
FACULTATEA DE FIZICĂ
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Introduction 1

Chapter I: Introduction

In a nonlinear system “the whole is larger than the sum of its parts”. This
is achieved through the emergence of new structures that are spatially or
temporally coherent, and which do not exist in a linear approximation.
These emergent structures can be considered objects with their own fea-
tures, lifetimes and are interacting with each other specifically. Since these
interactions are also nonlinear, the dynamics of these structures generates
new emergent structures at higher order of description. Thus the molecules
in organic chemistry appear from nonlinear interactions between elements,
providing a structural basis for the proteins and ribonucleic acids of bio-
chemistry, and so on up to the many levels of activity of cells in living
organisms. In all these hierarchical stages nonlinearity is a basic ingredient.

Usually the behavior of nonlinear systems is described in the language
of nonlinear partial, differential equations. Contrary to the case of lin-
ear partial differential equations where the superposition principle works,
in the nonlinear case such a principle is no longer valid, and no general
methods exist to construct exact (closed-form) solutions. This assertion is
correct in general, except for the special situation of completely integrable
systems, where, since 1960s, general methods, known under the name “in-
verse scattering transform” (IST) methods, were developed to solve these
equations when the initial conditions are given. Fortunately these systems
are not simple mathematical games, but they describe quite general pro-
cesses, and are encountered in various domains of physics (hydrodynamics,
plasma physics, nonlinear optics, quasi-one-dimensional molecular systems)
and not only. The subject is discussed in many textbooks, of which we men-
tion [12, 13, 29, 38, 44, 45, 47, 50], and it isn’t the place to further insist on
it.

Two of these completely integrable partial differential equations will be
permanently present in the present work, namely the Korteweg-de Vries and
the nonlinear Schrödinger equation. They describe general phenomena evo-
lution and therefore they appear frequently in various branches of physics.
For instance the KdV equation gives the evolution of a wave in a weak dis-
persive medium with a small nonlinearity where a subtle balance is attained
between the effect of the dispersion to spread out the energy of the pulse and
that of the nonlinearity which draws it back together. The solitary wave,
thus emerged, is an independent dynamic entity maintaining the balance
between dispersion and nonlinearity. On the other hand, the NLS equation
describes the evolution of the amplitude of a quasi-monochromatic wave
propagating in a weakly nonlinear medium. The history of these equations
almost confounds with the history of what, nowadays, is known as the field
of completely integrable systems. Some stages of the evolution of this field
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of mathematical physics will be briefly reviewed below.
It all started in 1834 when John Scott Russell, a Scottish scientist and

engineer, observed an unexpected phenomenon - a novel type of wave on the
surface of a narrow channel provoked by the heavily loaded boat when it
suddenly stopped – “not so the mass of water in the channel which it had put
in motion; it accumulated round the prow of the vessel in a state of violent
agitation, then suddenly leaving it behind, rolled forward with great velocity,
assuming the form of a large solitary elevation, a rounded, smooth and well
defined heap of water, which continued its course along the channel without
change of form or diminution of speed”. He ”followed it on horseback, and
overtook it still rolling on at a rate of some eight or nine miles an hour,
preserving its original figure some thirty feet long and a foot and a half in
height” until the wave became lost in the windings of the channel. He called
this wave “the great wave of translation” and found a very simple relation
between the velocity v of the wave, the channel depth h, the height um of
the wave and the gravitational acceleration g

v =
√
g(h+ um)

Furthermore he demonstrated that a sufficiently large initial mass of water
would produce two or more solitary waves, when suddenly set in motion,
and that the solitary waves collide and cross each other without change of
any kind. The phenomenon, soon confirmed by experiments on the Canal
of Bourgogne, near Dijon (1865), generated a long debate between eminent
mathematicians of the nineteenth century. This debate finished in 1895 with
the paper of Diederik Johannes Korteweg and his PhD student Gustav de
Vries [30], based on earlier work of Joseph Boussinesq, where they obtained
the nonlinear partial differential equation which bears their name

∂u

∂t
+ c

∂u

∂x
+ ε

∂3u

∂x3
+ γu

∂u

∂x
= 0

and which came to play a key role in future theoretical developments. Here
c =
√
gh is the speed of the small amplitude waves, ε = c

(
h2/6− T/2ρg

)
is

the dispersive parameter, γ = 3c/2h the nonlinear one, T the surface tension
and ρ the density of the water. They showed that the equation has exact
traveling wave solutions of the form u(x, t) ∼ sech2 (κ(x− vt)), similar to
the wave shape found experimentally.

This episode in the history of the KdV equation was followed by a ”si-
lence“ of more than half a century. A striking and very unexpected result
was obtained in a totally unrelated problem by Fermi, Ulam and Pasta [20]
in the mid forties at Los Alamos. They considered a chain with 64 atoms,
with linear and nonlinear nearest neighbor interaction and with fixed con-
ditions at its ends. The linear model has 64 normal modes. Injecting the
energy in the first lowest normal modes, they expected that the nonlinear
system will evolve toward an equilibrium state characterized by the equipar-
tition of the energy on all the normal modes. Although initially the energy
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had the tendency to spread over the other normal modes, after a certain
time it came back to the initial modes. It is the first numerical experiment
which contradicted a largely accepted opinion that a system with nonlinear
interaction between its components evolves toward thermodynamic equilib-
rium.

When the Los Alamos papers were declassified this result puzzled many
researchers who repeated the experiment with similar results. A step further
was made by Kruskal and Zabusky in 1965 [51]. Instead of working in the
normal mode space, they used the real space representation with periodic
boundary conditions. They found that an initial perturbation splits into a
train of several pulses, the highest traveling with higher velocity. Due to
the periodic boundary conditions the higher pulses were catching up the
smaller ones, they collide and separate from each other without changing
their form. They called these entities solitons. Also they showed that in
the continuum limit the Fermi-Pasta-Ulam problem is connected with the
KdV equation.

Two years later Gardner, Green, Kruskal and Miura [21] solved the KdV
equation with given initial condition using the so-called “inverse scattering
transform” (IST) method. The method is schematically presented in the
diagram I.1. Given the initial condition u(x, 0) the solution u(x, t) at an

�
�

�
�

u(x, 0)

�
�

�
�

u(x, t)

Scattering data

t arbitrary�
�

�
�

Scattering data

t = 0

(inverse problem)

GLM equation

6

Temporal evolution

linear problem

-

�
�

�
�?

Ψt = BΨ

LΨ = λΨ

problem
linear spectral

Figure I.1: The scheme of Inverse Scattering Transform method used to solve completely
integrable partial differential equations.

arbitrary time t is obtained by applying the following algorithm:

- One associates a linear spatial problem

LΨ = λΨ,

where L is a linear operator in which u(x, 0) appears as a potential.
This eigen-equation allows the determination of the scattering data
(bound eigenvalues, the reflection coefficient in continuum). For the
KdV equation L is the well known one-dimensional Schrödinger equa-
tion of quantum mechanics

L = − d2

dx2
+ u(x, 0).
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- One associates a second linear problem which allows the study of the
time evolution of the scattering data

Ψt = BΨ,

where the lower index indicates partial derivative with respect to the
specified variable t. For the KdV equation B is a skew-symmetric
operator

B = −4
∂3

∂x3
+ 3

(
u
∂

∂x
+

∂

∂x
u

)
.

These two operators are not independent but they satisfy the Lax
equation [31]

Ψt + [L, B] Ψ = 0

and using the previous expressions for L and B, it transforms into
nothing else but the KdV equation.

- Having the form of the scattering data at any time t the last step in
deriving u(x, t) is the reconstruction (inverse problem) of the potential
corresponding to these data. This is done by solving a linear integral
problem, the so-called Gelfand-Levitan-Marchenko equation

K(x, y) + F (x, y) +

∫ ∞
x

F (x+ z)K(x, z)dz = 0

u(x, t) = −2
d

dx
K(x, x)

with the kernel F (x, y) being constructed from the scattering data.

The essential step in this scheme is finding the right spectral problem.
Soon, Zakharov and Fadeev [52] proved the complete integrability of

the KdV system, and probably more important Zakharov and Shabat [53]
showed that the IST method can be applied to solve also the NLS equa-
tion. Later in 1974, Ablowitz, Kaup, Newell and Segur [2] extended the IST
method to a larger class of nonlinear evolution equations [49] comprising
the modified KdV equation and the sine-Gordon equation, and thus, a new
branch of (applied) mathematics was born.

Even before the invention of the IST method, in the mid 1960s, the KdV
equation appeared in plasma physics describing the evolution of nonlinear
ionic excitations. In their paper [49] Washimi and Taniuti started from hy-
drodynamic equations of a plasma (electrons and positive ions) and found
the KdV equation as the equation governing the evolution of the local elec-
trostatic potential using an appropriate asymptotic method called the mul-
tiple scales method. This method (borrowed from mathematics) takes into
account that the effect of a weak nonlinearity is cumulative and manifests
at large time and space scales which require the introduction of stretched
variables

ξ = ε1/2(x− ct), τ = ε3/2t.
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Here, ε is a small parameter and all the important physical quantities of
the problem like the densities, velocities and electrostatic potential expand
in power series of it. Further details about this technique can be found in
chapter 4 of the present paper dedicated to the study of dusty plasma.

The second equation on which the present paper will concentrate is the
(cubic) NLS equation

i
∂A

∂t
+ β

∂2A

∂x2
+ γ|A|2A = 0

It plays a significant role in the theory of propagation of the envelope of wave
trains in many stable dispersive physical systems in which no dissipation
occurs. The evolution of many nonlinear systems can be given by harmonic
wave train (solutions) Φ = A exp[i(kx − ωt)] with an amplitude dependent
dispersion relation ω = ω(k, |A|2). A Taylor expansion around some suitable
wave number k0 and frequency ω0 of the main carrier wave gives [26]

ω − ω0 =

(
∂ω

∂k

)
k0

(k − k0) +
1

2

(
∂2ω

∂k2

)
k0

(k − k0)2 +

(
∂ω

∂|A|2

)
k0

|A|2 + . . .

This is the Fourier transform of an operator equation acting on the ampli-
tude A (ω − ω0 → −i ∂∂t , k − k0 → i ∂∂x)

i

(
∂

∂t
+

(
∂ω

∂k

)
k0

∂

∂x

)
A− 1

2

(
∂ω

∂k

)
k0

∂2A

∂x2
+

(
∂ω

∂|A|2

)
k0

|A|2A = 0

which is the NLS equation. This heuristic derivation shows how the effect
of the nonlinearity can be modeled by thinking of a system as having an
amplitude dependent dispersion relation. But it says nothing about the co-
efficients of the equation, in particular about the coefficient of the nonlinear
term, and one shall see that the sign of this term is rather important.

The equation has arisen in practice to describe nonlinear envelope waves
in hydrodynamics [9], nonlinear optics [29,38] , especially in the propagation
of nonlinear optical pulses in optical fibers [5,27,28], and plasma physics [26].

One of the most puzzling phenomenon occurring out at sea in deep wa-
ters of the oceans is the generation of “freak waves” (also referred to as
rogue or giant waves), which can arise from a relatively calm sea. It is an
exciting problem of modern oceanography with a yet unclear explanation.
There are different mechanisms leading to the formation of such events. In
a linear theory the constructing interference between two or more waves of
different lengths with equal phases (linear superposition of Fourier modes)
can lead to the formation of such waves. Other mechanisms could be: wave-
current interaction, refraction around shoals, diffraction around islands. Re-
cently, an increasingly popular opinion is that the nonlinear effect of water
waves propagating in deep waters is a basic ingredient to produce these gi-
ant waves [40, 41, 43, 48] (background informations with a short history of
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the phenomenon can be consulted even in free on-line encyclopaedia [1]).
The NLS equation is the first candidate to explain their formation and the
Benjamin-Feir instability [8] and the nonlinear focusing are believed to play
a significant role in the process. A higher order equation was obtained by
Dysthe [15]. It couples the mean flow with the slowly modulated amplitude
of the surface elevation

i
∂B

∂t
+ L̂B =

1

2
|B|2 − 3i

2
|B|2∂B

∂x
− i

4
B2∂B

∗

∂x
+
∂φ̄

∂x
B

∂φ̄

∂z
=

1

2

∂

∂x
|B|2, z = 0

∇2φ̄ = 0, z < 0

Here B is the slowly modulated amplitude of the surface elevation, φ̄ is the
slowly varying mean velocity, L̂ is the spatial linear differential operator, and
convenient dimensionless quantities are used. Numerical simulation based
on Dysthe’s system are in better agreement with the experimental data.

Another possible mechanism for the formation of freak waves could be
the interaction of two-wave systems in deep water with two different direc-
tions of propagation [42]. Such wave systems, characterized by two different
spectral peaks, also known as crossing sea states, have become of particular
interest as they occur when a wind sea (a wave system that is produced by
the local wind) and a swell ( a system of waves generated elsewhere, that
have propagated far from the area where they were generated and are not
affected by the local wind) coexist. Using the hypothesis that both sea sys-
tems are narrow banded, a system of coupled NLS equations is found [25,42]

i
∂A

∂t
+ α

∂2A

∂x2
−
(
ξ|A|2 + 2ζ|B|2

)
A = 0

i
∂B

∂t
+ α

∂2B

∂x2
−
(
ξ|B|2 + 2ζ|A|2

)
B = 0

For ξ = 2ζ the system is completely integrable [32]. The modulational
instability of this system was discussed in [42] from a deterministic point of
view and in [46] from a statistical one with the general result of an increase
of the instability growth rate and an enlargement of the instability region.
This coupled NLS system is relevant also for studying the propagation of
two waves with different polarizations in a nonlinear optical medium [33].

Another problem of physics that contributed to the large popularity of
NLS equation was related to the soliton propagation in nonlinear optical
fibers. It was pointed out by Hasegawa and Tappert [28] that in a single-
mode optical fiber the nonlinearity of the refractive index could be used
to compensate the pulse broadening due to dispersion. The basic equation
describing the pulse propagation is the NLS equation and it was suggested
that the special properties of its soliton solutions make them ideal bits for
long-distance communication transmissions. Seven years later Mollenauer
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and his co-workers [34] described for the first time the experimental produc-
tion of temporal optical solitons. Since then the field exploded exponentially
both from theoretical an experimental point of view (see [5, 6, 27] and ref-
erences therein). Some experimental data showing these developments are:
in 1991 a Bell Labs research team succeeded to transmit solitons over more
than 14,000 km of optical fiber using erbium optical fiber amplifiers; in 1998
a team at France Telecom demonstrated a data transmission of one Terabit
per second (1 Tbps); in 2001 the practical use of solitons became a reality
when Algety Telecom deployed submarine telecommunications equipment in
Europe carrying real traffic.

A significant moment in the history of NLS equation was the research
workshop organized in the summer of 1972 by Alan Newell [36]. It was a
seminal meeting for soliton research in the English speaking world, with
participants ranged over a wide spectrum of ages and background interest.
One of the most significant contribution arrived by mail from Soviet Union
from Zakharov and Shabat [53] who have shown that even NLS equation can
be solved by an IST method and it represents a completely integrable system.
At the end of the conference many participants left with the conviction that
the most fundamental nonlinear equations (Korteweg-de Vries, Nonlinear
Schrödinger, Sine-Gordon, Toda model) displayed solitary wave behavior
and can be solved if the initial conditions are given. The next two years
had seen many important developments: Lax operators for IST method,
discovery of Bäcklund transformation for KdV and its equivalence with the
IST method [3, 14,37,39].

These developments were not singular. At the same time (second half of
the last century) various other fields of science registered developments in
which the nonlinearity played a fundamental rôle. It is worth to mention the
advances in biophysics and chemistry – nerve impulse propagation, autocat-
alytic chemical reactions, biochemical solitons as the agents for the dynamics
of enzymes and DNA, the problem of tumor growth – see [4,7,12,35,44,45]
for details, where discrete and continuum nonlinear equations were fruitfully
used. Although not directly related to the subject of the present thesis, the
author and his collaborators also obtained some results on these directions
mostly in the last two years [10,11,22–24].

The present thesis is centred around these two equations, Korteweg-
de Vries and Nonlinear Schrödinger, and several extensions of them. The
present introductory section is followed by three main chapters. The sec-
ond chapter is devoted to the analysis of the modulational instability of a
plane wave solution propagating in a weakly nonlinear medium. Known for
a long time (Lighthill 1965, Bespalov and Talanov 1966, Benjamin and Feir
1967) it is the initial stage of the generation of solitary wave solutions of
many nonlinear wave equations. Two main approaches are possible. The
first, the deterministic approach (D.A.M.I.), is the most used and known
and it implies considering a perturbed Stokes wave solution of the nonlin-
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ear equation (plane wave solution with an amplitude dependent dispersion
relation), then solving the corresponding linearized equation for the small
perturbation. Usually the instability appears in the long wave length limit
and certain relations between the coefficients of the nonlinear equation have
to be satisfied (focusing case of the NLS equation). The second approach
is of statistical nature (S.A.M.I.) and it takes into account the statistical
properties of the medium and their influence on the instability development
(Alber 1978). The main contributions of the author refer to this statistical
approach method applied to several NLS-type equations (NLS equation with
cubic nonlinearity, derivative NLS equations, cylindrical and spherical NLS
equations). In the chapter three, following Fedele’s et al. results [16–19], the
Madelung fluid description of derivative and cubic+quintic NLS equations
is given. In this approach, a correspondence between NLS-type equations
and a generalized KdV equation is established, at least for traveling wave
solutions. Integrating the KdV-type equation, a large class of periodic and
stationary wave solutions are found.

