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We predict theoretically that stable subwavelength plasmonic lattice solitons (PLSs) are formed in

arrays of metallic nanowires embedded in a nonlinear medium. The tight confinement of the guiding

modes of the metallic nanowires, combined with the strong nonlinearity induced by the enhanced field at

the metal surface, provide the main physical mechanisms for balancing the wave diffraction and the

formation of PLSs. As the conditions required for the formation of PLSs are satisfied in a variety of

plasmonic systems, we expect these nonlinear modes to have important applications to subwavelength

nanophotonics. In particular, we show that the subwavelength PLSs can be used to optically manipulate

with nanometer accuracy the power flow in ultracompact photonic systems.
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The downscaling of photonic devices for confining and
manipulating optical energy at the nanoscale is one of the
major challenges of nanophotonics [1]. When the size of
conventional optical circuits is reduced to nanoscale, the
spatial confinement of light is inherently limited by dif-
fraction. One effective approach to overcome this limita-
tion is to use surface plasmon polaritons (SPPs) [2,3]. In
particular, by using SPP modes of metallic nanowires [4],
chains of resonantly coupled metallic nanoparticles [5,6],
tapered plasmonic waveguides [7], or cylindrical metallic
gratings [8] one can spatially confine and guide optical
energy over distances much smaller than the wavelength.
These basic guiding nanostructures can be assembled in
more complex plasmonic systems, such as Y splitters,
Mach-Zehnder interferometers, and waveguide-ring reso-
nators [9]. Despite these promising developments, there
remains a basic challenge that one has yet to overcome in
order to fully exploit the technological potential of plas-
monic devices: they must provide the critical functionality
of all-optic active control of light at nanoscale. Because of
the strong enhancement of the field induced by the excita-
tion of SPPs, and, consequently, the increased optical
nonlinearity, SPPs are particularly suited for providing
this functionality. While basic nonlinear optical processes
have been demonstrated in a variety of plasmonic nano-
structures, e.g., optical limiting and self-phase modulation
in chains of structured nanoparticles [10] or second-
harmonic generation in nanostructured metallic films
[11,12], the physical constraints imposed by large in-plane
extent of the optical field and out-of-plane operation of
some of these devices preclude their integration in ultra-
compact plasmonic systems.

In this Letter, we present a very promising approach to
achieve subwavelength confinement of the optical field
guided by plasmonic nanostructures. In the proposed plas-
monic nanostructure, which consists of an array of closely
spaced parallel metallic nanowires embedded in a non-
linear optical medium (see Fig. 1), the optical nonlinearity
induced by the field of the guiding modes of the nanowires
compensates the discrete diffraction due to the optical
coupling among the nanowires. As a result, nonlinear
collective modes, which we call plasmonic lattice solitons
(PLSs), are formed in the plasmonic array. Because the
radius a of the nanowires and their separation distance, d,
are much smaller than the operating wavelength, �, the
spatial width of the PLSs can be significantly smaller than
�. Importantly, this remarkable property of PLSs cannot be
achieved by using dielectric waveguide arrays, which also
support discrete solitons [13–17], as the transverse size of
such waveguides is comparable or larger than the
wavelength.
Our analysis of the dynamics of PLSs is based on an

extension to the nonlinear case of a coupled-mode theory,
which captures the full vectorial character of the propagat-
ing modes of the metallic nanowires [18]. This fully vec-
torial description of the PLSs is essential for a rigorous
analysis of their physical properties since the electric field
of the modes of metallic nanowires has a large longitudinal
component and therefore it cannot be described by a scalar
function. Moreover, our analysis of the PLSs applies to the
general case of a complex dielectric constant and as such it
fully accounts for the losses in the nanowires. In particular,
we use the Drude model for the dielectric constant of the

metal, �mð!Þ ¼ 1� !2
p

!ð!þi�Þ , and consider that the nano-
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wires are made of Ag (!p ¼ 13:7� 1015 rad=s and � ¼
2:7� 1013 rad=s [19]).

