & 0 \\
0 & \sigma
\end{array}\right)
$$

$$
(\mathbf{a}, \mathbf{b})=\left(\begin{array}{cccc}
0 & a_{x} & a_{y} & a_{z} \\
-a_{x} & 0 & -b_{z} & b_{y} \\
-a_{y} & b_{z} & 0 & -b_{x} \\
-a_{z} & -b_{y} & b_{x} & 0
\end{array}\right)
$$

Elm potentials functions of the phase $\xi=k x$ only

Solution (Volkov)

$$
\begin{gathered}
\psi_{p \sigma}=\frac{1}{\sqrt{2 \varepsilon V}}\left[1+\frac{e}{2 c} \frac{(\gamma k)(\gamma A)}{(p k)}\right] e^{\frac{i}{\hbar} S} u_{p \sigma} \\
S=-p x-\int^{\xi} d \xi^{\prime}\left[\frac{e}{c(p k)}(p A)-\frac{e^{2}}{2(p k) c^{2}} A^{2}\right]
\end{gathered}
$$

$u_{p \sigma}=\binom{\left(\varepsilon+m c^{2}\right)^{1 / 2} w_{\sigma}}{\left(\varepsilon-m c^{2}\right)^{1 / 2}(\boldsymbol{n} \boldsymbol{\sigma}) w_{\sigma}}, u_{-p-\sigma}=\binom{\left(\varepsilon-m c^{2}\right)^{1 / 2}(\boldsymbol{n} \boldsymbol{\sigma}) w_{\sigma}^{\prime}}{\left(\varepsilon+m c^{2}\right)^{1 / 2} w_{\sigma}^{\prime}}$
where $\boldsymbol{n}=\mathbf{p} / p, w_{\sigma}^{\prime}=-\sigma_{y} w_{-\sigma}\left(w_{\sigma}\right.$ eigenvectors of $\left.\sigma_{z}\right) ; \bar{u}_{p \sigma} u_{p \sigma^{\prime}}=$ $2 m c^{2} \delta_{\sigma \sigma^{\prime}}, \bar{u}_{-p \sigma} u_{-p \sigma^{\prime}}=-2 m c^{2} \delta_{\sigma \sigma^{\prime}}$

Dirac matrices are

$$
\gamma^{0}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \gamma=\left(\begin{array}{cc}
0 & \sigma \\
-\sigma & 0
\end{array}\right)
$$

Note: 1) orthogonality $\psi_{p \sigma}$ (completeness) (wavepackets)
2) phase classical mechanical action; it contains the drift motion of the electron along the propagation direction of the wave
3)the pre-exponential factor includes the oscillations of the electron in the radiation field

The current $j^{\mu}=c \bar{\psi} \gamma^{\mu} \psi$

$$
j^{\mu}=\frac{c}{\varepsilon V}\left\{p^{\mu}-\frac{e}{c} A^{\mu}+k^{\mu}\left[\frac{e}{c(p k)}(p A)-\frac{e^{2}}{2(p k) c^{2}} A^{2}\right]\right\}
$$

The momentum

$$
\begin{gathered}
q^{\mu}=\psi_{p \sigma}^{*}\left(p^{\mu}-\frac{e}{c} A^{\mu}\right) \psi_{p \sigma}=p^{\mu}-\frac{e}{c} A^{\mu}+k^{\mu}\left[\frac{e}{c(p k)}(p A)-\frac{e^{2}}{2(p k) c^{2}} A^{2}\right]+ \\
+k^{\mu} \frac{i e}{8 \hbar(p k) \varepsilon} F_{\lambda \nu}\left(u^{*} \sigma^{\lambda \nu} u\right)
\end{gathered}
$$

Time average

$$
\begin{gathered}
q^{\mu}=p^{\mu}-k^{\mu} \frac{e^{2} \overline{A^{2}}}{2(p k) c^{2}} \\
q^{2}=p^{2}-\frac{e^{2} \overline{A^{2}}}{c^{2}}=m^{2} c^{2}\left(1-e^{2} \overline{A^{2}} / m^{2} c^{4}\right)
\end{gathered}
$$

effective mass m^{*}, which increases with increasing interaction $\left(A^{2}=-\mathbf{A}^{2}\right)$.