The last chapter is dedicated to the results obtained in the study of non-
linear excitations in dusty plasmas. Here again, the KdV equation plays a
major rôle. The results refer to the dust acoustic (DA) solitons and dust
ion-acoustic (DIA) solitons. The influence of charge variation of the dust
grain on the dust acoustic solitons is determined in a local equilibrium ap-
proximation (LEA). The LEA is based on the fact that the charging time
τc of the dust grain is several orders smaller than the hydrodynamic time
τh characteristic for the dust acoustic wave, and consequently the charge
accumulated on the dust grain has enough time to accommodate itself to
the local value of the electrostatic potential. The condition τc � τh is well
satisfied in laboratory experiments. Also the effect of the distribution of the
grain radius on the dust acoustic solitons is investigated (unpublished re-
sults) for a model with two types of spherical grains. The dust ion-acoustic
solitons are studied for a dusty plasma with positive and a small amount of
lighter, negative ions. A critical concentration of the light negative ions is
determined for which the KdV equation is no longer valid and a modified
KdV equation is found to describe the phenomenon in this range.
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Chapter II: Modulational Instability

II.1. Modulational Instability in Hydrodynamics and Plasma
Physics

The phenomenon of modulational instability is one of the basic sub-
jects in the theory of nonlinear waves. It was predicted theoretically by
Benjamin and Feir (1967) [4] for waves in deep water and by Bespalov
and Talanov (1966) in their study [6] of electromagnetic waves propagat-
ing through nonlinear media with cubic nonlinearity and had proved since
then a characteristic phenomenon for many other branches of physics such
as nonlinear optics (nonlinear optical fibers, short pulse lasers, optical self-
focusing), plasma physics (nonlinear Langmuir waves), condensed matter
physics (quasi-one dimensional molecular systems, long Josephson junctions,
Bose-Einstein condensates). It is a general phenomenon that manifests itself
whenever a quasi-monochromatic wave is propagating through a dispersive
and weakly nonlinear medium as the instability of its amplitude against weak
modulations with wave numbers lower than some critical value (in the long
wavelength region), in general [1]. Long time evolution leads to the growth
of sidebands and the periodic exchange of energy between these sidebands,
due to the nonlinearity, has a tendency to reduce the dispersion/diffraction
effects. When the two phenomena, the dispersion and the nonlinearity, bal-
ance each other, coherent structures may appear as the envelope of the
original oscillation characterized by variations in time and space which are
much more slower than the carrier (original) wave.

To better understand the side-band resonance, let us briefly recall the
ideas of Eckhaus and Benjamin-Feir (see [39]). Consider a nonlinear system
which admits a small amplitude plane wave (Stoke’s wave)

Ψ(x, t) = a exp [i(kx− ωt)] (2.1)

where a is the amplitude, k the wavenumber and ω its frequency. Due
to the nonlinear terms of the evolution equation, higher harmonics of this
mode will emerge and let us consider the first harmonic in particular which
is proportional to εa2 exp [2i(kx− ωt)]. To study the stability of this har-
monic, two modal perturbations will be introduced, εa1 exp [i(k1x− ω1t)] in
the upper side band and εa2 exp [i(k2x− ω2t)] in the lower side band, with
amplitudes even smaller than the original wave, Ψ(x, t), indicated by the
small parameter ε� 1. Therefore the plane wave is written

Ψ(x, t) = aei(kx−ωt) + εa1e
i(k1x−ω1t) + εa2e

i(k2x−ω2t)

Ψ∗(x, t) = a∗e−i(kx−ωt) + εa∗1e
−i(k1x−ω1t) + εa∗2e

−i(k2x−ω2t).
(2.2)

One of the simplest nonlinear terms has the form |Ψ|2Ψ which, for the
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perturbed wave after some calculus and linearizing, writes

|Ψ|2Ψ =|a|2aei(kx−ωt) + 2ε|a|2a1e
i(k1x−ω1t) + 2ε|a|2a2e

i(k2x−ω2t)

+ εa2ei(2kx−2ωt)
(
a∗1e
−i(k1x−ω1t) + a∗2e

−i(k2x−ω2t)
)
.

(2.3)

The last two terms clearly show the interaction between the first harmonic
and the side bands. Suppose that the following situation arises

k1 + k2 = 2k, ω1 + ω2 = 2ω, (2.4)

that is the sidebands are symmetric to the carrier wave. Then the two
interaction terms become, respectively,

εa2a∗1 exp [i(k2x− ω2t)]

εa2a∗2 exp [i(k1x− ω1t)]
(2.5)

showing a mutual reinforcement of the two side bands in association with
the first harmonic or in other words, resonance. For the initial Stokes wave
this resonance is the main mechanism of instability.

Intrinsically nonlinear systems as the one considered above are very com-
mon in everyday life. For instance the amplitude modulated (AM) radio
waves are fast oscillating carrier waves with a relatively slowly varying enve-
lope which contains the actual information (the sound heard by the listener).
Also the pulse from a pulsed laser with a duration of the order of nanoseconds
is actually a train of a few cycles of the carrier wave (the electromagnetic
oscillation corresponding to the wavelength of the coherent light) contained
in the envelope (in time). In this case of coherent light sources however,
the nonlinear medium should not be resonant with the incident radiation in
order to eliminate complications due to absorption and re-emission of the
radiation.

The modulational instability (Benjamin-Feir instability) can be discussed
in two distinct ways, a deterministic approach and a statistical one, which
will be presented, in detail, in the following section.

II.2. Deterministic and Statistical Approach of Modulational
Instability for Nonlinear Schrödinger Type Equations

II.2.1. D.A.M.I. for Cubic Nonlinear Schrödinger Equation

The first method of treating the Benjamin-Feir instability is the deter-
ministic approach to the modulational instability (D.A.M.I.). It is the most
common approach that can be found in any textbook on the nonlinear wave
propagation. Initially, a linear analysis around a Stokes wave (a plane wave
with a dispersion relation dependent on its amplitude) is performed. Then
the instability (due to nonlinear mechanisms like the mutual reinforcement
of side-bands) is related to complex values of the frequency obtained from
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the linear problem and the dependence of the instability domain(s) on the
parameters of the studied problem can be carefully investigated.

As an example of the procedure described above, we’ll consider the non-
linear Schrödinger equation which describes the evolution of the amplitude
of a quasi-monochromatic wave propagating in a weakly (cubic) nonlinear
medium

i
∂Ψ

∂t
+ α

∂2Ψ

∂x2
+ β|Ψ|2Ψ = 0. (2.6)

The NLS equation is satisfied by a Stokes wave of the form

Ψ(x, t) = a exp[i(kx− ω(k; |a|)t)], ω(k; |a|) = αk2 − β|a|2. (2.7)

Let’s consider a small modulation of the Stokes solution of (2.6) as

Ψ(x, t) = a [1 + εA(x, t)] exp[i(kx− ωt)], (2.8)

where ω(k; |a|) is given by the dispersion relation in (2.7), ε << 1 is a small
parameter (in the theory of nonlinear ocean waves it is usually the steepness
of the wave ε = k|A|) and A(x, t) is the time dependent modulation. Then
the linear equation (first order of ε) satisfied by A(x, t) is

i
∂A

∂t
+ 2iαk

∂A

∂x
+ α

∂2A

∂x2
+ β|a|2(A+A∗) = 0. (2.9)

Looking for plane wave solutions of (2.9)

A(x, t) = M exp[i(Qx− Ωt)] +N∗ exp[−i(Qx− Ω∗t)], (2.10)

after straightforward calculations, one obtains the following expression for
the angular frequency Ω

Ω− 2αkQ = i|αQ|
√

2
β

α
|a|2 −Q2. (2.11)

The modulational instability is associated to complex value of Ω having
Im Ω > 0. This situation occurs if the NLS equation is in the focusing case
and the wave number Q has small values, that is

αβ > 0 (α, β have the same sign)

Q2 < 2
β

α
|a|2.

(2.12)

This result shows that the M.I. manifests itself only in the long wave length
region. Further discussions about the influence of the nonlinearity type
on the instability domain and a qualitative, graphical representation of the
condition (2.12) will be given in the next section.
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II.2.2. S.A.M.I. for Cubic Nonlinear Schrödinger Equation

The statistical approach is a less used method to analyze the phenomenon
of modulational instability. However, recently, the statistical approach was
intensely applied to investigate phenomena in different fields of physics rang-
ing from propagation of deep water waves in hydrodynamics (the theory
of surface gravity waves) [3, 7, 21, 23, 33–35] to wave propagation in non-
stationary inhomogeneous plasma (plasma physics) [40,41], the study of the
longitudinal dynamics of charged particle beams in accelerators [8, 9], the
dynamics of Bose-Einstein condensates [10] or the problem of incoherent
light propagation in nonlinear media in nonlinear optics [18, 22]. It was
even extended to the study of M.I. in discrete systems [12–14, 16] and in
coupled nonlinear Schrödinger equations (Manakov’s system) in theoretical
physics [13,15,36].

The aim of this complementary approach is to emphasize the influence
of the statistical properties of the medium on the instability [19, 26, 43]. In
a seminal paper [3], Alber set the basics of this method in an effort to pro-
vide “a further bridge between the deterministic and random schools, by ex-
amining the stability properties of a weakly nonlinear random wave train”.
It is assumed that the degree of randomness (the spectral spread around
the central carrier wavenumber, k0) is small (narrow-band process) and the
equations governing the evolution of the complex field (wave amplitude)
Ψ(x, t) remain valid when Ψ becomes a stochastic variable. Most of the
nonlinear partial differential equations are the result of applying a multiple
scale analysis on the dynamic laws governing the studied system. There-
fore the envelope function must variate over distances much larger than the
wavelength of the carrier wave. It means that these variations must be
characterized by a small parameter ε which is identified with the wave slope
ε = (k2

0ā
2
0)1/2, where ā2

0 is the mean square amplitude of a given unper-
turbed, spatially homogeneous wave field. Under these assumptions Alber
finds an evolution equation for a two-point correlation function written for
the complex amplitude of the Davey and Stewardson equation.

Let us define the two-point correlation function as

W (1, 2) = W (x1, x2) = 〈Ψ(x1)Ψ∗(x2)〉 , (2.13)

where 〈. . .〉 represents the average over the statistical ensemble charac-
terizing the medium. Introducing the “center-of-mass” coordinate X =
1
2(x1 + x2) and the relative coordinate ξ = x1 − x2, the correlation function
writes

W (1, 2) =

〈
Ψ

(
X +

ξ

2

)
Ψ∗
(
X − ξ

2

)〉
= W (ξ,X, t). (2.14)

In the case of cubic NLS equation (2.6), the evolution equation for W (1, 2)
is obtained by adopting the following procedure introduced by Wigner in
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quantum mechanics [42]. We write the equation (2.6) at the point x1 and
multiply it by Ψ∗(x2) then add it to the equation for Ψ∗(x2) (c.c. of (2.6))
multiplied by Ψ(x1). Taking the ensemble average we get

i
∂

∂t
〈Ψ(x1)Ψ∗(x2)〉+ α

(
∂2

∂x2
1

− ∂2

∂x2

)
〈Ψ(x1)Ψ∗(x2)〉

+ β [〈Ψ(x1)Ψ∗(x1)Ψ(x1)Ψ∗(x2)〉 − 〈Ψ(x2)Ψ∗(x2)Ψ∗(x2)Ψ(x1)〉] = 0. (2.15)

In order to evaluate the forth-order correlation terms in the equation above,
one has to assume that the stochastic variable Ψ(x, t) corresponds initially
to a Gaussian random process and that it maintains the same Gaussian sta-
tistical properties through-out its evolution [5]. Only for Gaussian statistics
the fourth-order cumulants decompose exactly in a sum of products of pairs
of second-order correlations. In general, such a decomposition is allowed if
one considers a Gaussian approximation, therefore in (2.15), we get

〈Ψ(x1)Ψ∗(x1)Ψ(x1)Ψ∗(x2)〉 ' 2n(x1, t)W (x1, x2, t),

〈Ψ(x2)Ψ∗(x2)Ψ∗(x2)Ψ(x1)〉 ' 2n(x2, t)W (x1, x2, t),

where n(x, t) is the ensemble average of the mean square amplitude of the
field (the pulse intensity in optics or the fluid density in hydrodynamics)

n(x, t) = 〈Ψ(x, t)Ψ∗(x, t)〉 .

In the expansions above, the terms involving ensemble averages of the form
〈Ψ(x, t)Ψ(x, t)〉 vanish because correlations must be invariant to the addi-
tion of a random phase. The kinetic equation for the two-point correlation
function writes

i
∂W (1, 2)

∂t
+ α

(
∂2

∂x2
1

− ∂2

∂x2

)
W (1, 2)

+ 2β (n(x1, t)− n(x2, t))W (1, 2) = 0. (2.16)

Further on, a Wigner-Moyal transform [31, 42] can be performed on this
kinetic equation obtaining a transport equation for the wave-envelope power
spectral density ρ(k,X, t) (the Wigner’s function) defined as the Fourier
transform of the two-point correlation function

ρ(k,X, t) =
1

2π

∫ +∞

−∞
e−ikξ

〈
Ψ(X +

ξ

2
, t)Ψ∗(X − ξ

2
, t)

〉
dξ. (2.17)

In deriving the evolution equation for ρ(k,X, t) one uses the following pro-
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perties and formulae

n(x1, t) = n(X +
ξ

2
, t) =

∞∑
j=0

ξj

2jj!

(
∂jn(X, t)

∂Xj

)
X=0

,

n(x2, t) = n(X − ξ

2
, t) =

∞∑
j=0

(−)jξj

2jj!

(
∂jn(X, t)

∂Xj

)
X=0

,

n(x1, t)− n(x2, t) = 2

∞∑
j=0

ξ2j+1

22j+1(2j + 1)!

(
∂2j+1n(X, t)

∂X2j+1

)
X=0

W (x1, x2) =

∫ +∞

−∞
eik

′ξρ(k′, X, t) dk′, ξje−ikξ = (i)j
∂j

∂kj
e−ikξ

δ(k′ − k) =
1

2π

∫ +∞

−∞
ei(k

′−k)ξ dξ.

(2.18)

Transforming the equation (2.16) one gets

∂ρ(k,X, t)

∂t
+ 2αk

∂ρ(k,X, t)

∂X

+ 4βn(X, t) sin

(
1

2

←−−
∂

∂X

−→
∂

∂k

)
ρ(k,X, t) = 0, (2.19)

where the sin operator is defined in terms of its Taylor expansion and the
arrows give the direction of differentiation. Starting from this equation, a
linear stability analysis can be done, assuming

ρ(k,X, t) = ρ0(k) + ερ1(k,X, t), n(X, t) = n0 + εn1(X, t), (2.20)

where

n0 =

∫
ρ0(k) dk, n1(X, t) =

∫
ρ1(k,X, t) dk. (2.21)

Then the first order perturbation ρ1(k,X, t) satisfies the following linear
equation

∂ρ1

∂t
+ 2αk

∂ρ1

∂X
+ 4βn1(X) sin

(
1

2

←−−
∂

∂X

−→
∂

∂k

)
ρ0(k) = 0. (2.22)

Looking for plane wave solutions of the form

ρ1(k,X, t) = g(k) exp[i(QX − Ωt)],

n1(X, t) = G exp[i(QX − Ωt)], G =

∫
g(k) dk,

(2.23)

straightforward algebraic manipulations lead to the following integral form
of the dispersion relation

1 +
β

α

1

Q

∫ +∞

−∞

ρ0

(
k + Q

2

)
− ρ0

(
k − Q

2

)
k − Ω

2αQ

dk = 0. (2.24)
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As Ω is a complex quantity, the development of the modulational instability
is associated with positive values of its imaginary part, ImΩ > 0. To study
the effects of the statistical properties of the medium, different equilibrium
distributions ρ0(k) need to be considered, then the equation (2.24) must
be solved in order to find the domain of parameter values that satisfy the
instability condition.

II.2.2.1. δ-spectrum

If the equilibrium spectral power density is a δ function of the wave
number this corresponds to a situation in which all the points of the field are
equally correlated to each other, that is they have a white noise distribution
in real space.

ρ0(k) = n0δ(k), W0(ξ) = n0 = const. (2.25)

Introducing (2.25) into (2.24) the integration can be easily done and assum-
ing Ω is a purely imaginary quantity Ω = iΩi, one finds

Ωi = αQ

√
4βn0

α
−Q2. (2.26)

Then, the instability condition is satisfied if α and β have the same sign and
Q2 < 4βαn0 (in the long wavelength region). These results are very similar to
the ones obtained in the deterministic approach. Comparing the inequalities
that give the instability domain, one may find a correspondence between
the square of the modulus of the unperturbed wave amplitude |a|2 (the
intensity of the wave) and the ensemble averaged mean square amplitude of
the statistical field at equilibrium n0

|a|2 ↔ 2n0.

