Principles of Earthquake Forecasting Short-Term Prediction Application to Vrancea

apoma Lab

Magurele-Bucharest, 2005

Special day:

Yesterday M = 3, Vrancea (one in 5 – 6 days) (Institute for Earth's Physics Daily Report)

Prediction: Today an M > 4.8 (that can be felt in Bucharest), most likely

Probability $\sim 2\%$

Theory validated on the spot!

What means 2% a probability?

Live 50 times the same situation, then you have almost surely one such event!

This means about one M > 4.8 surely in one year (50 times 5-6 days), in the next day following one of M > 3!

Summary

- 1 Principles of Earthquake Forecasting
- 2 Regular Earthquakes. Mean Recurrence Time. Long-Term Forecasting
- 3 Gutenberg-Richter Magnitude Distribution
- 4 Statistical Analysis
- 5 Mean Recurrence Time

Principles of Earthquake Forecasting

-Statistical approach

$$P(M, t, \mathbf{r}, ...) = d^3 N / dM dt d\mathbf{r}$$

-A priori knowledge (conditioned probabilities, Bayesian theory)

-Analysis of a statistically significant data set

-Prediction: "what happened will happens again"

-"Shaking" map (effects rate, Mercalli intensity, peak ground acceleration)

$$I(t,\mathbf{r}) = \int dM d\mathbf{r}' I(M,\mathbf{r}-\mathbf{r}') P(M,t,\mathbf{r}')$$

Regular Earthquakes. Mean Recurrence Time. Long-Term Forecasting

(apoLab, 2004-2005)

-Mean recurrence time t_r

-Probability $\sim 1/t_r^2$

-Accumulating seismic energy $t_r \sim E^{1/r}$; geometric exponent r = 1/3 (point-like focus)

r = 1/2 (two-dimensional fault)

-Gutenberg-Richter $\ln(E/E_0) = bM$ (b = 3.5)

Gutenberg-Richter Magnitude Distribution

$$P(M) = \beta e^{-\beta M}$$
, $\beta = br$

-well documented

$$log \ distr \ \ln(N/T) = \ln(\beta \Delta M/t_0) - \beta M$$

exced rate
$$\ln(N_{ex}/T) = -\ln(t_0) - \beta M$$

-seismicity rate $1/t_0 = N_0/T$

Statistical Analysis

-Overall, worldwide data (Bullen, 1963) (5.8 < M < 7.3, ΔM = 0.1) β = 1.38 , (r = 0.39 , b = 3.5), $1/t_0 = 10^{5.5}$ per year

-Point-like focus model: $\beta = 1.17$, (r = 1/3, b = 3.5)

-California: $\beta = 2.3$, r = 0.66, $1/t_0 = 10^{7.5} per year$

-Vrancea (apoLab, 2005): $\beta = 1.89$, (r = 0.54, fault), $1/t_0 = 10^{4.21} per year$

Mean Recurrence Time

$$t_r = (t_0 / \beta \Delta M) e^{\beta M}$$
, $t_{ex} = t_0 e^{\beta M}$

-Vrancea: $t_r = 34.9$ years (M > 7)

-Statistical character, randomness, Poisson assumption $p(t) = t_r e^{-t/t_r}$

-Deviation $(\bar{t}^2)^{1/2} - t_r = 0.41t_r$; $t_r = 34.9 \pm 14.3$ years; little practical use

Vrancea earthquakes with (moment) magnitude M > 6 in the last two centuries (Romanian Earthquakes Catalogue, 2005)

Summary

- 1 Accompanying Seismic Activity. Omori's Law
- 2 Short-Term Seismic Activity is More Complex
- 3 California Short-Term Prediction Model

Accompanying Seismic Activity. Omori's Law (apoLab, 2005)

-Omori's law $dn/d\tau \sim 1/\tau$, aftershocks, or foreshocks

-originating in the self-replication of a generating exponential $\sim e^{-\alpha\tau} = e^{-2\tau/t_r}$

-abrupt fall, long tail

-similar for $m = M_0 - M$; $\sim e^{-\beta m}$; $\bar{m} = 0$, $(\bar{m}^2)^{1/2} = \sqrt{2}/\beta = 1.2$ ($\beta = 1.17$); Bath's law

-similar for 1/E; $dE/d\tau \sim 1/\tau^2$ (emp evidence) ($E \sim 1/\tau$, released energy)

Short-Term Seismic Activity is More Complex

-Omori's law - a particular short-term pattern

$$M = M_0 - \alpha \tau / \beta \ (\alpha(M_0))$$

-Scarcity of data (poor statistics), little practical use

-Disentangling accompanying events from the regular ones (especially for long time)

-Any aftershock or foreshock: a "main" shock in turn; multi-branch activity

-M and t independent statistical variables

California Short-Term Prediction Model

$$P(M,t,r) = const \cdot e^{-\beta M} \cdot \frac{1}{t+t_c} \cdot \frac{1}{(r+r_c)^2}$$

-cutoff t_c , cutoff r_c ; $(t \sim r; \text{ area variables} \rightarrow 1/r^2)$; isotropy; spatial grid 5 km

-time-descending sequences, over a few months, within $M\pm0.5$

-fit; ongoing sequence; prediction; null hypothesis (former half predicts the later half)

```
-real-time "shaking" map
```