Application to laser fields, 2

Consider an elm wave as before:

$$
\begin{gathered}
1+\frac{e}{2 c} \frac{(\gamma k)(\gamma A)}{(p k)}=1-\frac{e A_{0} \cos \frac{\omega}{c} \xi}{2 m c^{2}}\left(\begin{array}{cc}
-i \sigma_{2} & \sigma_{3} \\
\sigma_{3} & -i \sigma_{2}
\end{array}\right) \\
S=-\left(m c^{2}+\frac{e^{2} A_{0}^{2}}{4 m c^{2}}\right) t+p_{y} y+\frac{e^{2} A_{0}^{2}}{4 m c^{3}} x-\frac{e^{2} A_{0}^{2}}{8 m c^{2} \omega} \sin \frac{2 \omega}{c} \xi
\end{gathered}
$$

High-intensity interaction: drift momentum (in localization regions)

$$
P_{x} \simeq \frac{e^{2} A_{0}^{2}}{4 m c^{3}}
$$

energy

$$
\mathcal{E} \simeq m c^{2}+\frac{e^{2} A_{0}^{2}}{4 m c^{2}}=m c^{2}+c P_{x}
$$

phase velocity

$$
v_{x} \simeq \frac{\mathcal{E}}{P_{x}}=\frac{1+e^{2} A_{0}^{2} / 4 m^{2} c^{4}}{e^{2} A_{0}^{2} / 4 m^{2} c^{4}}>c
$$

Group velocity $\simeq c$

Very high elm field, $e A_{0} / 2 m c^{2} \gg 1$ (injection of electrons in a laser beam focalized in vacuum):

1) The charge becomes ultra-relativistic (group velocity)
2) Simplification

$$
\psi_{p \sigma} \simeq \frac{1}{\sqrt{2 V}}\binom{w_{\sigma}}{\sigma_{2} w_{\sigma}} e^{\frac{i}{\hbar} S}, \psi_{-p-\sigma} \simeq-\frac{1}{\sqrt{2 V}}\binom{w_{-\sigma}}{\sigma_{2} w_{-\sigma}} e^{-\frac{i}{\hbar} S}
$$

where

$$
S \simeq-\frac{e^{2} A_{0}^{2}}{4 m c^{2}} t+\frac{e^{2} A_{0}^{2}}{4 m c^{3}} x=-\frac{e^{2} A_{0}^{2}}{4 m c^{3}}(c t-x)
$$

3) very similar to a free particle (oscillations lost, $n \omega$?)
4) $\psi_{-p-\sigma}$ corresponds to negative energy (and momentum); negative electrons; they get lower and lower (negative) energy (as if they would have a negative mass); the gap between the negativeand positive-energy states increased by the radiation

El-Pos pair production, e.g. by

$$
\gamma+n \omega \rightarrow e^{+}+e^{-}
$$

γ injected in the laser focus

$$
\begin{gathered}
E^{-}=m c^{2}+\frac{e^{2} A_{0}^{2}}{4 m c^{2}}\left(=m c^{2}+c P_{x}\right) \\
E^{+}=-m c^{2}-\frac{e^{2} A_{0}^{2}}{4 m c^{2}}\left(=-m c^{2}-c P_{x}\right) \\
\Delta E=E^{-}-E^{+}=2 m c^{2}+\frac{e^{2} A_{0}^{2}}{2 m c^{2}}
\end{gathered}
$$

enhanced by radiation; pair production in radiation?

Injection of the electrons in the laser beam

Adiabatic injection of electrons in laser beam

Uncertainties: $\Delta t=d m / p_{y}, \Delta x=c \Delta t=c d m / p_{y}, \Delta P_{x}=$ $\hbar p_{y} / c d m, \Delta \mathcal{E}=\hbar p_{y} / d m, \Delta v=\hbar p_{y} / d m E$ in velocity

Notes:

1) Electron transported by the radiation field with ultra-relativistic velocities along the direction of propagation of the radiation
2) Oscillations of the charge become slow in this case, the phase $\xi=c t-x$ is vanishing (phase velocity close to c)
3) Motion is uniform and the charge does not radiate (Lorentz reaction?)
4) Accelerated electron "feels" not anymore the radiation; fields in rest frame
$E_{z}^{\prime}=\frac{\omega A_{0}}{c} \sin \frac{\omega}{c}(c t-x) \cdot \sqrt{\frac{1-v / c}{1+v / c}}, H_{y}^{\prime}=-\frac{\omega A_{0}}{c} \sin \frac{\omega}{c}(c t-x) \cdot \sqrt{\frac{1-v / c}{1+v / c}}$
and frequency

$$
\omega^{\prime}=\omega \sqrt{\frac{1-v / c}{1+v / c}}
$$

(Doppler effect); for $v \rightarrow c$ these quantities vanish

Electron wavelength $\lambda \simeq \hbar / \eta m c \ll \lambda_{\text {Compton }}$: Classical Approximation!
IV. Standing electromagnetic wave

Vector potential

$$
A=A_{z}=\frac{1}{2} A_{0}[\cos (\omega t-k x)+\cos (\omega t+k x)]=A_{0} \cos \omega t \cos k x
$$

optical frequency $\nu=\omega / 2 \pi \simeq 10^{15} s^{-1}$, wavelength $\lambda=2 \pi / k=$ $c / \nu \simeq 3 \times 10^{-5} \mathrm{~cm}=0.3 \mu \mathrm{~m}$

More: electrons injected into the st wave, thickness, say, 1 mm , spent a time $10^{-1} / c=3 \times 10^{-12} s$ which is much longer than the wave period $1 / \nu=10^{-15} s$; consequently: we may average the Hamilton-Jacobi equation

$$
\frac{1}{c^{2}}(\partial S / \partial t)^{2}=\left(\operatorname{grad} S-\frac{e}{c} \mathbf{A}\right)^{2}+m^{2} c^{2}
$$

with respect to the time:
$\frac{1}{c^{2}}(\partial S / \partial t)^{2}=(\partial S / \partial x)^{2}+(\partial S / \partial y)^{2}+(\partial S / \partial z)^{2}+\frac{e^{2} A_{0}^{2}}{2 c^{2}} \cos ^{2} k x+m^{2} c^{2}$
Solution:

$$
S= \pm \frac{e A_{0}}{\sqrt{2} \omega} \cos k x+p_{y} y+p_{z} z-E t
$$

energy

$$
\mathcal{E}^{2}=m^{2} c^{4}+\frac{1}{2} e^{2} A_{0}^{2}+\left(p_{y}^{2}+p_{z}^{2}\right) c^{2}
$$

"Oscillating (space varying)" drift motion: longitudinal momentum (along the x-direction)

$$
P_{x}=\frac{\partial S}{\partial x}= \pm \frac{e A_{0}}{\sqrt{2} c} \sin k x
$$

El-ph collision: conservation of energy and momentum, Compton effect:

$$
\begin{gathered}
\mathcal{E}_{0}+\hbar \omega=\sqrt{m^{2} c^{4}+c^{2} p_{t}^{2}+e^{2} A_{0}^{2} / 2}+\hbar \omega^{\prime} \\
p_{0 x}+\hbar k= \pm \frac{e A_{0}}{\sqrt{2} c} \sin k x+\hbar k_{x}^{\prime} \\
p_{0 t}=p_{t}+\hbar k_{t}^{\prime}
\end{gathered}
$$

$\mathcal{E}_{0}=\sqrt{m^{2} c^{4}+c^{2} p_{0 x}^{2}+c^{2} p_{0 t}^{2}}$-energy of the incident electron

Obs: -spatial average of the
electron momentum $P_{x}=\left(\pm e A_{0} / \sqrt{2} c\right) \sin k x$ inside the wave is zero
-for stability, we may suggests that spatial average of the photon momentum after collision must be zero, $\overline{k_{x}^{\prime}}=0$
-since two photons with opposite momenta $\pm \hbar k$ are present in the standing wave in equal proportions, \Longrightarrow original momentum of the electron along the x-direction must also be vanishing, $p_{0 x}=0$
-in order the wave be stable, spatial average of the transverse momentum of the photon after collision must be zero, $\overline{k_{t}^{\prime}}=0$; it follows $\bar{p}_{t}=p_{0 t}$