II.2.2.2. Limited white spectrum

In [17], we also considered a “limited” white spectrum distribution as
the equilibrium spectral power density

ρ0(k) =


1

2Λ
n0, |k| ≤ Λ

0, |k| > Λ
. (2.27)

In the real space, the corresponding equilibrium two-point correlation func-
tion is

W0(ξ) = n0
sin(Λξ)

Λξ
.

Introducing (2.27) into (2.24) and performing the integration, the dispersion
relation writes

Ω2 = (2αQ)2

[(
Q2

4
+ Λ2

)
−QΛ coth

(
αQΛ

βn0

)]
. (2.28)
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Assuming a purely imaginary Ω = iΩi, the instability is associated with
positive values of Ωi. Due to the odd parity of coth, this condition is met
when αβ > 0 and in the domains where

Ω2
i = [2αQλ(Q,Λ)]2 > 0,

λ2(Q,Λ) = QΛ coth

(
αQΛ

βn0

)
−
(
Q2

4
+ Λ2

)
.

It should be noted that when Λ→ 0, the instability domain is the same as
for the δ spectrum. However, a qualitative representation of the instability
domain is given in figure II.1 as a function of Q for a given set of values for
Λ ∈ {0, 0.5, 1,

√
2, 1.5}. The instability domains are the filled areas under

the curves corresponding to increasing values of Λ as their color darkens.
It is easily seen that at first the long wavelength region is unstable but
around a critical value Λ '

√
2 it becomes stable, then the instability domain

decreases rapidly as the parameter Λ increases.

Q
0

Λ
2HQ, LL

Figure II.1: The M.I. domains for equilibrium spectral power densities represented by a
larger and larger “limited” white spectra.

II.2.2.3. Lorentzian spectrum

Let us consider that, at equilibrium, the spectral distribution in the k-
space has the form of a Lorentzian distribution

ρ0(k) =
n0

π

p

p2 + k2
, (2.29)

where p is the scale parameter of the distribution (the half-width at half-
maximum). In the real space this corresponds to an exponentially decreasing
initial two-point correlation function

W0(ξ) = n0e
−p|ξ|.

Again, assuming Ω = iΩi the dispersion relation is quickly computed, lead-
ing to the following expression for the imaginary part of the angular fre-
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quency of the perturbation

Ωi = 2αQ

(√
β

α
n0 −

Q2

4
− p

)
. (2.30)

In this case the instability depends also on the correlation length p−1 of
the initial distribution. Therefore the M.I. manifests only for initial long
range correlations and as the scale parameter p increases it inhibits the
development of the instability which is similar to the well-known process of
Landau damping in plasma physics [24,38]. This analogy is enforced by the
form of (2.24) similar to the stability equation found in the study of the
Landau damping phenomenon.

II.2.2.4. Gaussian spectrum

A more realistic equilibrium spectral power density is a Gaussian distri-
bution

ρ0(k) =
n0

σ
√

2π
exp

(
− k2

2σ2

)
, (2.31)

that obviously corresponds to a Gaussian initial two-point correlation func-
tion

W0(ξ) = n0 exp

(
−σ

2ξ2

2

)
.

In this case the Gaussian decoupling of the fourth order cumulants is also
exact. Using (2.31) in (2.24), the stability equation writes

1 =
β

αQ

n0√
2πσ

∫ +∞

−∞
e−η

2

(
1

z − η
− 1

−z∗ − η

)
dη,

η =
k√
2σ
, z =

1

2
√

2σ

(
Q+ i

Ωi

αQ

) (2.32)

and we’ve assumed that Ω = iΩi is purely imaginary. Using the integral
representation of the complex error (Faddeeva) function [2]

w(z) =
i

π

∫ +∞

−∞
e−η

2 dη

z − η
,

the equation (2.32) becomes

1 =
βn0

√
2π

ασQ
Im[w(z)]. (2.33)

When the initial correlation radius is increased, in the asymptotic region
σ → 0 (z →∞) corresponding to a δ spectrum for the equilibrium spectral
power density ρ0(k), the function w(z) may be approximated [2] by

w(z) =
i√
π

1

z

∞∑
n=1

(2n− 1)!!

(2z2)n
.
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Then in the leading order one gets

Imw(z) =
1√
π

x

x2 + y2
,

where

z = x+ iy, x =
1

2
√

2

Q

σ
, y =

1

2
√

2

Ωi

ασQ
. (2.34)

Using this in (2.33), one immediately recovers the result (2.26) for the δ
spectrum.

In order to determine the domain of instability, one has to solve the
transcendent dispersion equation (2.33) for each given Q imposing that the
instability condition Ωi > 0 is satisfied. One should note that, using the
previous notations and introducing the full width half maximum (FWHM)
parameter (for a Gaussian distribution FWHM = 2

√
2 ln 2σ), the equation

(2.33) writes
α

β

1√
2 ln 2

FWHM

ρ0(0)
x = Im[w(x+ iy)]. (2.35)

In figure II.2 one has the qualitative representation of modulational insta-
bility domain in the plane (Q,Ωi). It should be noted that the instability
is possible in the long wavelength region where the frontier of the domain
has an almost linear dependence of the wavenumber Q. Besides the M.I. is
limited to a specific interval on the Q-axis the width of which depends on
the other parameters of the problem n0, σ, α, β.

Q
@arb.unitsD

Wi>0
@arb.unitsD

Figure II.2: The M.I. domain for a Gaussian two-point correlation function at equilibrium
(the axes are in arbitrary units: xy = 1

8ασ2 Ωi on the ordinate, x = 1

2σ
√

2
Q on the abscissa).

II.3. Deterministic and Statistical Approach of Modulational
Instability for Derivative Nonlinear Schrödinger Type
Equations

In order to determine the effect of the type of nonlinearity on the modula-
tional instability phenomenon, we’ll investigate, in the following, the deriva-
tive nonlinear Schrödinger equation both from a deterministic and statistical
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point of view. It is another completely integrable equation that appears in
various fields of physics like nonlinear optics or plasma physics (for detailed
references see §III.3). Recently, the modulational instability phenomenon
was analyzed in astrophysics [37] and plasma physics [32] in connection
with the dynamics of magnetic field-aligned dust Alfvén waves respectively
parallel propagating Alfvén wave turbulence which are both described, in
appropriate approximations, by the type-1 derivative nonlinear Schrödinger
equation.

II.3.1. D.A.M.I. for Derivative NLS Equations

The first equations in the derivative NLS class are the so-called dNLS-1
and dNLS-2, having the form

i
∂Ψ

∂t
+ α

∂2Ψ

∂x2
+ iγ1

∂
(
|Ψ|2Ψ

)
∂x

= 0, (2.36)

respectively

i
∂Ψ

∂t
+ α

∂2Ψ

∂x2
+ iγ2|Ψ|2

∂Ψ

∂x
= 0. (2.37)

They can be obtained from a general NLS equation (gNLS), that includes
the cubic nonlinearity discussed in the previous section,

i
∂Ψ

∂t
+ α

∂2Ψ

∂x2
+ β|Ψ|2Ψ + iγ1

∂|Ψ|2

∂x
Ψ + iγ2|Ψ|2

∂Ψ

∂x
= 0, (2.38)

by taking β = 0 and γ1 = γ2 or γ1 = 0 respectively. For a Stokes wave
(2.8), the dispersion relation has the same form for each of the derivative
equations:

ω(k) = αk2 + γjk|a|2, j = 1, 2,

while for the general NLS equation (2.38) it writes

ω(k) = αk2 + γ2|a|2k − β|a|2.

Considering the perturbed Stokes wave (2.8) and introducing this solution
into (2.36), (2.37), (2.38), in the linear approximation (order ε) one obtains
the following evolution equations for the small perturbation A(x, t),

dNLS-1: i
∂A

∂t
+ i(2αk + γ1|a|2)

∂A

∂x
+ α

∂2A

∂x2
+ (2.39)

+ iγ1|a|2
(
∂A

∂x
+
∂A∗

∂x

)
− γ1k|a|2 (A+A∗) = 0,

dNLS-2: i
∂A

∂t
+ i(2αk + γ2|a|2)

∂A

∂x
+ α

∂2A

∂x2
− γ2k|a|2 (A+A∗) = 0,

(2.40)

gNLS: i
∂A

∂t
+ i(2αk + γ2|a|2)

∂A

∂x
+ α

∂2A

∂x2
+ (2.41)

+ iγ1|a|2
(
∂A

∂x
+
∂A∗

∂x

)
+ |a|2(β − γ2k) (A+A∗) = 0,
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respectively. Looking for plane wave solutions (2.10), the compatibility con-
dition of the homogeneous system for M and N leads to the following ex-
pression for the complex angular frequency Ω in the general case (2.41)

Ω−Q
[
2αk + (γ1 + γ2)|a|2

]
= iQ

√[
2α(β − γ2k)− γ2

1 |a|2
]
|a|2 − α2Q2.(2.42)

Again, by taking β = 0 and considering γ1 = γ2 and γ1 = 0 one obtains the
expressions corresponding to the dNLS-1 and dNLS-2 respectively:

ΩdNLS−1 − 2Q(αk + γ1|a|2) = iQ
√
|a|2|γ1|(2|α|k − |γ1||a|2)− α2Q2,

(2.43)

ΩdNLS−2 −Q(2αk + γ2|a|2) = iQ
√

2|αγ2|k|a|2 − α2Q2. (2.44)

The instability develops when Im Ω > 0. This condition is satisfied for the
dNLS-2 equation (2.44) when the coefficients α and γ2 have different signs
and

Q2 < 2
∣∣∣γ2

α

∣∣∣ |a|2k.
A qualitative view of the instability domain is given in figure II.3 (c), show-
ing that in the long wavelength region the instability no longer manifests
as opposed to the case of the cubic NLSE – figure II.3 (a) . There is also
less restriction on the instability domain since it grows linearly with k. For
the dNLS-1 type equations the instability domain is also linearly dependent
on k but the long wavelength region is strictly stable up to a specific value
k0 = 1

2

∣∣γ1

α

∣∣ |a|2 when the coefficients α, γ1 have opposite signs – figure II.3
(b). For k ∈ (k0,+∞) the modulational instability domain is given by

Q2 < 2
∣∣∣γ1

α

∣∣∣ |a|2k − (γ1|a|2

α

)2

.

When considering the general NLS equation1, the interplay of the two
types of nonlinearities (cubic and derivative) yields two different situations
for the instability to develop. Let us first take notice that by denoting
β1 = 2αβ − γ2

1 |a|2, ImΩ from (2.42) writes

ImΩ = Q
√

(β1 − 2αγ2k)|a|2 − α2Q2. (2.45)

Analyzing the sign of the quantity under the square root one finds, qual-
itatively, only two distinct situations, regardless of the sign of β1 and γ1,
corresponding to the cases when α, β have the same sign and γ2 has the
same or the opposite sign to α. The only difference is on the limits imposed
to the coefficient γ1, namely

β1 < 0⇒ |γ1| >
√
αβ

|a|

β1 > 0⇒ |γ1| <
√
αβ

|a|
.

1Here one should keep in mind that the coefficients γ1 and γ2 are not necessarily related
to the ones in the purely derivative NLS equations and γ1 6= γ2.
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As γ1 is by definition a real quantity, the relations above imposed that
αβ > 0 (they must have the same sign). In the following we’ll consider that
β1 is positive. Then, in the first case (αβ(−γ2) > 0) the instability is highly
favored in the long wavelength region and its domain grows linearly with k
– figure II.3(d). For the second case (αβγ2 > 0), the M.I. is restricted to an
interval (0, k0) around the long wavelength region – figure II.3 (e), where

k0 =
1

2

∣∣∣∣ β1

αγ2

∣∣∣∣ .
These results were published by the author in [12]. Further more, if

one takes γ1 = 0 the results published in [11] are easily reproduced for the
deterministic approach of the modified NLS equation studied therein, with
similar instability domains as (2.38) (figure II.3 d,e).

II.3.2. S.A.M.I. for Derivative NLS Equations

The statistical approach to modulational instability in the family of
derivative nonlinear Schrödinger equations is quite similar to the proce-
dure described for the cubic NLS equation. With respect to the cubic NLS
case, the derivative nonlinear terms in (2.36), (2.37), (2.38) introduce new
fourth order cumulants in the kinetic equation for the two-point correlation
function W (x1, x2), obtained through Wigner’s procedure. For the equation
(2.38), the Gaussian decoupling of these terms leads to〈

∂|Ψ(x1)|2

∂x1
Ψ(x1)Ψ∗(x2)

〉
'
[
q(1) + n(1)

∂

∂x1
+ 2q∗(1)

]
W (1, 2)〈

∂|Ψ(x2)|2

∂x2
Ψ∗(x2)Ψ(x1)

〉
'
[
q∗(2) + n(2)

∂

∂x2
+ 2q(2)

]
W (1, 2),〈

Ψ(x1)Ψ∗(x1)
∂Ψ(x1)

∂x1
Ψ∗(x2)

〉
'
[
q(1) + n(1)

∂

∂x1

]
W (1, 2)〈

Ψ(x2)Ψ∗(x2)
∂Ψ∗(x2)

∂x2
Ψ(x1)

〉
'
[
q∗(2) + n(2)

∂

∂x2

]
W (1, 2),

(2.46)

for the coefficient γ1 and γ2 respectively. Here n(1) = n(x1, t) and n(2) =
n(x2, t) are the quantities defined in (2.18), while q(j) = q(xj , t), q

∗(j) =
q∗(xj , t) (j = 1, 2) denote

q(x, t) =

〈
∂Ψ(x, t)

∂x
Ψ∗(x, t)

〉
q∗(x, t) =

〈
Ψ(x, t)

∂Ψ∗(x, t)

∂x

〉
.

(2.47)

The quantity q(x, t) is related to n(x, t) by

∂n(x, t)

∂x
= q(x, t) + q∗(x, t). (2.48)
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HaL NLS equation
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Figure II.3: A qualitative view of the modulational instability domains for (a) NLSE, (b,c)
dNLSE-1 and dNLSE-2 and (d,e) gNLSE.

A second relation for q(x, t) and its complex conjugate may be obtained
from the conservation law of n(x, t), namely

∂n(x, t)

∂t
+

∂

∂x

{(
γ1 +

γ2

2

) 〈
|Ψ|4

〉
− iα [q(x, t)− q∗(x, t)]

}
= 0, (2.49)

which has the form of a fluid continuity equation. Here, a further the Gaus-
sian decoupling of the fourth order cumulant yields

〈
|Ψ|4

〉
' 2 (n(x, t))2.

Thus the equations (2.48) and (2.49) allow us to express the statistical quan-
tity q(x, t) and its complex conjugate in terms of n(x, t) for every point of
the field.
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Then, the field evolution equation (2.38) leads to the following kinetic
equation for the two-point correlation function

i
∂W (1, 2)

∂t
+ α

(
∂2

∂x2
1

− ∂2

∂x2
2

)
W (1, 2)

+ 2β [n(1)− n(2)]W (1, 2) + iγ1

[
∂n(1)

∂x1
+
∂n(2)

∂x2

]
W (1, 2)

+ i(γ1 + γ2)

[
n(1)

∂

∂x1
+ n(2)

∂

∂x2

]
W (1, 2)

+ iγ1 [q∗(1) + q(2)]W (1, 2) + iγ2 [q(1) + q∗(2)]W (1, 2) = 0,

(2.50)

where the dependence on time is only omitted for brevity. Applying the
Wigner-Moyal transform, which will be detailed in appendix II.3.2.3, one
gets the evolution equation for the spectral power density ρ = ρ(k,X, t)

∂ρ

∂t
+ 2αk

∂ρ

∂x
+ 4βn(X) sin

(
1

2

←−−
∂

∂X

−→
∂

∂k

)
ρ(k)

+ (3γ1 + γ2)
∂n(X)

∂X
cos

(
1

2

←−−
∂

∂X

−→
∂

∂k

)
ρ(k)

− 2(γ1 + γ2)n(X) sin

(
1

2

←−−
∂

∂X

−→
∂

∂k

)
[kρ(k)]

+ (γ1 + γ2)n(x) cos

(
1

2

←−−
∂

∂X

−→
∂

∂k

)
∂ρ(k)

∂X

+ i(γ2 − γ1) [q(X)− q∗(X)] sin

(
1

2

←−−
∂

∂X

−→
∂

∂k

)
ρ(k) = 0.

(2.51)

Again, the dependence on some of the coordinates was omitted were possible
and the sin and cos operators are defined in terms of their Taylor series with
the over head arrows indicating the terms on which the derivatives act. It
should be noted that the equation (2.51) is, however, a real equation for
the real Wigner function ρ(k,X, t), since the difference in the last term
is a purely complex quantity. The kinetic equation (2.50) and its Fourier
transform (2.51) for the field evolution equations (2.36), (2.37) are obtained
with the same coefficient transformations that were used in the introduction
of the D.A.M.I. For dNLS-1 it is easily seen that the corresponding evolution
equation for the power spectral density doesn’t include q(X, t), thus this
quantity must be defined only when a dNLS-2 type nonlinearity appears.