We start our analysis of the PLSs by expanding the total
electric field EðrÞ and magnetic field HðrÞ in a superposi-
tion of the modes of a single nanowire, E?ðr?; zÞ ¼
P

n
anðzÞffiffiffi
P

p
n
eðnÞ? ðr?Þ, Ezðr?; zÞ ¼ P

n
anðzÞffiffiffi
P

p
n

�ðnÞðr?Þ
�ðr?Þ eðnÞz ðr?Þ, and

Hðr?; zÞ ¼
P

n
anðzÞffiffiffi
P

p
n
hðnÞ
? ðr?Þ, where an is the mode ampli-

tude in the nth nanowire, �ðr?Þ and �ðnÞðr?Þ are the di-
electric constant of the plasmonic array and of an isolated

nanowire, respectively, and ½eðnÞðr?Þ;hðnÞðr?Þ� are the mo-
dal fields. These modes are normalized such that Pn ¼
1
4

R
S½eðnÞ � hðnÞ� þ eðnÞ� � hðnÞ� � ẑdS is the mode power.

For simplicity, we assumed that the nanowires have only
the fundamental TM mode (hz ¼ 0), whose nonvanishing
field components, er, ez, and h�, depend only on the radial

coordinate, r?. These field components can be found an-
alytically by solving the Maxwell equations, while the
dispersion relation (the dependence of the complex propa-
gation constant � ¼ �r þ i�i on!) can be determined by
imposing continuity conditions on the tangent fields at the
metal-dielectric interface. As illustrated in Fig. 1(a), the
large dielectric constant of metals, combined with the
subwavelength transverse size of the nanowire, leads to a
strong dependence of � on the wavelength.

To find the mode amplitudes, we start from the uncon-
jugated form of the Lorentz reciprocity theorem [20],

@

@z

Z

S
½E1ðr; !Þ �H2ðr; !Þ � E2ðr; !Þ �H1ðr; !Þ� � ẑdS ¼ i!

Z

S
½�2ðrÞ � �1ðrÞ�E1ðr; !Þ �E2ðr; !ÞdS; (1)

where (E1, H1) and (E2, H2) are solutions of the Maxwell equations corresponding to the dielectric constants �1ðrÞ and
�2ðrÞ, respectively. If we choose (E1,H1) and (E2,H2) to be the fields in the plasmonic array and the fields of a backward
(�z) propagating mode in the nth nanowire, respectively, and �1ðrÞ ¼ �ðr?Þ þ ��nlðrÞ and �2ðrÞ ¼ �ðnÞðr?Þ the corre-
sponding dielectric constants (here ��nl is the nonlinear change in the dielectric constant), the Eq. (1) leads to the following
system of coupled equations describing the mode amplitudes anðzÞ:
�

i
d

dz
þ�

��

anþcn;n�1þcn�1;n

2cnn
an�1þcn;nþ1þcnþ1;n
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In these equations cnm¼ 1
2
ffiffiffiffiffiffiffiffiffi
PnPm

p R
S½eðnÞ�hðmÞ� � ẑdS,

Knm¼ !
4
ffiffiffiffiffiffiffiffiffi
PnPm

p R
S��

ðnÞðr?ÞFnmðr?ÞdS, where ��ðnÞðr?Þ ¼
�ðnÞðr?Þ � �ðr?Þ and Fnmðr?Þ ¼ eðnÞ? � eðmÞ

? � �ðmÞ
� eðnÞz eðmÞ

z ,
and the nonlinear coefficient �nn ¼ � �0nb!n2

2P2
n

�R
S �nðr?ÞFnnðr?ÞdS, where nb is the refractive index of

the background, n2 is the Kerr coefficient, and �nðr?Þ ¼
jeðnÞ? j2 þ j �ðnÞ� eðnÞz j2. Note that in deriving Eq. (2) we have
neglected the nonlinear interaction among the nanowires,

i.e., ��nlðrÞ � 2�0nbn2
P

n
�nðr?Þ
Pn

janðzÞj2.
Our calculations show that if d is of the order of a few

hundred nanometers ðcn;n�1 þ cn�1;nÞ=cnn < 1% and thus

the corresponding terms in Eq. (2) can be neglected.
Moreover, by rescaling the mode amplitudes, anðzÞ ¼ffiffiffiffiffiffi
P0

p
�nðzÞ exp½ið�� Knn=cnnÞz�, with P0 the power in

the zeroth nanowire, the system (2) can be simplified as

i
d�n

dz
þ �ð�n�1 þ�nþ1Þ þ 	j�nj2�n ¼ 0; (3)

where � ¼ �Kn;n�1=cnn and 	 ¼ �P0�nn=cnn. This is the
discrete nonlinear Schrödinger equation, which is known
to have soliton solutions [13]. We emphasize that for our
plasmonic array � < 0, so that the linear dispersion rela-
tion, kz ¼ 2� cosðkxdÞ, implies that anomalous (normal)
diffraction occurs at kx ¼ 0 (kx ¼ 
=d), which is opposite
to the case of dielectric waveguide arrays.
The soliton solutions of Eq. (3) are sought in the form