However, we must allow for fluctuations, so that we have

$$
\overline{p_{t}^{2}}=p_{0 t}^{2}+\hbar^{2} \overline{k_{t}^{\prime 2}}
$$

and

$$
\frac{e^{2} A_{0}^{2}}{4 c^{2}}=\hbar^{2} \overline{k_{x}^{\prime 2}}
$$

Frequency shift

$$
\begin{gathered}
\hbar \Delta \omega=\hbar\left(\omega^{\prime}-\omega\right)=-\frac{e^{2} A_{0}^{2} / 4+\hbar^{2} \omega^{2}}{2\left(\mathcal{E}_{0}+\hbar \omega\right)} \\
\text { since } \overline{k_{t}^{\prime 2}}>0 \Longrightarrow e A_{0} / 2<\hbar \omega^{\prime}\left(e A_{0}>0\right), \Longrightarrow e A_{0} / 2<\hbar \omega
\end{gathered}
$$

This indicates that: 1) either the electrons do not penetrate the standing wave for high values of the electromagnetic field (eA/2> $\hbar \omega$), or 2) the standing wave is destroyed by the electron beam, or 3) the electrons simply suffer Compton collisions, without destroying the wave (and a "fluctuating" standing wave is a too strong requirement, not valid)

Usual electron beams have a very weak electron flow; consequently, the Compton effect they produce in a standing electromagnetic wave do not cause any damage to the wave

Estimation of the photon density: moderate intensity $I=$ $10^{18} \mathrm{w} / \mathrm{cm}^{2}$; electric field $\simeq E_{0} \simeq \sqrt{I / c}=10^{7}$ statvolt $/ \mathrm{cm}$ (and a similar magnetic field); energy density $\simeq w \simeq I / c=10^{14} \mathrm{erg} / \mathrm{cm}^{3}$, density of photons $n \simeq 10^{25} \mathrm{~cm}^{-3}$ (energy $\hbar \omega=1 \mathrm{eV}$); photon flow (flux) $\mathrm{cn} \simeq 10^{35} / \mathrm{cm}^{2} \cdot \mathrm{~s}$

Relativistic electrons: accelerated to an electric current $\simeq 100 \mathrm{~mA}$, $\Longrightarrow \simeq 10^{17}$ electrons per second; over a cross-sectional area $1 \mathrm{~cm}^{2} ; \Longrightarrow$ electron flow $\simeq 10^{17} / \mathrm{cm}^{2} \cdot \mathrm{~s}$
$\left(\right.$ Compton $\omega^{\prime}=\omega\left[1+\left(\hbar \omega / m c^{2}\right)(1-\cos \varphi 0]^{-1}, \Delta \omega=-\left(\hbar \omega \omega^{\prime} / m c^{2}\right)(1-\right.$ $\cos \varphi)$).

Conclusion: electron flows are much weaker than photon flows

Disruption of a standing electromagnetic wave by electron beams is highly unlikely

Electrons in a standing electromagnetic wave suffer multiple Compton collisions

Since the photon density is very high, an electron suffers many collisions, its mean free path very short, moving practically in a straight line; its mean free path much shorter than the wavelength of the wave; electron does not "feel" the structure of the standing wave; it behaves, practically, as a free electron, sufering many collisions; therefore, its intrusion in the standing wave has, practically, no effect (except the slight Compton effect)

Injection of electrons in a standing electromagnetic wave is practically a multiple Compton effect in vacuum

Mean free path of the electron is of the order of the mean separation distance between the photons ($\simeq 10^{-8} \mathrm{~cm}$), the Compton cross-section σ is of the order of the square of the classical electromagnetic radius of the electron $\left(r_{e}=e^{2} / m c^{2} \simeq\right.$ $2.8 \times 10^{-13} \mathrm{~cm}$), and the radiation wavelength is $\simeq 3 \times 10^{-5} \mathrm{~cm}$ $(\hbar \omega=1 \mathrm{eV})$

Electron "stability" in a standing rad wave

Average, over Compton scatterings
$P_{x}=m v_{x} /\left(1-v_{x}^{2} / c^{2}\right)^{1 / 2}$, oscillating acceleration

$$
\frac{d p_{x}}{d t}=v_{x} \frac{d p_{x}}{d x}=\frac{1}{2} c \frac{d}{d x} \sqrt{m^{2} c^{2}+p_{x}^{2}}=m c^{2} k \frac{2 \eta^{2} \sin k x \cos k x}{\sqrt{1+2 \eta^{2} \sin ^{2} k x}}
$$

coordinate $x(t)$ obtained from

$$
\frac{d x}{d t}=v_{x}=c \frac{ \pm \frac{e A_{0}}{\sqrt{2} m c^{2}} \sin k x}{\sqrt{1+\frac{e^{2} A_{0}^{2}}{2 m^{2} c^{4}} \sin ^{2} k x}}
$$