At equilibrium, we consider the system to be homogeneous meaning that
the two-point correlation function W0(ξ) does not depend on the center-of-
mass coordinate X nor time t and the density n0 is constant. Besides if we
assume that the system, at equilibrium, is isotropic then W0 = W0(|ξ|) and
its Fourier transform ρ0(k) is an even function of k. In these conditions, let
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us perform a first order (linear) perturbation analysis by introducing

ρ(k,X, t) = ρ0(k) + ερ1(k,X, t), n(X, t) = n0 + εn1(X, t),

n0 =

∫
ρ0(k) dk, n1(X, t) =

∫
ρ1(k,X, t) dk

(2.52)

into the kinetic equation (2.51). The statistical quantity q(X, t) exists only
for the perturbed system and it satisfies (2.48) and a linearized equation
(2.49) for the center-of-mass coordinate

∂n1(X, t)

∂t
+

∂

∂X

{
2(2γ1 + γ2)n0n1(X, t)− iα [q1(X, t)− q∗1(X, t)]

}
= 0. (2.53)

Then, the kinetic equation satisfied by the perturbative terms ρ1, n1 writes

∂ρ1(k,X, t)

∂t
+ [2αk + (γ1 + γ2)n0]

∂ρ1(k,X, t)

∂X

+ 4βn1(X, t) sin

(
1

2

←−−
∂

∂X

−→
∂

∂k

)
ρ0(k)

+ (3γ1 + γ2)
∂n1(X, t)

∂X
cos

(
1

2

←−−
∂

∂X

−→
∂

∂k

)
ρ0(k)

− 2(γ1 + γ2)n1(X, t) sin

(
1

2

←−−
∂

∂X

−→
∂

∂k

)
[kρ0(k)]

+i(γ2 − γ1)
[
q1(X, t)− q∗1(X, t)

]
sin

(
1

2

←−−
∂

∂X

−→
∂

∂k

)
ρ0(k) = 0.

(2.54)

Derivating (2.54) with respect to X and using (2.53), we get

∂2ρ1(k,X, t)

∂X∂t
+ [2αk + (γ1 + γ2)n0]

∂2ρ1(k,X, t)

∂X2

+ 4β
∂n1(X, t)

∂X
sin

(
1

2

←−−
∂

∂X

−→
∂

∂k

)
ρ0(k)

+ (3γ1 + γ2)
∂2n1(X, t)

∂X2
cos

(
1

2

←−−
∂

∂X

−→
∂

∂k

)
ρ0(k)

− 2(γ1 + γ2)
∂n1(X, t)

∂X
sin

(
1

2

←−−
∂

∂X

−→
∂

∂k

)
h(k)

+
γ2 − γ1

α

(
∂

∂t
+ 2(2γ1 + γ2)n0

∂

∂X

)
n1(X, t) sin

(
1

2

←−−
∂

∂X

−→
∂

∂k

)
ρ0(k) = 0,

(2.55)

where h(k) = kρ0(k).
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In the following we seek plane wave solutions of (2.55) of the form

ρ1(k,X, t) = g(k)ei(QX−Ωt) + cc. ,

n1(x, t) = Gei(QX−Ωt) + cc. ,

G =

∫ +∞

−∞
g(k) dk.

(2.56)

The effect of the spatial and time derivatives on this solutions is to reproduce
the plane waves with specific coefficients, ∂

∂X → iQ and ∂
∂t → −iΩ respec-

tively. The differential operators defined in terms of Taylor series transform
accordingly

sin

(
1

2

←−−
∂

∂X

−→
∂

∂k

)
= sin

(
i
Q

2

−→
∂

∂k

)
= i sinh

(
Q

2

∂

∂k

)
,

cos

(
1

2

←−−
∂

∂X

−→
∂

∂k

)
= cos

(
i
Q

2

−→
∂

∂k

)
= cosh

(
Q

2

∂

∂k

)
.

The effect of these hyperbolic differential operators defined in terms of their
Taylor expansion on an arbitrary function of k, f(k), is

2 sinh

(
Q

2

∂

∂k

)
f(k) = f

(
k +

Q

2

)
− f

(
k − Q

2

)
,

2 cosh

(
Q

2

∂

∂k

)
f(k) = f

(
k +

Q

2

)
+ f

(
k − Q

2

)
.

With these transformations, the equation (2.55) for the solutions (2.56)
writes[
ΩQ− 2αQ2k − (γ1 + γ2)n0Q

2
]
g(k)−2βQG

[
ρ0

(
k +

Q

2

)
−ρ0

(
k − Q

2

)]
− 3γ1 + γ2

2
Q2G

[
ρ0

(
k +

Q

2

)
+ ρ0

(
k − Q

2

)]
+ (γ1 + γ2)QG

[
h

(
k +

Q

2

)
− h

(
k − Q

2

)]
+
γ2 − γ1

2α

[
Ω− 2(2γ1 + γ2)n0Q

]
G

[
ρ0

(
k +

Q

2

)
− ρ0

(
k − Q

2

)]
= 0.

(2.57)

Dividing (2.57) by 2αQ2, one can denote

ω =
Ω

2αQ
− γ1 + γ2

2α
n0. (2.58)

Then, an implicit dispersion relation for ω(Q) is obtained dividing by (ω−k)
and integrating over all values of k

1+

[
γ2 − γ1

2α

(
ω − 3γ1 + γ2

2α
n0

)
− β

α

]
I+

γ1 + γ2

2α
J− 3γ1 + γ2

2α
K = 0, (2.59)
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where we denoted the integrals

I =
1

Q

∫ +∞

−∞

ρ0

(
k + Q

2

)
− ρ0

(
k − Q

2

)
ω − k

dk,

J =
1

Q

∫ +∞

−∞

h
(
k + Q

2

)
− h

(
k − Q

2

)
ω − k

dk,

K =
1

2

∫ +∞

−∞

ρ0

(
k + Q

2

)
+ ρ0

(
k − Q

2

)
ω − k

dk.

(2.60)

The dispersion relations for dNLS-1 and dNLS-2 are obtained by taking
β = 0 and γ1 = γ2, respectively γ1 = 0 in the equation (2.59). Further
more, one should notice that the dispersion relation (2.24) for the cubic
NLS is easily recovered using γ1 = γ2 = 0.

In the following we’ll consider only the δ and Lorentzian spectrum as
power spectral distributions at equilibrium and solve the equation (2.59) in
order to determine the instability conditions.

II.3.2.1. δ-spectrum

When ρ0(k) = n0δ(k) the integrals I, J, K are easily performed

I = − n0

ω2 − Q2

4

; J = 0; K =
n0ω

ω2 − Q2

4

. (2.61)

The equation (2.59) becomes a second order equation for the complex an-
gular frequency ω = ωr + iωi

ω2 − n0
γ1 + γ2

α
ω +

β

α
n0 +

(3γ1 + γ2)(γ2 − γ1)

4α2
n2

0 −
Q2

4
= 0. (2.62)

Separating the complex and real parts in the equation above one obtains

ωr =
γ1 + γ2

2α
n0,

ωi =
Ωi

2αQ
=

√
β

α
n0 −

(n0γ1

α

)2
− Q2

4
.

(2.63)

These results reproduce the ones obtained in the deterministic approach
(for the δ spectrum) at the point k = 0. It is easily seen that for both types
of derivative NLS equation, there is no instability in the long wave-length
region. A modified NLS equation, obtained from (2.38) when β 6= 0, γ2 6= 0
and γ1 = 0, will however exhibit the modulational instability phenomenon
as discussed in [11].

II.3.2.2. Lorentzian spectrum

Using a Lorentzian spectrum for the equilibrium spectral power density
(2.29), the integrals in (2.59) can be done in the complex plane where the
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integrated functions have three singularities above the abscissa and only one
below. The integrals are thus performed on a contour in the lower half-plane
using the well-known Cauchy’s residue theorem

I =
−n0

(ω + ip)2 − Q2

4

; J = i
n0p

(ω + ip)2 − Q2

4

; K =
n0(ω + ip)

(ω + ip)2 − Q2

4

. (2.64)

Using these expressions in (2.59) and denoting ω̃ = ω + ip = ω̃r + iω̃i, one
finds the following bi-quadratic equation for the coefficient of the imaginary
part ω̃i

ω̃i
4 −A2ω̃i

2 −A0 = 0, (2.65)

where

A2 =
β

α
n0 −

Q2

4
−
(n0γ1

α

)2
, A0 =

(n0γ2p

2α

)2
.

With ∆ = A2
2 + (2A0)2, the only acceptable (positive) solution is

ω̃i
2 =

1

2
(A2 +

√
∆). (2.66)

Then the instability develops for positive values of

ωi =
Ωi

2αQ
=

1√
2

√
A2 +

√
∆− p. (2.67)

This result is very similar to the one obtained for the cubic NLS equation
(also for Lorentzian equilibrium spectral power density). The modulational
instability manifests for ωi ∼ Ωi > 0 which determines the following domain
in the wave-number space

Q2

4
≤ β

α
n0 −

(n0

α

)2
[
γ2

1 −
(γ2

2

)2
]
− p2. (2.68)

It is easily seen that for a fixed scale parameter p, there is an upper limit
of the wave-number Q for which the instability no longer develops. Also, in
order to keep Q a real quantity, the coefficients α and β must have the same
sign, αβ > 0. Qualitatively, these results remain the same for the dNLS-
1 and dNLS-2 type equations [12] as well as the modified NLS equation
discussed in [11], with the corresponding redefinition of the coefficients β,
γ1 and/or γ2.

II.3.2.3. Formulae used in Wigner-Moyal transform

In this small appendix we’ll present some details of the computations
involved in performing the Wigner-Moyal transform, especially to nonlinear
equations with derivative terms. To this purpose we’ll use the formulas
(2.18) as a starting point. The decomposition in Taylor series with respect
to the relative coordinate ξ = x1 − x2 and the center-of-mass coordinate
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X = (x1 + x2)/2 in (2.18) is valid for any smooth function f(x, t). Further
more, one has

f(x1, t) + f(x2, t) = 2
∞∑
j=0

ξ2j

22j(2j)!

(
∂2jf(X, t)

∂X2j

)
. (2.69)

The procedure used in computing the Fourier transform of the various terms
encountered in the kinetic equations derived for the two-point correlation
functions is more or less the same. It involves expanding all functions
f(xi) = f(X ± ξ/2), i = 1, 2 in Taylor series around the center-of-mass
coordinate, the performing the integrations using the formulas (2.18). For
instance, denoting the Fourier transforms by F , the term corresponding to
the cubic nonlinearity for the NLS equation is computed this way

F
{

[n(x1)− n(x2)]W (x1, x2)
}

=

=
1

2π

∫
dξe−ikξ2

∞∑
j=0

ξ2j+1

22j+1(2j + 1)!

∂2j+1n(X)

∂X2j+1

∫
dk′eik

′ξρ(k′, X)

= 2i

∫
dk′

2π

∫
dξ

∞∑
j=0

(−)j

22j+1(2j + 1)!

∂2j+1n(X)

∂X2j+1

∂2j+1

∂k2j+1
ei(k

′−k)ξρ(k′, X)

= 2i

∞∑
j=0

(−)j

22j+1(2j + 1)!

∂2j+1n(X)

∂X2j+1

∂2j+1

∂k2j+1

∫
dk′δ(k′ − k)ρ(k′, X)

= 2i
∞∑
j=0

(−)j

22j+1(2j + 1)!

∂2j+1n(X)

∂X2j+1

∂2j+1

∂k2j+1
ρ(k,X)

= 2in(X, t) sin

(
1

2

←−−
∂

∂X

−→
∂

∂k

)
ρ(k,X, t).

A similar method of integration is used for terms resulting from derivative
nonlinearities

F
{

[q(x1) + q∗(x2)]W (x1, x2)
}

=

F
{
W (1, 2)

∞∑
j=0

ξ2j

22j(2j)!

∂2j

∂X2j
[q(X) + q∗(X)] +

+
ξ2j+1

22j+1(2j + 1)!

∂2j+1

∂X2j+1
[q(X)− q∗(X)]

}
=

=
∂n(X)

∂X
cos

(
1

2

←−−
∂

∂X

−→
∂

∂k

)
ρ(k,X) + i[q(X)− q∗(X)] sin

(
1

2

←−−
∂

∂X

−→
∂

∂k

)
ρ(k,X)
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and the complex conjugate

F
{

[q∗(x1) + q(x2)]W (x1, x2)
}

=
∂n(X)

∂X
cos

(
1

2

←−−
∂

∂X

−→
∂

∂k

)
ρ(k,X)

+ i[q∗(X)− q(X)] sin

(
1

2

←−−
∂

∂X

−→
∂

∂k

)
ρ(k,X).

For computing further terms due to derivative nonlinearities in (2.38) one
has to use

∂

∂x1
=

1

2

∂

∂X
+

∂

∂ξ
,

∂

∂x2
=

1

2

∂

∂X
− ∂

∂ξ
.

The Fourier transforms of the terms involving the densities n(x1), n(x2) and
their derivatives write

F
{[
n(x1)

∂

∂x1
+ n(x2)

∂

∂x2

]
W (x1, x2)

}
=

F
{1

2
[n(x1) + n(x2)]

∂

∂X
W (ξ,X) + [n(x1)− n(x2)]

∂

∂ξ
W (ξ,X)

}
=

n(X) cos

(
1

2

←−−
∂

∂X

−→
∂

∂k

)
∂ρ(k,X)

∂X
− 2n(X) sin

(
1

2

←−−
∂

∂X

−→
∂

∂k

)
[kρ(k,X)]

and

F
{[∂n(x1)

∂x1
+
∂n(x2)

∂x2

]
W (x1, x2)

}
= F

{ ∂

∂X

∞∑
j=0

ξ2j

22j(2j)!

∂2jn(X)

∂X2j
+

+ 2
∂

∂ξ

∞∑
j=0

ξ2j+1

22j+1(2j + 1)!

∂2j+1n(X)

∂X2j+1
W (1, 2)

}
=

= F
{

2
∂

∂X

∞∑
j=0

ξ2j

22j(2j)!

∂2jn(X)

∂X2j
W (1, 2)

}
= 2

∂n(X)

∂X
cos

(
1

2

←−−
∂

∂X

−→
∂

∂k

)
ρ(k,X),

where in the first relation ∂W (ξ,X)/∂ξ yields a factor ik in the final result.
The operators used through-out this chapter are defined by their Taylor

expansions, with the overhead arrows indicating the terms on which the
respective derivatives act. We give here an example of such expansions
acting on two arbitrary function g(k) and f(X) (the functions could depend
on other variables as well)

f(X) sin

(
1

2

←−−
∂

∂X

−→
∂

∂k

)
g(k) =

∞∑
j=0

(−)j

22j+1(2j + 1)!

∂2j+1f(X)

∂X2j+1

∂2j+1g(k)

∂k2j+1
,

f(X) cos

(
1

2

←−−
∂

∂X

−→
∂

∂k

)
g(k) =

∞∑
j=0

1

22j(2j)!

∂2jf(X)

∂X2j

∂2jg(k)

∂k2j
.
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The formulae presented above were used to derive the kinetic equations
for the power spectral densities corresponding to each type of nonlinear
Schrödinger equation discussed in the statistical approach to modulational
instability with a Gaussian approximation employed in decoupling the non-
linear fourth order cumulants.

II.4. Deterministic and Statistical Approach of Modulational
Instability for Spherical and Cylindrical NLS Equations

The one-dimensional approach to the study of the nonlinear Schrödinger
type equations can be further enriched by considering their formulation in
restricted geometries like the cylindrical and spherical ones. In these ge-
ometries the oscillations of the field propagate along the radial axis being
described by NLS equations of the form

i
∂Φ

∂t
+ α

∂2Φ

∂r2
+ β|Φ|2Φ + i

m

2t
Φ = 0, (2.70)

where m = 1 for the cylindrical equation and m = 2 for the spherical one.
These equations were found to model various processes in laboratory, plasma
and astrophysical environments, especially when dust contaminated plasmas
appear [25,44], or in fluid dynamics [20]. They are obtained from a multiple
scale analysis of the given physical problem, so the variables r and t in (2.70)
are the “slow variables” introduced by this procedure which usually relate
to the real radial and temporal coordinates ρ and τ through expression of
the form r = ε(ρ− vτ) and t = ε2τ (here ε� 1 is a small parameter and v
is an arbitrary constant).

In the following the deterministic and statistical analysis method will be
applied to the equations (2.70).