�nðzÞ ¼ un expði�zÞ, where the amplitudes un are inde-
pendent of z and � is the soliton wave number. We found
that our plasmonic array supports two types of PLSs,
unstaggered and staggered solitons. In the case of unstag-
gered (staggered) PLSs the phase difference of the mode
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FIG. 1 (color online). Schematics of a 1D array of metallic
nanowires with radius a and separation distance d (top left).
(a) Real and imaginary parts of the propagation constant of the
fundamental TM mode, �r and �i, respectively. Panels (b) and
(c) show the transverse profile of the amplitude (top) and
longitudinal component (bottom) of the electric field of unstag-
gered and staggered PLSs, respectively, for � ¼ 1550 nm and
nb ¼ 3:5. In (b) and (c), �nnl ¼ �0:05 (n2 ¼ �4�
10�18 m2=W) and �nnl ¼ 0:05 (n2 ¼ 4� 10�18 m2=W), re-
spectively. The nanowires have a ¼ 40 nm and d ¼ 8a.
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amplitudes in adjacent nanowires is equal to zero (
). The
spatial profile of the amplitude and longitudinal field of
unstaggered (staggered) PLSs corresponding to a nonlinear
index change of �nnl ¼ �0:05 (�nnl ¼ 0:05), with �nnl ¼
2��nl=ð�0nbÞ, are shown in Fig. 1(b) [Fig. 1(c)]. Note that
due to the inverted linear dispersion relation, staggered
(unstaggered) solitons are formed in self-focusing (self-
defocusing) media, which is opposite to the case of dielec-
tric waveguide arrays [17]. Importantly, the soliton full
width at half maximum is w � 0:6�, i.e., the soliton has
subwavelength extent. The dependence of the soliton width
on �nnl is presented in Fig. 2. As expected, this figure
shows that the soliton width decreases with the strength of
the induced nonlinearity and increases with the
wavelength.

Figure 3 shows the propagation of a staggered PLS in the
plasmonic array. It can be seen that in the lossless (� ¼ 0)

linear propagation regime (n2 ¼ 0), the plasmon field ex-
periences significant discrete diffraction [see Fig. 3(a)].
However, when the optical nonlinearity is taken into ac-
count, the plasmon field maintains its shape during propa-
gation, which means that a PLS is formed. When the
optical losses are included, the absorption coefficient is
2Imð�Þ ¼ 910 cm�1, which corresponds to a decay
length of 11 �m. On the other hand, Fig. 3(c) illustrates
that when both optical losses and the nonlinearity are
included, the plasmon field of the PLS retains its initial
width over a propagation distance of �20 �m. Thus, an
experimental observation of subwavelength PLSs can be
realized even without a gain medium. A solitonlike propa-
gation requires a gain of g ¼ 910 cm�1, which can be
easily achieved in a practical experimental setting [21].
In a common experimental setting, solitons are excited