Summary

- 1 Vrancea Focus (Fault)
- 2 Vrancea Earthquakes
- 3 Next-Earthquake Probability P(t), P(M,t)
- 4 Time-Magnitude Distribution for the Next-Earthquake $P(t/M_0)$ $P(M, t/M_0)$
- 5 Next-Earthquake Time-Magnitude Distribution for Threshold Magnitude M = 4.7
- 6 Conclusions

Vrancea Focus (Fault)

Geographical distribution of 1999 Vrancea earthquakes with (moment) magnitude M > 3 recorded between 1974 and 2004 (30 years) within $45^{\circ} - 46^{\circ}$ N latitude and $26^{\circ} - 27^{\circ}$ E longitude (Romanian Earthquake Catalogue)

Depth distribution of 1999 Vrancea earthquakes with (moment) magnitude M > 3 recorded between 1974 and 2004 (30 years) within $45^{\circ} - 46^{\circ}$ N latitude and $26^{\circ} - 27^{\circ}$ E longitude (Romanian Earthquake Catalogue)

Vrancea Earthquakes

day	N=1998	P(t)%	N(3 <m<4)=1769< th=""><th>P(3<m<4,t)%< th=""></m<4,t)%<></th></m<4)=1769<>	P(3 <m<4,t)%< th=""></m<4,t)%<>
0	511	25.58	454	22.72
1	272	13.61	244	12.21
2	221	11.06	195	9.76
3	179	8.96	162	8.11
4	128	6.41	117	5.86

N(4 < M < 5) = 211	P(4 <m<5,t) %<="" th=""></m<5,t)>
55	2.75
26	1.30
22	1.10
15	0.75
11	0.55

N(5 <m<6)=13< th=""><th>P(5<m<6,t)%< th=""><th>N(6 < M < 8) = 5</th><th>P(6<m<8,t)%< th=""></m<8,t)%<></th></m<6,t)%<></th></m<6)=13<>	P(5 <m<6,t)%< th=""><th>N(6 < M < 8) = 5</th><th>P(6<m<8,t)%< th=""></m<8,t)%<></th></m<6,t)%<>	N(6 < M < 8) = 5	P(6 <m<8,t)%< th=""></m<8,t)%<>
1	0.05	1	0.05
1	0.05	1	0.05
4	0.20	0	0.00
2	0.10	0	0.00
0	0.00	0	0.00

Event distribution for Vrancea next-earthquake (1999 Vrancea earthquakes with (moment) magnitude M > 3, recorded between 1974 and 2004 (30 years) within $45^{\circ} - 46^{\circ}$ N latitude and $26^{\circ} - 27^{\circ}$ E longitude (Romanian Earthquake Catalogue)

Next-Earthquake Probability P(t), P(M,t)

Time-Magnitude Distribution for the Next-Earthquake $P(t/M_0)$, $P(M, t/M_0)$

Next-Earthquake Time-Magnitude Distribution for Threshold Magnitude M = 4.7

Conclusions

-Decrease in time; Omori- type power laws

-Correlation time $\sim 20-25$ days, correlation size M < 4-5

-Poor statistics for M > 5

-Null hypothesis: first half of data to predict the second half of data; confidence level

Summary

- 1 Pair Distribution
- 2 Scaling Time
- 3 Universal Function
- 4 Prediction for Vrancea M > 5
- 5 Conclusions

Pair Distribution

$$D(\tau) = dN/Nd\tau = \frac{1}{N} \sum_{i} \delta(t_{i+1} - t_i - \tau)$$

Pair distribution vs time (days) for 1999 earthquakes recorded in Vrancea 1974-2004 (M > 3)

Scaling Time

 $N = N_{ex}$, $R = N_{ex}/T = t_0^{-1} e^{-\beta M_c}$, $D(\tau) = Rf(R\tau)$

Rescaled pair distributions and the fit (solid curve, r = 0.25, B = 1./17, C = 0.71) for 1999 earthquakes recorded in Vrancea between 1974 and 2004 (M > 3)

Universal Function

(apoLab 2005)

 $-D(au) \sim t \sim E^r \sim 1/ au^r$; $D(au) \sim R/(R au)^r$: R au
ightarrow 0; r = 0.54, Vrancea

 $-R au \gg 1$, exponential, uncorrelated, $D(au) \sim e^{-R au/B}$

-correction factor $B = R'/R = (1 + e^{bM})^r/e^{brM} \sim 2^r$

-Euler's Gamma class of functions: fitting exponent r

$$D(\tau) = CR \cdot \frac{1}{(R\tau)^r} \cdot e^{-R\tau/B}$$

27

Prediction for Vrancea M > 5

r = 0.25, B = 1.17, C = 0.71 $R = t_0^{-1}e^{-\beta M}$ (fit to recurrence law $\beta = 1.76, -\ln t_0 = 8.99$; actually 18 seisms M > 5 out of 1999 in 30 years).

Next-earthquake time (days) distribution for Vrancea M > 5

For instance, 0.8% to have two M > 5 in the same day

Conclusions

-Main feature of earthquakes: seismicity rate $N_{ex}/T = t_0^{-1}e^{-\beta M}$ (their own rhythm)

-Clustering for small τ ; inverse-power law (both self-replication and Omori's law and regular seismicity); by accumulating energy spatially and releasing it temporaly!

-Randomness for rare events, Poisson-like