II.4.1. D.A.M.I. for Cylindrical and Spherical NLS Equations

The deterministic approach presented below, follows closely the analysis
in [44]. Instead of working with the field variable Φ one may use a simple
transformation

Φ =
1

t
m
2

Ψ (2.71)

so that the equation satisfied by the new variable Ψ writes

i
∂Ψ

∂t
+ α

∂2Ψ

∂r2
+

β

tm
|Ψ|2Ψ = 0. (2.72)

This has the form of a cubic NLS equation with the coefficient of the non-
linear term β replaced by β/tm. Therefore the results of the linear stability
analysis of a slowly modulated wave packet,

Ψ(r, t) = a [1 + εA(r, t)] exp

(
i

∫ t

t0

∆(t′) dt′ − m

2
ln t

)
, ∆(t) =

β

tm
|a|2
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(t0 6= 0 arbitrary), are similar to the case of the one-dimensional cubic NLS
equation with a time dependent coefficient of the nonlinearity. The plane
wave solutions for the perturbation have now the form

A(r, t) = M exp

[
i

(
Qr −

∫ t

t0

Ω(t′) dt′
)]

+N∗ exp

[
−i
(
Qr −

∫ t

t0

Ω∗(t′) dt′
)]

and

ImΩ(t) = Q

√
2αβ
|a|2
tm
− α2Q2. (2.73)

The instability manifests when the coefficient of the imaginary part of Ω(t)
is positive, thus when α and β have the same sign (the focusing case of the
NLS equation) and in a domain of long wavelength

Q2 < Q2
C(t) = 2

β

α

|a|2

tm
. (2.74)

Unlike the one-dimensional cubic NLS equation, the instability growth for
the cylindrical and spherical equations will cease when

t > tmax =

(
2
α

β

|a|2

Q2

)1/m

(2.75)

for a given initial wavelength of the perturbation (fixed Q). This is a special
property of the modulational instability phenomenon manifesting for the
cylindrical and spherical NLS equations which shows the influence of the
symmetry of the processes on the instability domain, i. e. the M. I. due to
an initial perturbation develops for only a limited interval of time.

One can define a total growth of the modulation denoted by exp(G),
where

G =

∫ tmax

t0

ImΩ(t′)dt′ = |α|Q2t0

∫ R1/m

1
dλ

√
R

λm
− 1 =

β|a|2

tm−1
0

fm(R). (2.76)

Here we used the notations

λ =
t

t0
, R = 2

β

α

|a|2

Q2

1

tm0
≥ 1,

and the functions fm(R), obtained through straightforward integration, write

f1(R) = arctan
√
R− 1−

√
R− 1

R
(cylindrical NLS)

f2(R) =
1

R

(
√
R ln

√
R+
√
R− 1√

R−
√
R− 1

− 2
√
R− 1

)
(spherical NLS).

(2.77)

Thus the results in [44] are reproduced. Analyzing the two functions fm(R),
one sees in figure II.4 that, as a general conclusion, the spherical waves are
more structurally stable to perturbations than the cylindrical ones.



II§4 DAMI & SAMI for Cylindrical/Spherical NLSE 34

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

R

fHRL

Cylindrical

Spherical

Figure II.4: Comparative dependence of the exponent of growth G on the parameter R
for cylindrical (up) and spherical (down) nonlinear Schrödinger equations.

II.4.2. S.A.M.I. for Cylindrical and Spherical NLS Equations

The statistical approach to modulational instability for the cylindrical
and spherical NLS equations having the form (2.72) is the same as the
procedure employed for the cubic NLS equation only with a time dependent
coefficient of the nonlinearity. Consequently, the kinetic equation for the
two-point correlation function W (x1, x2, t) writes

i
∂W (1, 2)

∂t
+α

(
∂2

∂x2
1

− ∂2

∂x2

)
W (1, 2) +

2β

tm
[n(x1)− n(x2)]W (1, 2)= 0. (2.78)

Applying the Wigner-Moyal transform, (2.78) becomes

∂ρ(k,X, t)

∂t
+2αk

∂ρ(k,X, t)

∂X
+

4β

tm
n(X, t) sin

(
1

2

←−−
∂

∂X

−→
∂

∂k

)
ρ(k,X, t)= 0. (2.79)

describing the evolution of the spectral power distribution ρ(k,X, t).
Performing a linear stability analysis of (2.79), we’ll consider the same

form (2.52) for the perturbation of the equilibrium power spectral density.
The linearized equation, satisfied by ρ1(k,X, t), is

∂ρ1

∂t
+ 2αk

∂ρ1

∂X
+

4β

tm
n1(X) sin

(
1

2

←−−
∂

∂X

−→
∂

∂k

)
ρ0(k) = 0. (2.80)

Looking for plane wave solutions of the form

ρ1(k,X, t) = g(k) e
i
[
Qx−

∫ t
t0

Ω(t′) dt′
]

+ cc. ,

n1(X, t) = G e
i
[
Qx−

∫ t
t0

Ω(t′) dt′
]

+ cc. , G =

∫ +∞

−∞
g(k) dk,

(2.81)

the same algebraic manipulations used in the statistical approach of the
cubic NLS equation lead us to the following integral dispersion relation

1 +
1

tm
β

α

1

Q

∫ +∞

−∞

ρ0(k + Q
2 )− ρ0(k − Q

2 )

k − Ω
2αQ

dk = 0. (2.82)
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The modulational instability develops only for positive coefficients of ima-
ginary part of Ω, Im Ω = Ωi > 0. To study these instability domains, we
shall consider in the following, different equilibrium power spectral densities
ρ0(k).

II.4.2.1. δ-spectrum

Using
ρ(k) = n0δ(k)

in the equation (2.82) and assuming, for simplicity, that Ω = iΩi is purely
imaginary, one finds

Ωi = |α|Q
√

4
β

α

n0

tm
−Q2. (2.83)

This is exactly the result (2.73) obtained in the deterministic approach if
one uses the correspondence |a|2 ↔ 2n0 between the deterministic squared
amplitude (wave intensity) and the mean value of the squared stochastic
field amplitude. Therefore, a total growth of the instability may be defined
as exp(G ), where G is a new notation for G in (2.76) and the functions
fm(R) are defined in (2.77) for the cylindrical and spherical equations.

II.4.2.2. Lorentzian spectrum

Considering a Lorentzian distribution for the power density at equilib-
rium (2.29), a straightforward integration in (2.82) will yield a similar result
as the one for the cubic NLS equation but with a time dependent coefficient
β

Ωi = 2|α|Q

[√
β

α

n0

tm
− Q2

4
− p

]
. (2.84)

The instability exists if αβ > 0 (have the same sign) and for Q is in the long
wave length limit, namely

Q2

4
<
n0

tm
β

α
− p2. (2.85)

For fixed Q and p, there is a cut-off time, tmax

tmax =

(
4
β

α

n0

Q2

1

1 + 4p2/Q2

)1/m

(2.86)

and the instability is also limited in time, t < tmax. The exponent of the
total growth of the instability , defined as

G =

∫ tmax

t0

Ωi(t
′) dt′,

can be easily calculated with the following result

Gm = 4|β| n0

tm−1
0

{fm(R)−∆fm(ζ)} (2.87)
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where fm(R) are defined in (2.77) and ζ = 2p/Q. As for the Lorentzian
corrections ∆fm(ζ), one obtains

∆f1(ζ) = arctan ζ − ζ

R
(2.88)

for the cylindrical case and

∆f2(ζ) =
1√
R

{
ln
(
ζ +

√
1 + ζ2

)
− ζ√

R

}
(2.89)

for the spherical one. When the scale parameter p = 0, ∆fm(ζ) = 0 and one
gets the results obtained previously for the case of δ-spectrum.

One should notice that for a given equilibrium distribution (n0, p fixed),
ζ = σ

√
R with

σ =

(
2π
β

α

1

tm−1
0

)−1/2
√

FWHM

ρ0(0)
,

where FWHM = 2p is the full width half maximum of a Lorentzian function
centered in origin. Thus, σ2 is inversely proportional to the steepness of the
equilibrium distribution. In figure II.5, the functions fm(R) are plotted with
their corresponding Lorentzian corrections for three increasingly wider equi-
librium distributions. The blue curves correspond to the cylindrical function
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Figure II.5: Comparative plots of the exponent of growth G (R) for cylindrical (blue) and
spherical (purple) nonlinear Schrödinger equations. The continuous, dashed and dotted
curves correspond to increasingly wider Lorentzian power spectral densities at equilibrium.

f1(R)−∆f1(R) and the purple curves to the spherical one, f2(R)−∆f2(R).
As the scale parameter p is increased, keeping the maximum ρ0(0) constant,
the corresponding curves are continuous, dashed and dotted, respectively.
It is easily seen that the effect of widening the equilibrium distribution is an
increased stability to perturbations for the both geometries considered, but
greater for the cylindrical NLS equation.
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II.4.2.3. Gaussian Spectrum

If one considers a Gaussian equilibrium distribution (2.31), the results
are more realistic as the decoupling of the fourth order ensemble averages is
exact. Again, for the cylindrical and spherical NLS equations the computa-
tions are similar to the ones already performed for the cubic NLS equation
but with the β coefficient substituted with β/tm. If one takes Ω = iΩi purely
imaginary, using the integral representation of the complex error function
(see [2], p. 297, formula 7.1.4), the equation (2.82) becomes

1 =
1

tm
β

α

√
2πn0

Qσ
Imw(z), (2.90)

where z is defined in (2.34). This is an implicit, integral equation that can
only be solved numerically. To this purpose we shall use the relation between
the real and imaginary part of the complex variable z and the important
quantities of the physical problem Q and Ωi

Q = 2
√

2σx, Ωi = 8σ2αxy.

Also the parameters of the Gaussian distribution (like the full width half
maximum) will be considered in order to put (2.90) in a very similar form
to the equation (2.35)

α

β

tm√
2 ln 2

FWHM

ρ0(0)
x = Im[w(x+ iy)]. (2.91)

Then, at each moment t this equation is solved numerically for positive x
values, imposing the instability condition y ∼ Ωi > 0 so that the instabil-
ity domain can be determined as the area under the curve Ωi(Q) which is
hashed in the figure II.6. The darker shades under the curves correspond to

Q@a.u.D

Wi@a.u.D

Figure II.6: Qualitative view of the modulational instability domain corresponding to
cylindrical and spherical NLS equations for a Gaussian power spectral density at equilib-
rium. The gradually darker shades of gray indicate the instability domain as it shrinks
with the passage of time.
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increasing time values so as time passes the instability domain shrinks until
the modulational instability ceases at a cut-off time which can be numeri-
cally estimated from the equation (2.91) for a given set of parameters of the
physical problem.

II.5. Conclusions

The modulational instability is a common and well-known phenomenon
in nonlinear physics. Usually a plane wave solution of a nonlinear partial
differential equation is unstable to slow modulations of its amplitude. Find-
ing the conditions for this phenomenon to take place is a basic problem of
the nonlinear physics with important applications in various physical situa-
tions. There are two different ways of studying the M.I., reflecting distinct
practical realities.

The first method consider the field variable Ψ(x, t) as a plane wave with
slowly varying amplitude

Ψ(x, t) = a [1 + εA(x, t)] exp[i(kx− ωt)]. (2.92)

Plane wave solutions

A(x, t) = M exp[i(Qx− Ωt)] + cc. ,

of the linearized equation satisfied by the perturbation A(x, t) are considered
and the instability domain is easily determined by the condition Im Ω > 0.
Usually, this domain contains the long wavelength limit (small values of the
wavenumber Q). For instance, the M.I. develops for a cubic NLS equation if
the coefficients α and β have the same sign and Q2 < 2βα |a|

2. For derivative
NLS equations the instability domain depends on the wave number k of the
carrier wave and it occurs only when k > 0. Indeed, for the generalized
derivative NLS equation

i
∂Ψ

∂t
+ α

∂2Ψ

∂x2
+ β|Ψ|2Ψ + iγ1

∂|Ψ|2

∂x
Ψ + iγ2|Ψ|2

∂Ψ

∂x
= 0, (2.93)

the linear equation satisfied by A(x, t) is

i
∂A

∂t
+ i(2αk + γ2|a|2)

∂A

∂x
+ α

∂2A

∂x2
+

+ iγ1|a|2
(
∂A

∂x
+
∂A∗

∂x

)
+ |a|2(β − γ2k) (A+A∗) = 0 (2.94)

and the modulational instability domain is determined by[
2

(
β

α
− γ2

α
k

)
−
(γ1

α

)2
|a|2
]
|a|2 −Q2 ≥ 0,
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showing a strong dependence of the M.I. phenomenon on the wave number
k of the carrier wave (details are presented in section §II.3.1). Such a deter-
ministic approach of the modulational instability (D.A.M.I.) is appropriate
for discussing the propagation of coherent pulses in nonlinear media.

The opposite approach is well-suited for the study of partially incoherent
light beams propagating in nonlinear media. In this case the discussion
makes use of the mutual coherence function [27]

Γ(~r1, ~r2, z; t1, t2) = 〈Ψ(~r1, x; t1)Ψ∗(~r2, z; t2)〉 . (2.95)

Moreover, when temporal coherence effects are of no particular interest, the
time dependence may be dropped and one can consider the spatial coherent
function

J(1, 2) = 〈Ψ(~r1, x)Ψ∗(~r2, z)〉 , (2.96)

which is the appropriate mathematical object to study the spatial properties
of the incoherent beams. Experimentally, such a beam can be obtained by
sending a laser beam through a rotating diffuser that changes the beam phase
in a random manner as noted by Mitchel et al. [29, 30]. The self-trapping
phenomenon of such partially coherent beams in nonlinear media leads to
the concept of “incoherent solitons” (see [22], ch. 13 for a historical overview
and theoretical methods). The concepts and theoretical methods used for
dealing with incoherent solitons have many in common with the statistical
approach to modulational instability (S.A.M.I.). In this approach, following
Alber (1978) [3], a kinetic equation for the two-point correlation function

W (1, 2) = W (x1, x2) = 〈Ψ(x1)Ψ∗(x2)〉 (2.97)

is written. Here 〈. . .〉 means an average over the statistical ensemble. The
field variables Ψ(x, t) are considered stochastic quantities. The studied
mathematical object is, however, the Fourier transform of W (1, 2)

ρ(k,X, t) =
1

2π

∫ +∞

−∞
e−ikξ

〈
Ψ(X +

ξ

2
, t)Ψ∗(X − ξ

2
, t)

〉
dξ, (2.98)

where X = 1
2(x1 + x2), ξ = x1 − x2. This is called the Wigner’s function,

introduced in statistical quantum mechanics in 1932. It is a real function
and thus the number of equations to be solved is reduced by a factor of
2. The procedure to obtain the kinetic equation describing the time and
space evolution of the two-point correlation function and its Fourier trans-
form (Wigner’s function) is well-known. For the cubic nonlinear Schrödinger
equation (carefully analyzed in §II.2) the equation satisfied by ρ(k,X, t)
writes

∂ρ(k,X, t)

∂t
+ 2αk

∂ρ(k,X, t)

∂X

+ 4βn(X, t) sin

(
1

2

←−−
∂

∂X

−→
∂

∂k

)
ρ(k,X, t) = 0. (2.99)
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Here n(X, t) =
〈
|Ψ(X, t)|2

〉
is the pulse intensity in optics or the fluid den-

sity in hydrodynamics and it is related to the power spectral distribution
ρ(k,X, t) by

n(X, t) =

∫ +∞

−∞
dkρ(k,X, t).

The sin operator appearing in this equation is defined in terms of its Taylor
expansion and the arrows over the differential operators indicate the direc-
tion in which these derivatives act (on the surrounding functions). One
should remark that by changing t → z, the equation (2.99) has the same
form as the one obtained using the “Wigner Transform Method” in the study
of incoherent solitons, see [22], ch. 13.

To analyze the M.I. one considers small perturbations around the equi-
librium state. Due to the homogeneity and isotropy of the equilibrium state,
one can write

ρ(k,X, t) = ρ0(k) + ερ1(k,X, t), n(X, t) = n0 + εn1(X, t),

n0 =

∫
ρ0(k) dk, n1(X, t) =

∫
ρ1(k,X, t) dk,

(2.100)

where ρ0(k) is an even function of k corresponding to a two-point correlation
function at equilibrium W (1, 2) = W (|ξ|). Looking for plane wave solutions
of the linearized equation satisfied by ρ1(k,X, t), the following implicit dis-
persion relation is found ω = Ω/2αQ

1 +
β

α

1

Q

∫ +∞

−∞

ρ0

(
k + Q

2

)
− ρ0

(
k − Q

2

)
k − Ω

2αQ

dk = 0. (2.101)

The instability is associated to positive values of the imaginary part of the
angular frequency Ω and detailed analyses for different equilibrium distri-
butions ρ0(k),

δ − spectrum ρ0(k) = n0δ(k),

limited white spectrum ρ0(k) =

{
1

2Λn0, |k| ≤ Λ
0, |k| > Λ

Lorentzian spectrum ρ0(k) =
n0

π

p

p2 + k2
,

Gaussian spectrum ρ0(k) =
n0

σ
√

2π
exp

(
− k2

2σ2

)
is done in §II.2.