from input Gaussian optical beams, which do not have the
exact profile of the actual soliton. We therefore investigate
the excitation of PLSs from Gaussian beams whose width
and amplitude are optimized so as to lead to the shortest
soliton formation length, which is the distance required for
a beam to reshape itself into a soliton. The generic scenario
of soliton formation is illustrated in Fig. 4. It shows that
during a propagation distance of just a few tens of micro-
meters the input beam sheds off part of its energy as
radiative waves, the remaining plasmon field evolving
into the PLS. During this latter transient stage the width
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FIG. 2 (color online). Soliton width w vs the nonlinear index
change �nnl, calculated for a ¼ 40 nm and (a) � ¼ 1550 nm,
d ¼ 8a, and (b) � ¼ 632 nm, d ¼ 4a. The solid and dashed
lines correspond to nb ¼ 3:5, n2 ¼ 4� 10�18 m2=W (Si) and
nb ¼ 2:8, n2 ¼ 1:4� 10�18 m2=W (As2Se3), respectively. The
dot in (a) corresponds to the soliton in Fig. 1(c).
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FIG. 3 (color online). Linear (a) and nonlinear (b) propagation
of the PLS in Fig. 1(c) in the lossless plasmonic array with nb ¼
3:5, n2 ¼ 4� 10�18 m2=W, � ¼ 1550 nm, a ¼ 40 nm, and
d ¼ 8a. (c) propagation of the same PLS in the lossy plasmonic
array.
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FIG. 4 (color online). Propagation of a Gaussian beam with
� ¼ 1550 nm in a plasmonic array with (a) d ¼ 6a, (b) d ¼ 4a,
and (c) d ¼ 8a. (d) The beam width vs z: the solid, dash-dotted,
and dashed curves correspond to panels (a),(b), and (c), respec-
tively.
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of the beam presents a damped oscillatory evolution [see
Fig. 4(d)]. Importantly, Fig. 4(d) also shows that the soliton
formation length is strongly dependent on the geometry of
the plasmonic array. For example, for a ¼ 40 nm and � ¼
1550 nm, the shortest soliton formation length, of about
50 �m, is achieved for d ¼ 6a.

In order to illustrate the technological potential of PLSs,
e.g., to subwavelength chip-level active nanodevices, we
show that the dynamics of PLSs in the plasmonic array can
be easily controlled via optical means. To this end, we
launched into the plasmonic array a staggered PLS with an
initial phase tilt, �nð0Þ ¼ un expðik0xÞ, with k0 being the
transverse wave number. Figure 5 presents the power de-
pendence of the dynamics of the PLS in the plasmonic
array. Thus, at low input power, Pin, the PLS moves across
the array, the transverse shift increasing with k0. However,
as Pin increases, the transverse shift of the plasmon field
decreases, and, finally, for Pin exceeding a certain thresh-
old value, the PLS is trapped at its initial location.
Although a similar soliton dynamics have been observed
in dielectric waveguide arrays [17], PLSs provide the
critical functionality of all-optical control with subwave-
length precision of the spatial confinement of the optical
field (note that d < �=4 for the plasmonic array in Fig. 5).

It should be noted that unlike the plasmon solitons in
layered metallo-dielectric structures [22,23], the PLSs dis-
cussed here can readily be extended to 2D geometries, in
which case new types of nonlinear plasmonic modes, such
as discrete plasmonic vortex solitons, should exist. As
shown in Figs. 5(c) and 5(d), PLSs can form in 2D plas-
monic arrays, their size being subwavelength in this case,
too (w ¼ 0:72�). Furthermore, the existence of subwave-

length PLSs is not limited to arrays of metallic nanowires.
They can be excited in any system of coupled plasmonic
waveguides, as long as the transverse dimension of the
waveguides is much smaller than the wavelength. Thus,
one can consider arrays made of coupled wedge wave-
guides [9] or coupled chains of interacting metallic nano-
particles [10]. Moreover, the size of the plasmonic array,
and implicitly the size of the PLSs, can be significantly
reduced if one uses deeply scaled down nanostructures,
such as metallic carbon nanotubes [24,25].
In summary, we have demonstrated theoretically that

subwavelength PLSs are formed in 1D arrays of metallic
nanowires embedded into a host dielectric medium with
Kerr nonlinearity. The excitation of PLSs from Gaussian
beams has also been investigated and their potential use to
all-optical nanodevices has been discussed. We expect
these results to enable exciting new developments in nano-
photonics and subwavelength optics.
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FIG. 5 (color online). (a) The location of the peak amplitude at
the output facet of a plasmonic array with length of 150 �m,
a ¼ 0:03�, and d ¼ 8a vs Pin, determined for different phase tilt
k0 (� ¼ 1550 nm). (b) The amplitude distribution of the output
plasmon field vs Pin, calculated for k0 ¼ 0:5. In (c) and (d), the
normalized transverse and longitudinal electric field of a stag-
gered 2D PLS, respectively, calculated for a ¼ 40 nm, d ¼ 8a,
and � ¼ 1550 nm. The background material is Si.
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