Solution: $x=\pi n \lambda$; delocalized over stable positions (optical lattice); q-mech, non-rel treatment justified

Creation of electron-positron pairs from vacuum in a standing electromagnetic wave of high-power lasers
-Since el or pos Compton wingth much shorter than radiation wlngt: spatial variation of the standing wave disregarded

Left with a high electric field (variable in time), Schwinger limit?

No, far away

Moreover, magnetic field from sp variations diminish considerably the rate of pair production

- Catalytic creation by γ, enhance the effect of the electric field $\left(w \simeq\left(E_{s c h w} / E\right)^{2}\left(t i m e=m c^{2} / \hbar\right)\left(v o l=(m c / \hbar)^{3}\right] e^{-\frac{E_{s c h w}}{E} \cdot \frac{m c^{2}}{\hbar \omega \gamma}}\right)$

Time needed for creating a pair much longer than the wave period: time variation of the wave averaged!
-Apart from such dificulties, the enlargement of the gap:
$\sqrt{m^{2} c^{4}+e^{2} A_{0}^{2} / 2}$ and $-\sqrt{m^{2} c^{4}+e^{2} A_{0}^{2} / 2}$
-Similar considerations for electron-positron pairs created in laser fields in the presence of a Coulomb potential (Bethe-Heitler process); pair creation unlikely

V. Electron diffraction by a standing electromagnetic wave

Electron wavelengh $a \simeq \lambda \simeq 10^{-5} \mathrm{~cm}$ (radiation wvigth)
Electron momentum $p \simeq 6 \times 10^{-22} \mathrm{~g} \cdot \mathrm{~cm} / \mathrm{s}$, energy $c p \simeq 10 \mathrm{eV}$
It follows: non-relativistic quantum electrons
Electron velocity $v=p / m \simeq 10^{6} \mathrm{~cm} / \mathrm{s}$; el motion takes a much longer time than the radiation period; it follows, we may average with the time

$$
\mathcal{E}=\frac{1}{2 m}\left(\mathbf{p}-\frac{e}{c} \mathbf{A}\right)^{2}=\frac{p_{x}^{2}}{2 m}+\frac{p_{y}^{2}}{2 m}+\frac{p_{z}^{2}}{2 m}-\frac{e}{m c} p_{z} A+\frac{e^{2}}{2 m c^{2}} A^{2}
$$

or

$$
\mathcal{E}=\frac{p_{x}^{2}}{2 m}+\frac{p_{y}^{2}}{2 m}+\frac{p_{z}^{2}}{2 m}+\frac{e^{2} A_{0}^{2}}{4 m c^{2}} \cos ^{2} k x
$$

Periodic potential

$$
U(x)=\frac{e^{2} A_{0}^{2}}{4 m c^{2}} \cos ^{2} k x
$$

along the x-axis (with momentum $\left.p_{x}=\left(e A_{0} / \sqrt{2} c\right) \sin k x\right)$

Energy bands; Diffraction (Kapitza-Dirac effect)

Born approximation

$$
d \sigma=|f|^{2} d o=\left|\frac{m}{2 \pi \hbar^{2}} \int d \mathbf{r}^{\prime} U\left(\mathbf{r}^{\prime}\right) e^{\left.i \mathbf{q}-\mathbf{q}^{\prime}\right) \mathbf{r}^{\prime}}\right|^{2} d o
$$

Bragg condition for $2 k$ ($\lambda / 2$)

Limitation of Born approx

$$
\frac{m U_{0}}{\hbar^{2}} \frac{V}{r} \ll 1
$$

(especially multiple scatterings)
-higher el energy and a thin standing wave, transmission diffraction, classical law $\frac{\lambda}{2} \sin \theta=n a, n$ any integer (diffraction grating)
-high radiation intensity, reflection diffraction, same law (truncated potential $U(x)$)