For the derivative NLS equations (2.36), (2.37) and (2.38), the S.A.M.I.
is more complex as beside the mean value n(X, t) one needs to introduce
other stochastic quantities (mean values), namely

q(x, t) =

〈
∂Ψ(x, t)

∂x
Ψ∗(x, t)

〉
q∗(x, t) =

〈
Ψ(x, t)

∂Ψ∗(x, t)

∂x

〉
.

(2.102)
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They are related to n(x, t) by

q(x, t) + q∗(x, t) =
∂n(x, t)

∂x
(2.103)

and by the relation (corresponding to the generalized NLS equation (2.38))

∂n(x, t)

∂t
+

∂

∂x

{(
γ1 +

γ2

2

) 〈
|Ψ|4

〉
− iα [q(x, t)− q∗(x, t)]

}
= 0. (2.104)

This second equation is nothing else than the conservation law of n(x, t) for
the generalized NLS equation. With these notations the kinetic equation
satisfied by ρ(k,X, t) is given by

∂ρ

∂t
+ 2αk

∂ρ

∂x
+ 4βn(X) sin

(
1

2

←−−
∂

∂X

−→
∂

∂k

)
ρ(k)

+ (3γ1 + γ2)
∂n(X)

∂X
cos

(
1

2

←−−
∂

∂X

−→
∂

∂k

)
ρ(k)

− 2(γ1 + γ2)n(X) sin

(
1

2

←−−
∂

∂X

−→
∂

∂k

)
[kρ(k)]

+ (γ1 + γ2)n(x) cos

(
1

2

←−−
∂

∂X

−→
∂

∂k

)
∂ρ(k)

∂X

+ i(γ2 − γ1) [q(X)− q∗(X)] sin

(
1

2

←−−
∂

∂X

−→
∂

∂k

)
ρ(k) = 0,

(2.105)

which still contains the quantities q and q∗ defined above. The equation is
however real because the difference (q − q∗) is purely imaginary. It must
be emphasized that a S.A.M.I. for generalized NLS equations was studied
previously in [12,28] but, in both papers an incomplete decoupling of higher
order correlation functions was used. The present results, unpublished yet,
are the correct way to apply the Gaussian decoupling to higher order cumu-
lants containing derivative terms - see (2.46) - with the introduction of the
mean values q(X, t) and q∗(X, t).

In the first order of a perturbative problem, the difference (q − q∗) can
be eliminated and one get the equation (2.54) satisfied by ρ1(k,X, t). Look-
ing for plane wave solutions the implicit dispersion relation for the same
generalized NLS equation (2.38) writes

1 +

[
γ2 − γ1

2α

(
ω − 3γ1 + γ2

2α
n0

)
− β

α

]
I +

γ1 + γ2

2α
J− 3γ1 + γ2

2α
K = 0,

(2.106)
where the integrals I, J, K are defined in (2.60). They are easily calcu-
lated for an equilibrium spectral power density of type δ-spectrum as well
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as Lorentzian distribution. The instability domains are then determined re-
solving (2.106) and imposing that the imaginary part of ω be positive. For
the δ-spectrum one gets

ωi ∼

√
4
β

α
n0 −

(
2n0γ1

α

)2

−Q2

which is exactly the result of the deterministic approach at k = 0 if 2n0 ↔
|a|2.

The last paragraph is dedicated to the study of M.I. for cylindrical and
spherical NLS equations

i
∂Φ

∂t
+ α

∂2Φ

∂r2
+ β|Φ|2Φ + i

m

2t
Φ = 0, (2.107)

where m = 1 for the cylindrical equation and m = 2 for the spherical one.
With the change of variable

Φ(x, t) =
1

t
m
2

Ψ(x, t) (2.108)

the equation (2.108) becomes

i
∂Ψ

∂t
+ α

∂2Ψ

∂r2
+

β

tm
|Ψ|2Ψ = 0, (2.109)

which is a cubic NLS equation having the coefficient β of the nonlinear term
replaced by a time dependent one β/tm. Therefore all the results known for
the NLS equation can be applied to the cylindrical and spherical ones by
changing β into β/tm. The main qualitative difference from the NLS case is
the time dependence of the instability domain, namely the instability growth
will cease when

t > tmax =

(
2
α

β

|a|2

Q2

)1/m

. (2.110)

Thus, one can define a total growth of the modulational instability by expG

G =

∫ tmax

t0

ImΩ(t′)dt′ =
β|a|2

tm−1
0

fm(R), (2.111)

where R = 2βα
|a|2
Q2

1
tm0
≥ 1 and the functions fm(R) are defined in (2.77).

The original results, in this last section, refer to the S.A.M.I. applied
to the two equations and are presented in §II.4.2. As expected the results
known for the NLS case are transposed for these equation by changing β
into β/tm. For instance, the implicit dispersion relation writes

1 +
1

tm
β

α

1

Q

∫ +∞

−∞

ρ0(k + Q
2 )− ρ0(k − Q

2 )

k − Ω
2αQ

dk = 0 (2.112)
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and the time-dependent instability domains can be calculated considering
different power spectral densities (δ spectrum, Lorentzian, Gaussian). The
total growth increment of the M.I., G , can also be determined and for a
Lorentzian spectrum it writes

Gm = 4|β| n0

tm−1
0

{fm(R)−∆fm(ζ)} (2.113)

where fm(R) are defined in (2.77) and ∆fm(R) are given by (2.88) and (2.89)
for the cylindrical and the spherical equation respectively (ζ = 2p/Q).

Summarizing, the main results of this chapter are:

• A detailed analysis of the modulational instability for the class of non-
linear Schrödinger equations (cubic NLS, derivative NLS, cylindrical
and spherical NLS) was performed from a deterministic point of view.
For the most part, these results are not new but, they are presented
here for comparison with the results of the statistical approach.

• A detail analysis of the M.I. for the NLS equation from a statistical
point of view. (S.A.M.I.). Although some of these outcomes are well
known, new results are obtained using a limited white spectrum and a
Gaussian distribution for the equilibrium power spectral density ρ0(k).

• Completely original results are presented in §II.3.2 and §II.4.2 con-
cerning the S.A.M.I. for derivative and cylindrical/spherical NLS equa-
tions. In §II.3.2 a complete and correct procedure is applied to the class
of derivative NLS equations (in previous works an incomplete Gaussian
decoupling method was used). The main improvement is the intro-
duction of the mean value q(X,t)=

〈
∂Ψ
∂XΨ∗

〉
besides n(X, t) =

〈
|Ψ|2

〉
.

Thus, a complete kinetic equation for the Wigner’s function ρ(k,X, t)
may be written (2.51). In a linear perturbation analysis the stochas-
tic quantity q(X, t) and its complex conjugate can be eliminated, and
finally a compact implicit dispersion relation is found (2.54), which
is explicitly solved for a δ spectrum type and Lorentzian power spec-
tral density ρ0(k) at equilibrium. All these results are new and not
yet published. It should be noted that the equation (2.51) has many
things in common with the Wigner method applied to the study of
incoherent solitons, an aspect which will be analyzed in future works.

• In section §II.4.2 the statistical approach of M.I. for the cylindrical
and spherical NLS equations was studied. The main observation is
that the problem can be reduced to the problem of a cubic NLS equa-
tion by changing the coefficient β into β/tm. The characteristic of the
cylindrical and spherical problems is the time dependence of the in-
stability domain - the fact that the M.I. ceases after a certain interval
of time. This allows one to use the total growth of the modulation
to describe the phenomenon. Explicit expressions of the total growth
increment are calculated for a Lorentzian equilibrium spectrum.
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Chapter III: Madelung Fluid Description of Generalized
Nonlinear Schrödinger Equations

III.1. Madelung Fluid Description of Quantum Mechanics

In 1924, in his doctoral thesis, Louis de Broglie introduced his revolu-
tionary theory of electron waves. It had drawn little attention from the
scientific world but a copy of his ”Recherches sur la théorie des quanta“
reached Albert Einstein who was very enthusiastic about this new idea of
“matter waves”. In 1926, adopting Louis de Broglie’s proposal (for which
he was awarded the Nobel Prize in Physics in 1929), Erwin Schrödinger
derived his famous wave equation (Nobel Prize in Physics in 1933). The
same year, starting from Schrödinger’s equation, the German professor Er-
win Madelung proposed the first hydrodynamical model of quantum/wave
mechanics [1, 35].

In the description proposed by Madelung, the one-dimensional Schrödinger
equation

i~
∂Ψ

∂t
= − ~2

2m

∂2Ψ

∂x2
+ U(x)Ψ (3.1)

is considered and one seeks solutions of the form

Ψ(x, t) =
√
ρ(x, t) exp

(
i

~
θ(x, t)

)
. (3.2)

Introducing (3.2) into (3.1) and separating the real and imaginary part, one
obtains the following system of coupled partial differential equations

∂ρ

∂t
+

∂

∂x
(ρv) = 0 (3.3)

m

(
∂

∂t
+ v

∂

∂x

)
v =

∂

∂x

[
~2

2m

(
1
√
ρ

∂2√ρ
∂x2

)
− U

]
(3.4)

where

v(x, t) =
1

m

∂θ(x, t)

∂x
. (3.5)

The first equation (3.3) is a continuity equation for the fluid density ρ = |Ψ|2
where v(x, t) is the fluid velocity. The second equation is a Navier-Stokes-
like equation of motion for the fluid velocity in which besides the usual
force term (the gradient of the potential) we encounter another derivative
term, known in the literature as Bohm’s potential, which gives the quantum
interaction between the fluid particles. The interpretation of v(x, t) as the
velocity of the fluid can also be seen from the expression of the quantum
current density

j =
~

2im

(
Ψ∗

∂Ψ

∂x
−Ψ

∂Ψ∗

∂x

)
= ρv.
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This continuum description of the Schrödinger equation suffers though
of many flaws being, for instance, unable to give a proper solution to the
hydrogen atom problem or a complete and satisfactory explanation of the
quantum emission and absorption processes as mentioned by Madelung him-
self [35]. It turned however quite fruitful in a number of application like
stochastic mechanics [7], quantum cosmology [42, 51] or more recently in
the description of classical, quantum-like systems [36] or solving nonlinear
partial differential equations [1, 20,23].

In the followings we’ll restrict ourselves to investigate the usage of this
method for solving two classes of nonlinear partial differential equations the
nonlinear Schrödinger equations and their variants with derivative nonlin-
earity.

III.2. Madelung Fluid Description of NLS Equations with Cubic
and Quintic Nonlinearity

III.2.1. Madelung Fluid Description of Generalized NLS Equations

The (cubic) nonlinear Schrödinger equation is a member of the family of
completely integrable nonlinear evolution equations. It appears in various
fields of physics whenever a quasi-monochromatic wave is propagating in a
dispersive and weakly nonlinear medium.

Let us apply the Madelung fluid description to the general form of the
NLS equation

i
∂Ψ

∂t
+

1

2

∂2Ψ

∂x2
+ U(|Ψ|2)Ψ = 0, (3.6)

where U(|Ψ|2) is a polynomial of |Ψ|2 with real, constant coefficients. Con-
sidering the special form of the solutions for the field variable

Ψ(x, t) =
√
ρ(x, t)eiθ(x,t) (3.7)

and introducing it in (3.6) then separating the real and imaginary part, one
obtains

∂ρ

∂t
+

∂

∂x
(ρv) = 0, (3.8)

∂θ

∂t
+

1

2
v2 =

1

2

1
√
ρ

∂2√ρ
∂x2

+ U. (3.9)

Here ρ = |Ψ|2 is the fluid density while v(x, t) = ∂θ(x,t)
∂x is its velocity.

Derivating (3.9) with respect to x one obtains(
∂

∂t
+ v

∂

∂x

)
v =

1

2

∂

∂x

(
1
√
ρ

∂2√ρ
∂x2

)
+
∂U(ρ)

∂x
. (3.10)

Thus the general NLS equation has become a fully equivalent system of cou-
pled partial differential equation, the first of which is a continuity equation
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(3.8) for the fluid density ρ while the second (3.10) is an evolution equa-
tion for the fluid velocity. From this system, an evolution equation for the
fluid density can be deducted, using a series of transformations (presented
in detail in the Appendix III.4) [23], [19]

− ρ∂v
∂t

+ v
∂ρ

∂t
+ 2

[
C0(t)−

∫
∂v

∂t
dx

]
∂ρ

∂x
+

+
1

4

∂3ρ

∂x3
+

(
ρ
dU

dρ
+ 2U

)
∂ρ

∂x
= 0. (3.11)

Here C0(t) is an arbitrary function of t (integration quantity). Under suit-
able assumptions for the fluid velocity v(x, t), the evolution equation (3.11)
can be put in a form of a generalized KdV equation [23]. There are two con-
ditions that facilitate the solving of (3.11) corresponding to specific physical
situations.

1. For v = v0 = arbitrary const. one has motion with constant velocity.
From the continuity equation (3.8) it follows that ρ(x, t) = ρ(ξ), ξ =
x−v0t. It is also obvious from the equation (3.11) that the integration
constant C0 no longer depends on time. Then, (3.11) becomes

1

4

d3ρ

dξ3
+ E

dρ

dξ
+

(
ρ
dU

dρ
+ 2U

)
dρ

dξ
= 0, (3.12)

where E = 2C0 − v2
0 is an arbitrary constant. Introducing a new

function G(ρ) defined by

ρ
dU

dρ
+ 2U =

dG(ρ)

dρ
, (3.13)

one can integrate (twice) the equation (3.12) obtaining

1

4

(
dρ

dξ

)2

= −G(ρ)− Eρ2 +Aρ+B, G(ρ) = 2

∫
G(ρ)dρ. (3.14)

Here A and B are two arbitrary integration constants.

On the other hand for constant velocity the equation (3.10) becomes

1

2

∂2√ρ
∂x2

+ U(ρ)
√
ρ = λ

√
ρ (3.15)

which is a nonlinear eigenvalue equation for
√
ρ (λ constant). After

straightforward calculations, see [25], it can be written in the form(
E

2
+ λ

)
ρ+

B

2ρ
−
(

G

2ρ
+ ρU −G

)
= 0,
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which must be satisfied for any value of ρ. Therefore the following
restrictions must apply

B = 0, λ = −E
2

G

2ρ
+ρU −G = 0.

(3.16)

It is easily seen that the last condition is satisfied when U(ρ) is a power
function of ρ, U(ρ) = βρp, with β ∈ R and p ∈ R\{−1,−2} constant.
For p = −2 (the anticubic case), dG/dρ = 0 thus the equation (3.12)
becomes linear (trivial). For p = −1 one obtains G(ρ) = β ln ρ and
the last restriction (3.16) cannot be satisfied anymore as the equation
is no longer polynomial.

For the power function form of U(ρ), ρ(ξ) satisfies a stationary modi-
fied KdV-type equation

E
dρ

dξ
+ β(p+ 2)ρp

dρ

dξ
+

1

4

d3ρ

dξ3
= 0. (3.17)

The phase θ(x, t) for motion with constant velocity is immediately
computed starting from (3.9) using the definition of v(x, t) and rela-
tions derived during the previous calculus [25]

θ(x, t) = v0ξ −
1

2

(
v2

0 + E
)
t. (3.18)

2. The second simplifying situation corresponds to the motion with sta-
tionary profile when both ρ(x, t) and v(x, t) depend only on ξ = x−u0t
with u0 an arbitrary constant. The equation (3.11) transforms into the
same equation (3.12) with a different expression of E, E = 2C0 + u2

0.
In this case, no supplementary restrictions exist, therefore it will yield
a larger class of solutions. If U(ρ) is a power function of ρ, as in
the previous case, the same restrictions apply on the exponent p val-
ues. In the anticubic case the problem becomes linear as before. When
p = −1, however, the right-hand side of the differential equation (3.14)
is no longer a polynomial of ρ therefore its solution cannot be included
in the special class of periodic solutions discussed below.

Doing the integration in the ordinary differential equation (3.8), it
gives

v = u0 +
A0

ρ
, (3.19)

where A0 is an integration constant. One has to take this constant
equal to zero for single solitary wave solutions which vanish at infinity
(white solitons).
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The phase θ(x, t) = θ(ξ) will have a more complex expression (depend-
ing on ρ(ξ))

θ(ξ) = u0ξ +A0

∫ ξ

0

dξ′

ρ(ξ′)
. (3.20)

In both cases presented above, an equation similar to (3.17) must be sat-
isfied by ρ(x, t). This result constitutes the basis of recent studies, within the
framework of Madelung fluid description, of the correspondence between a
wide family of generalized nonlinear Schrödinger equations and a wide family
of generalized Korteweg-de Vries equations. A review of their results can be
found in [21] where it is shown that the surprising correspondence between
the NLSE and KdVE families (which describe very different categories of
phenomena in physics), proven for the case of power law nonlinearities in
NLSE, is maintained for derivative-type NLSE and even cylindrical NLSE.

III.2.2. Periodic and Solitary Solutions of NLSE with Cubic Nonlinearity

The first equation from the nonlinear Schrödinger hierarchy has a cubic
nonlinearity for which U(ρ) has the form U = βρ, where β = ±1 is a
constant. We assume for simplicity that the magnitude of β is included in
the definition of ρ = |Ψ|2. Also it is worth mentioning that the cubic NLS
equation is a completely integrable equation both for β = +1 (the focusing
case) and for β = −1 (the defocussing case). Then the equation (3.12)
becomes

1

4

d3ρ

dξ3
+ E

dρ

dξ
+ 3βρ

dρ

dξ
= 0, (3.21)

a stationary KdV equation which integrated twice gives

1

4

(
dρ

dξ

)2

= P3(ρ), P3(ρ) = −βρ3 − Eρ2 +Aρ+B. (3.22)

Here A and B are integration constants. Also, when integrating (3.22), one
needs to restrict to solutions with physical significance that correspond to
real, positive and finite ρ and therefore to the domains where the polynomial
P3(ρ) > 0. Let us denote by ρ1, ρ2, ρ3 the three roots of the polynomial
P3(ρ). Obviously, when any of these roots is complex, its complex conjugate
is also a root and restricted domains of finite, positive solutions can not
exist. Thus only when all the three roots are real one may get physically
acceptable solutions and let’s assume ρ1 > ρ2 > ρ3.

For β = +1, P3(ρ) satisfies the requirements if at least two of the roots
are positive ρ1 > ρ2 > 0 in the domain ρ ∈ [ρ2, ρ1]. Then the solution of
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(3.22) is written in terms of the Jacobi elliptic functions (see [9], p. 79)∫ ρ1

ρ

dt√
(ρ1 − t)(t− ρ2)(t− ρ3)

= gu = 2ξ

sn2 u =
ρ1 − ρ
ρ1 − ρ2

, ρ = ρ1 − (ρ1 − ρ2) sn2 u, u =
2

g
ξ

k2 =
ρ1 − ρ2

ρ1 − ρ3
, g =

1√
ρ1 − ρ3

.

(3.23)

In the limit case ρ3 = ρ2, k2 = 1, the solution becomes a solitary wave

ρ = ρ1 − (ρ1 − ρ2) tanh2 u, (3.24)

namely a shifted bright soliton (a bright type soliton with a nonvanishing
value at infinity). In the case of constant velocity (v = v0) the supplementary
condition B = 0 has to be imposed. This can be respected if any ρ2 or ρ3 is
zero. In the degenerate case ρ2 = ρ3 the solution (3.24) transforms into the
bright soliton solution

ρ = ρ1
1

cosh2 u
, u =

√
ρ1ξ (3.25)

It is interesting to note that the equation (3.22) can be solved also in an
apparently different way ( [9], p. 77)∫ ρ

ρ2

dt√
(ρ1 − t)(t− ρ2)(t− ρ3)

= gu = 2ξ

k2 sn2 u =
ρ− ρ2

ρ− ρ3
, ρ =

ρ2 − ρ3k
2 sn2 u

1− k2 sn2 u
,

(3.26)

with the same definitions for k2 and g. Actually the two solutions are
not independent. Indeed adding the two integrals (3.23) and (3.26), when
k2 6= 1, we get

u1 + u2 = K(k),

where K(k) is the complete elliptic integral of first kind and by u1 and u2

we denoted the values of the integral (3.23) and (3.26) respectively. Using
the addition formula

sn(u− z) =
snu cn z dn z − sn z cnudnu

1− k2 sn2 u sn2 z

with u = u1 and z = K(k) we get

sn2 u2 =
1− sn2 u1

1− k2 sn2 u1
.

This, using the expressions (3.23) for sn2 u1 and (3.26) for sn2 u2, becomes
an identity. Although of different forms, the two solutions (3.23) and (3.26)



III§2 Madelung Fluid Description of Cubic & Quintic NLSE 53

represent the same one, the second being the first translated in u-space by
K(k).

If β = −1 the previous requirements are satisfied only when all the three
roots of P3(ρ) are positive and ρ ∈ [ρ3, ρ2]. Then the solution is ( [9], p. 72)∫ ρ

ρ2

dt√
(ρ1 − t)(ρ2 − t)(t− ρ3)

= gu = 2ξ

sn2 u =
ρ− ρ3

ρ2 − ρ3
, ρ = ρ3 + (ρ2 − ρ3) sn2 u, u =

2

g
ξ

k2 =
ρ2 − ρ3

ρ1 − ρ3
, g =

2√
ρ1 − ρ3

.

(3.27)

In the limit case ρ1 = ρ2, k2 = 1 we have

ρ = ρ3 + (ρ1 − ρ3) tanh2 u (3.28)

representing a gray soliton (ρ(0) = ρ3, ρ(∞) = ρ2). For constant velocity,
the condition B = 0 implies ρ3 = 0 and (3.28) becomes the dark soliton
solution

ρ = ρ1 tanh2 u, u =
√
ρ1ξ. (3.29)

For motion with constant profile, the phase θ(x, t) = θ(ξ), given by
(3.20), writes

θ(ξ) = u0ξ + Ã

∫ u

0

dt

1− α2 sn2 t
, (3.30)

where

Ã = A0
g

2ρ1
, α2 =

ρ1 − ρ2

ρ1
for β = +1

Ã = A0
g

2ρ3
, α2 = −ρ2 − ρ3

ρ3
for β = −1.

The integral from the right-hand side of (3.30) is nothing else that the in-
complete elliptic integral of third kind ( [9], p. 223)

Π(ϕ, α2, k) =

∫ u

0

dt

1− α2 sn2 t
,

where sinϕ = snu, u = 2ξ/g and the modulus k of the elliptic integral is
given in (3.23) for β = +1 and in (3.27) for β = −1. Since α2 and k2 are
both real the incomplete elliptic integral of third kind is in the so-called
circular or hyperbolic case if the sign of α2(α2 − k2)(α2 − 1) is negative or
positive, respectively [2]. Thus for β = +1 one has

sgn α2︸︷︷︸
>0

(α2 − k2) (α2 − 1)︸ ︷︷ ︸
<0

=

{
−1→ circular case for ρ3 < 0
+1→ hyperbolic case for ρ3 > 0

.
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When β = −1 we are in the circular case as

sgn α2︸︷︷︸
<0

(α2 − k2)︸ ︷︷ ︸
<0

(α2 − 1)︸ ︷︷ ︸
<0

= −1

Therefore, a more compact expression of the phase for constant profile mo-
tion is

θ(ξ) = u0ξ + ÃΠ(ϕ, α2, k). (3.31)

Similar results were obtained using a direct method for solving the equa-
tion (3.21) – see [25] §3.1.

III.2.3. Periodic and Solitary Solutions of NLSE with Cubic+Quintic
Nonlinearity

Let us consider the non-integrable NLS equation with the cubic and
quintic nonlinearity of the form

U(ρ) = βρ+
3

2
γρ2. (3.32)

Then the equation (3.12) writes

1

4

d3ρ

dξ3
+ E

dρ

dξ
+

d

dξ

(
3

2
βρ2 + 2γρ3

)
= 0 (3.33)

which integrated twice becomes

1

4

(
dρ

dξ

)2

= P4(ρ), P4(ρ) = −γρ4 − βρ3 − Eρ2 +Aρ+B (3.34)

Here E, A, B are arbitrary, real constants. As in the previous section we
consider the cases β = ±1. In integrating (3.34) one has to choose positive
solutions ρ and those domains of ρ where P4(ρ) > 0 because only a real,
finite and positively defined fluid density has meaning in physics. These
restrictions imply that P4(ρ) should have at least two real, positive, distinct
solutions (if the polynomial has positive values only on part of the interval
determined by two of its roots, the density ρ(ξ) is positive only on restricted
intervals of ξ). The are no restrictions on the other two but when they are
complex, the one is the conjugate of the other because the polynomial may
take only real values.

Further on we shall discuss the influence of the sign of γ.

A.Case γ > 0

Let us consider that the polynomial P4(ρ) has four distinct, real roots
ρ1 > ρ2 > ρ3 > ρ4 and two of them are positive ρ1 > ρ2 > 0. The physical
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conditions are met if ρ ∈ [ρ2, ρ1]. Then the solution of (3.34) is ( [9], p. 124)∫ ρ1

ρ

dt√
(ρ1 − t)(t− ρ2)(t− ρ3)(t− ρ4)

= gu = 2
√
γξ

α2 sn2 u =
ρ1 − ρ
ρ− ρ4

, ρ =
ρ1 + ρ4α

2 sn2 u

1 + α2 sn2 u
, u =

2
√
γ

g
ξ

k2 = α2 ρ3 − ρ4

ρ1 − ρ3
, α2 =

ρ1 − ρ2

ρ2 − ρ4
> 0, g =

2√
(ρ1 − ρ3)(ρ2 − ρ4)

.

(3.35)

In the limit case ρ2 = ρ3, k2 = 1, the solution becomes

ρ =
ρ1 + ρ4α

2 tanh2 u

1 + α2 tanh2 u
(3.36)

describing a shifted bright solitary wave (ρ(0) = ρ1, ρ(∞) = ρ2).
For constant velocity, the additional condition B = 0 has to be imposed

and this can be satisfied if one of the roots ρ2 or ρ3 is equal to zero (the
case with ρ4 = 0 is discussed when all roots are positive). If either ρ2 = 0
or ρ3 = 0, the periodic solution (3.35) maintains its form but with different
parameters (g, α2, k2). In the limit case ρ2 = ρ3 = 0 one has ρ4 < 0 < ρ1.
Then |ρ4|α2 = ρ1, g = 2/

√
ρ1|ρ4| and the solution (3.36) is the bright

solitary wave

ρ =
1

1 + α2 tanh2 u

ρ1

cosh2 u
, u =

√
γρ1|ρ4|ξ. (3.37)

This solution exists regardless of the sign of β = ±1. However, for β = +1
it can be compared to the bright soliton (3.25) of the cubic NLS equation.
Let us assume that ρ1, the positive root, is the same for both polynomials
P3(ρ) and P4(ρ). Taking into account the relation between the roots and
the coefficients of a polynomial, one finds for P4(ρ) that |ρ4| = ρ1 + 1/γ.
Then the domain of the variable uc in (3.25) is boosted for uc+q in (3.35),
uc+q =

√
γ|ρ4|uc and consequently the bright solitary solution (3.37) is much

steeper than the bright soliton (3.25). In the figure III.1 the two solutions
are represented for ρ1 = 1, γ = 1/2 (|ρ4| = 3, α2 = 1/3). As the phase
is concerned, it is given in both cases by the expression (3.18), but with
different values of the constant E, namely Ec = −ρ1 for the cubic NLS
equation and Ec+q = −γρ1|ρ4| for the cubic + quintic nonlinearity. As a
general rule the phase for the solution of the cubic + quintic NLS equation
has a more rapid variation than for the cubic case.

If all the roots are positive (possible only if β = −1 when γ > 0), a
second acceptable situation exists if ρ ∈ [ρ4, ρ3] and the solution (see [9], p.
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Ξ

ΡHΞL

0

Figure III.1: Bright soliton solution for cubic NLS (blue) and cubic + quintic NLS (red).

103) is given by∫ ρ

ρ4

dt√
(ρ1 − t)(ρ2 − t)(ρ3 − t)(t− ρ4)

= gu = 2
√
γξ

α2 sn2 u =
ρ− ρ4

ρ1 − ρ
, ρ =

ρ4 + ρ1α
2 sn2 u

1 + α2 sn2 u
, u =

2
√
γ

g
ξ

k2 = α2 ρ1 − ρ2

ρ2 − ρ4
, α2 =

ρ3 − ρ4

ρ1 − ρ3
> 0, g =

2√
(ρ1 − ρ3)(ρ2 − ρ4)

.

(3.38)

The limit case k2 = 1 is obtained when ρ2 = ρ3, and the solution transforms
into

ρ =
ρ4 + ρ1α

2 tanh2 u

1 + α2 tanh2 u
, (3.39)

describing a gray solitary wave (ρ(0) = ρ4, ρ(∞) = ρ3). In the case of
constant velocity, the condition B = 0 can be realized only if ρ4 = 0. Then
the solution (3.39) becomes

ρ =
ρ1α

2 tanh2 u

1 + α2 tanh2 u
, α2 =

ρ2

ρ1 − ρ2
, u =

√
γρ2(ρ1 − ρ2)ξ, (3.40)

describing a dark solitary wave.
The case when P4(ρ) has two positive roots ρ1 > ρ2 > 0 and the other

two complex conjugated (ρ3 = b + ia, ρ4 = ρ∗3 = b − ia) represents another
acceptable situation (if b ≤ ρ2 so that ρ is real). Then the solution of (3.34)
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is ( [9], p. 133)∫ ρ

ρ2

dt√
(ρ1 − t)(t− ρ2) [(t− b)2 + a2]

= gu = 2
√
γξ

cnu =
(ρ1 − ρ)B − (ρ− ρ2)A

(ρ1 − ρ)B + (ρ− ρ2)A
⇒ ρ =

(ρ2A+ ρ1B) + (ρ2A− ρ1B) cnu

(A+B) + (A−B) cnu

k2 =
(ρ1 − ρ2)2 − (A−B)2

4AB
, g =

1√
AB

, u =
2
√
γ

g
ξ (3.41)

A2 = (ρ1 − b)2 + a2, B2 = (ρ2 − b)2 + a2.

The limit case k2 = 1 is attained when ρ1−ρ2 = A+B and ρ1 +ρ2−2b =
A − B. Then A = ρ1 − b, B = −(ρ2 − b), ρ2A + ρ1B = b(ρ1 − ρ2) and
ρ2A− ρ1B = 2ρ1ρ2 − b(ρ1 + ρ2). As lim

k2→1
cnu = sechu, the solution (3.41)

writes

ρ =
b(ρ1 − ρ2) + [2ρ1ρ2 − b(ρ1 + ρ2)] sechu

(ρ1 − ρ2) + (ρ1 + ρ2 − 2b) sechu
. (3.42)

One has ρ(0) = ρ2 and ρ(∞)b < ρ2 so that (3.42) describes a shifted bright
solitary wave. For b = 0 it becomes a bright solitary wave

ρ =
2ρ1ρ2

(ρ1 + ρ2) + (ρ1 − ρ2) coshu
. (3.43)

When periodic solutions with constant profile are sought, the phase
θ(x, t) = θ(ξ) is calculated using equation (3.20) and the expression of ρ(ξ)
from (3.35) (let us restrict only to this case ρ1 > ρ2 > 0, ρ4 < 0). The result
is given in terms of an incomplete elliptic integral of the third kind

θ(ξ) =

(
u0 +

A0

ρ4

)
ξ −A0

g

2
√
γ

ρ1 − ρ4

ρ1ρ4
Π

(
ϕ,−ρ4

ρ1
α2, k

)
, (3.44)

with sinϕ = snu and u =
2
√
γ
g ξ. In order to establish whether the incom-

plete elliptic integral of the third kind in (3.44) is in the circular or hyperbolic
case, one needs to evaluate the sign of the expression κ2(κ2 − k2)(κ2 − 1),
where κ2 = −ρ4

ρ1
α2. As 0 < κ2 < 1 is always satisfied in the current condi-

tions, the sign of the expression is given by the term

sgn (κ2 − k2) =

{
+1 for ρ4 < ρ3 < 0⇒ circular case(−)
−1 for 0 < ρ3 < ρ2 ⇒ hyperbolic case(+)

.

In the limit case k2 = 1 the expression of the phase θ(ξ) becomes

θ(ξ) =

(
u0 −

A0

|ρ4|

)
ξ +A0

g

2
√
γ

ρ1 + |ρ4|
ρ1|ρ4|

∫ u

0

dt

1− η2 tanh2 t
, (3.45)



III§2 Madelung Fluid Description of Cubic & Quintic NLSE 58

where we denoted η2 = |ρ4|
ρ1
α2 ≤ 1 (η2 = 1 → constant velocity case). The

integral is easily calculated with the change of variable x = tanh t∫ u

0

dt

1− η2 tanh2 t
=

∫ X

0

dx

1− x2

1

1− η2x2
, X = tanhu ≤ 1

=
1

1− η2

{
1

2
ln

1 +X

1−X
− η1

2
ln

1 + ηX

1− ηX

}
=

=
1

1− η2
[u− η artanh(η tanhu)] .

(3.46)

For u→ ±∞, the second term is finite, namely ± artanh η.

B. Case γ < 0

In this situation the asymptotic behavior of the polynomial P4(ρ) is
P4(−∞) = ∞, P4(∞) = ∞ and then the two conditions mentioned before
(ρ > 0, P4(ρ) > 0) can be satisfied only if P4(ρ) has at least three positive,
distinct roots ρ1 > ρ2 > ρ3 > 0 and ρ ∈ [ρ3, ρ2]. The solution ( [9], p. 116)
is ∫ ρ3

ρ

dt√
(ρ1 − t)(ρ2 − t)(t− ρ3)(t− ρ4)

= gu = 2
√
|γ|ξ

α2 sn2 u =
ρ2 − ρ
ρ1 − ρ

, ρ =
ρ2 − ρ1α

2 sn2 u

1− α2 sn2 u
, u =

2
√
|γ|
g

ξ

k2 = α2 ρ1 − ρ4

ρ2 − ρ4
, α2 =

ρ2 − ρ3

ρ1 − ρ3
, g =

2√
(ρ1 − ρ3)(ρ2 − ρ4)

.

(3.47)

The degenerate case (k2 = 1) is obtained when ρ3 = ρ4 and the solution
(3.47) becomes

ρ =
ρ2 − ρ1α

2 tanh2 u

1− α2 tanh2 u
, (3.48)

describing a shifted bright solitary wave (ρ(0) = ρ2, ρ(∞) = ρ3).
For motion with constant velocity, the condition B = 0 implies that

one of the two roots ρ3 and ρ4 is zero. Taking either ρ3 = 0 or ρ4 = 0
modifies the expressions of the parameters of the periodic solution (3.47).
An interesting fact is that, expressing the polynomial coefficients in terms
of its roots, one gets β = |γ|(ρ1 + ρ2 + ρ3) for ρ4 = 0, therefore β can be
only +1. On the other hand, for ρ3 = 0, one has β = |γ|(ρ1 + ρ2 + ρ4) and
the sign of β depends on the magnitude of ρ4 < 0 so both ±1 values are
allowed. In the limit case ρ3 = ρ4 = 0 (k2 = 1), β = |γ|(ρ1 + ρ2) = +1 and
the solitary wave (3.48) transforms into a bright soliton solution

ρ =
1

1− α2 tanh2 u

ρ2

cosh2 u
, α2 =

ρ2

ρ1
, u =

√
|γ|ρ2(ρ1 − ρ2)ξ. (3.49)

The phase θ(x, t) is given by the formula (3.18) where, in the previous limit
case (ρ3 = ρ4 = 0), E = γρ1ρ2 < 0.
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For constant profile solutions, the phase θ(ξ) is computed introducing
the expression (3.47) for ρ(ξ) into (3.20) and integrating. One gets

θ(ξ) =

(
u0 +

A0

ρ1

)
ξ +A0

g

2
√
|γ|

ρ1 − ρ2

ρ1ρ2
Π

(
ϕ,
ρ1

ρ2
α2, k

)
, (3.50)

where sinϕ = snu and u =
2
√
|γ|
g ξ. Denoting σ2 = ρ1

ρ2
α2, the incomplete

elliptic integral of third order in (3.50) will be in the circular or hyperbolic
case depending on the sign of the expression (one always has 1 > σ2 > 0 in
the present conditions)

sgn σ2︸︷︷︸
>0

(σ2 − k2) (σ2 − 1)︸ ︷︷ ︸
<0 (ρ3>0)

=

{
−1 for ρ4 < 0⇒ circular case
+1 for 0 < ρ4 < ρ3 ⇒ hyperbolic case

.

In the limit case k2 = 1 the expression (3.50) for the phase of the shifted
bright soliton solution writes

θ(ξ) =

(
u0 +

A0

ρ1

)
ξ +A0

g

2
√
|γ|

ρ1 − ρ2

ρ1ρ2

∫ u

0

dt

1− σ2 tanh2 t
. (3.51)

The integral in (3.51) is the same as the one in (3.46) leading to the same
result and asymptotic behavior with respect to the variable u.

III.3. Madelung Fluid Description of Derivative NLS Equations

The Madelung fluid description, used in the previous section, may also be
employed in the study of another class of nonlinear partial differential equa-
tions, namely the class of derivative nonlinear Schrödinger type equations.
The most general form of a derivative NLS equation (in 1+1 dimensions) is

iα
∂Ψ

∂t
+ β

∂2Ψ

∂x2
= f

(
Ψ,Ψ∗,

∂Ψ

∂x
,
∂Ψ∗

∂x

)
,

where f is an analytic function of Ψ, its spatial derivative(s) and their
complex conjugates which must contain at least a term of the form Ψ|Ψ|2
(the second derivative of f vanishes when one takes u = 0).

In the present paper we’ll consider two forms of the equations from this
class, the generalized derivative NLS equations of the first kind (denoted by
gdNLS-1)

iα
∂Ψ

∂t
+
α2

2

∂2Ψ

∂x2
+ iβ

∂

∂x

(
U(|Ψ|2)Ψ

)
= 0 (3.52)

and the generalized derivative NLS equations of the second kind (denoted
gdNLS-2)

iα
∂Ψ

∂t
+
α2

2

∂2Ψ

∂x2
+ iβU(|Ψ|2)

∂Ψ

∂x
= 0. (3.53)
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When U = |Ψ|2 they become the completely integrable cubic derivative NLS
equations (denoted by dNLS-1 and dNLS-2 respectively)

iα
∂Ψ

∂t
+
α2

2

∂2Ψ

∂x2
+ iβ

∂

∂x

(
|Ψ|2Ψ

)
= 0 (3.54)

and

iα
∂Ψ

∂t
+
α2

2

∂2Ψ

∂x2
+ iβ|Ψ|2∂Ψ

∂x
= 0. (3.55)

The equation (3.54), especially, is encountered in several problems in physics.
In plasma physics it describes the evolution of small amplitude Alfvén waves
propagating quasi-parallel to a constant magnetic field in a low-β plasma
[28, 37–40] (the parameter β of a plasma denotes the ratio between kinetic
and magnetic pressure) and also the behavior of large amplitude magneto-
hydrodynamic waves propagating in an arbitrary direction in a high β-
plasma [46,47]. Nonlinear Alfvén waves are important for particle accelera-
tion in solar corona and plasma heating in tokamaks and other laboratory
plasma [8,11–13,18,43].

In nonlinear optics, as the duration of the quasi-monochromatic light
pulses decreases to pico-seconds range, the Kerr nonlinearity must be sup-
plemented with higher order or derivative terms in order to correctly describe
their propagation through the weakly nonlinear wave guides [5,15,50]. Thus,
dNLS-1 arises as good approximation of the usual nonlinear Schrödinger
equation. Yet, as the pulse duration decreases even lower into the femto-
second domain, it was recently found [3, 4, 14, 48] that the integrable Short
Pulse Equation becomes the correct evolution equation.

The dNLS-1 equation (3.54) is a completely integrable system, solved
using the Inverse Scattering Transform method by Kaup and Newell [33]
for vanishing boundary conditions and by Kawata and Inoue [34] for non-
vanishing conditions [10]. Many other methods were used to find N-soliton
solutions of the derivative NLS equations of which we mention Hirota’s bi-
linear formalism [41], the Darboux transformation technique [27, 52] or the
Bäcklund transformations approach [49].

In the following, let us return to the Madelung fluid description of the
equations (3.52) and (3.53) that will be used to derive periodic solutions for
the gdNLS-type equations which, in the integrable case (dNLS-1), will be
compared to the known solutions [32].

According to the Madelung fluid approach, introducing

Ψ(x, t) =
√
ρ(x, t) exp

[
i

α
θ(x, t)

]
into (3.52) and (3.53) and separating the real and imaginary part, one ob-
tains the continuity equations

∂ρ

∂t
+

∂

∂x

(
ρv +

β

α
G(ρ)

)
= 0 (3.56)
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for the fluid density ρ from the imaginary part and the equation of motion
for the fluid velocity (v(x, t) = ∂θ(x,t)

∂x )(
∂

∂t
+ v

∂

∂x

)
v =

α2

2

∂

∂x

(
1
√
ρ

∂2√ρ
∂x2

)
− β

α

∂

∂x
[vU(ρ)] (3.57)

from the real part. The latter has the same form for both types of derivative
nonlinearity. In the equations (3.56), G(ρ) is defined by

dG

dρ
= U + 2ρ

dU

dρ
(3.58)

when the gdNLS-1 (3.52) is considered and by

dG

dρ
= U (3.59)

for the gdNLS-2 (3.53) equation.
For the derivative nonlinearities, the method described in §III.4 applied

to the system (3.56), (3.57) yields the following integro-differential equation

− ρ∂v
∂t

+ v
∂ρ

∂t
+ 2

[
C0(t)−

∫ (
∂v

∂t

)
dx

]
∂ρ

∂x
−

− β

α
ρU

∂v

∂x
+
β

α
v
∂ρ

∂x

(
−U ± ρdU

dρ

)
+
α2

4

∂3ρ

∂x3
= 0, (3.60)

where the sign (+) is for gdNLS-1 and (-) for gdNLS-2, respectively.
When considering the constant velocity case (v = v0) the first notable

difference from the results for the generalized nonlinear Schrödinger equation
appears. Namely, while the gNLS equations have solutions (periodic, soli-
tary – bright, dark solitons) in this case, for the gdNLS class the continuity
equation (3.56) is dispersionless

∂ρ

∂t
+

(
v0 +

β

α

dG

dρ

)
∂ρ

∂x
= 0, (3.61)

having the implicit solution

ρ(x, t) = f

[
x−

(
v0 +

β

α

dG

dρ

)
t

]
, (3.62)

where f(x) = ρ(x, t = 0) is just the initial condition. This is incompati-
ble with the nonlinear, dispersive equation (3.60), therefore the dNLS-type
equations do not posses solutions for the motion with constant velocity.

In the second simplifying case, the stationary profile current velocity, we
have both ρ(x, t) and v(x, t) depending only on ξ = x−u0t. Straight-forward
integration of the continuity equation (3.56) gives

v = u0 +
A0

ρ
− β

α

G(ρ)

ρ
, (3.63)
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where A0 is an integration constant. Considering U(ρ) a power function of
ρ as in the previous section of this chapter, U(ρ) = ρp, the expression of
G(ρ) obtained from (3.58) and (3.59) writes

G(ρ) =
2p+ 1

p+ 1
ρp+1 for gdNLS-1, (3.64)

G(ρ) =
1

p+ 1
ρp+1 for gdNLS-2, (3.65)

respectively. Denoting by G1(ρ) the function G(ρ) for gdNLS-1 given in
(3.64) and by G2(ρ) the function defined in (3.65) for gdNLS-2, it is easily
seen that one may write G1,2(ρ) = γ

p+1ρ
p+1, where γ = 2p+ 1 for gdNLS-1

and γ = 1 for gdNLS-2.

III.3.1. Solitary Solutions of dNLS Equations

Under the previous assumptions about the form of U(ρ), we are looking
for localized solutions (solitary solutions) which have to satisfy the bound-
ary conditions lim

ξ→±∞
ρ(ξ) = 0 in order to be valid for physics problems.

Therefore it is required that in (3.63) one takes A0 = 0 and p > 0. Then
the equation (3.60) transforms into an ordinary differential equation

α2

4

d3ρ

dξ3
+
(
2C0 + u2

0

) dρ

dξ
−u0

β

α
(p+2)ρp

dρ

dξ
+

(
β

α

)2 2p+ 1

p+ 1
ρ2pdρ

dξ
= 0, (3.66)

the same regardless the kind of derivative nonlinear Schrödinger equations
that was initially considered (gdNLS-1 or gdNLS-2). Integrating twice with
respect to ξ and taking into account that ρ and its first and second deriva-
tives vanish when |ξ| → ∞, one gets

α2

4

(
dρ

dξ

)2

= −ρ2

[(
β

α

)2 ρ2p

(p+ 1)2
− 2u0

β

α

ρp

p+ 1
+ (u2

0 + 2C0)

]
. (3.67)

With the change of variable z = ρ−p, the equation (3.67) transforms into

α2

4p2

(
dz

dξ

)2

= −(u2
0 + 2C0)z2 + 2u0

β

α

1

p+ 1
z −

(
β

α

)2 1

(p+ 1)2
. (3.68)

The discriminant of the second order polynomial in the right hand side of
(3.68) is

∆ = − 8C0

(p+ 1)2

(
β

α

)2

, (3.69)

thus it will have real roots when C0 < 0 and complex conjugated roots
for positive values of C0. For the case with complex roots (C0 > 0) the
polynomial is always negative because u2

0 + 2C0 > 0. The situation does
not present interest since valid solutions for physics problem correspond to
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positive domains on the z-axis (ρ > 0) containing the point at infinity where
the second order polynomial (P2(z)) is also positive.

For C0 < 0, the expression of the real roots (z1, z2, z2 > z1) is given by

z1,2 =

∣∣∣∣βα
∣∣∣∣ 1

p+ 1

u0 sgn(αβ)∓
√

2|C0|
u2

0 − 2|C0|
. (3.70)

If u2
0 − 2|C0| > 0, the second order polynomial is asymptotically negative.

Both its roots are either negative or positive as the coefficients α and β have
opposite (αβ < 0) or the same sign (αβ > 0), respectively. In the latter case,
the previous conditions are met if z ∈ [z1, z2], but it is easily seen that this
situation is not physically interesting because the domain does not contain
the point z →∞ (unless 2|C0| = u2

0).
When u2

0 − 2|C0| = −b2 < 0 (C0 < −1
2u

2
0), regardless of the sign of αβ,

the polynomial has one negative (z1) and one positive root (z2), therefore
the region of interest will be the domain (z2,∞). Denoting η = 2p

|α|b, the

equation (3.68) writes

dz

dξ
= η

√
(z − z1)(z − z2). (3.71)

Integrating (3.71), one obtains

z(ξ) = zm + zM cosh ηξ, (3.72)

where

zm =
z1 + z2

2
=

∣∣∣∣βα
∣∣∣∣ 1

p+ 1

u0 sgn(αβ)

u2
0 − 2|C0|

, zM =
z2 − z1

2
=

∣∣∣∣βα
∣∣∣∣ 1

p+ 1

√
2|C0|

u2
0 − 2|C0|

.

Then
ρ(ξ) = (zm + zM cosh ηξ)

− 1
p . (3.73)

When p = 1, the gdNLS-1 becomes the completely integrable equation
dNLS-1 and (3.66) transforms into the stationary Gardner’s equation

α2

4

d3ρ

dξ
+
(
2C0 + u2

0

) dρ

dξ
− 3u0

β

α
ρ

dρ

dξ
+

3

2

(
β

α

)2

ρ2 dρ

dξ
= 0, (3.74)

which has the solution

ρ(ξ) =
1

zm + zM cosh ηξ
. (3.75)

Here η, zm and zM are the values of the previously defined parameters
corresponding to p = 1.

The phase θ(ξ) is calculated by introducing the expression (3.73) of ρ(ξ)
into the equation (3.63) (for solitary solutions one takes A0 = 0, p > 0) and
integrating. Then the equation (3.63) writes (for p = 1)

v =
dθ

dξ
= u0 −

β

α

γ

p+ 1

1

zm + zM cosh ηξ
, (3.76)
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and the phase is

θ(x, t) = u0ξ −
β

α

γ

p+ 1

2

ηzM
√

1− a2
arctan

[√
1− a
1 + a

tanh
η

2
ξ

]
− 2C0t− θ0,

(3.77)
where a denotes

a =
zm
zM

=
u0 sgnαβ√

2|C0|
, |a| < 1

and θ0 is the initial phase (an integration constant).
These results for the dNLS-1 equation have the same form as the ones

obtained by Kaup and Newell utilizing the Inverse Scattering Transform
(IST) method – see [26]. Expressions with similar form as (3.75) were also
found by Mjølhus [40] as the one parameter soliton solutions that model the
change of form of MHD waves propagating at small angle to the ambient
magnetic field in a plasma. More recently, they were confirmed by Nakamura
and Chen [41] using the bilinear transform method, Huang and Chen [27] and
Xiao [52] using Darboux transformations or Steudel [49] utilizing Bäcklund
transformations to derive multi-soliton solutions of the derivative nonlinear
Schrödinger equation (3.54).

III.3.2. Periodic Solutions of dNLS Equations

Besides the solitary solutions, the completely integrable equations have
another interesting class of periodic solutions. The problem of finding peri-
odic solutions is well-known and implies using completely different methods
(for a review see [16]) such as the “finite-band” integration method. The
latter was adopted by Kamchatnov who used it, under assumptions that re-
duce the complexity of the results, to obtain periodic solution for a number
of important equations, dNLS-1 included [29–32]. In the following, periodic
solutions of a similar form will be obtained for dNLS-1 using the method of
Madelung fluid description.

Starting from the equation (3.60) with U(ρ) a power function of ρ as
before but considering the less restrictive case A0 6= 0, one gets the ordinary
differential equation

α2

4

d3ρ

dξ3
+
(
2C0 + u2

0

) dρ

dξ
±A0p

β

α
ρp−1 dρ

dξ
−

u0
β

α
(γ + 1∓ p)ρpdρ

dξ
+

(
β

α

)2 γ

p+ 1
ρ2p(p+ 1∓ p)dρ

dξ
= 0 (3.78)

in the general case, where the upper sign corresponds to the gdNLS-1 class
and the lower to the gdNLS-2 one. In the particular case when p = 1 that
corresponds to dNLS-1 and dNLS-2, this equation becomes the Gardner’s
equation

α2

4

d3ρ

dξ3
+

(
2C0 + u2

0 ±
β

α
A0

)
dρ

dξ
− 3u0

β

α
ρ

dρ

dξ
+

3

2

(
β

α

)2

ρ2 dρ

dξ
= 0. (3.79)
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Integrating the equation (3.79) twice with respect to ξ, one obtains(
dρ

dξ

)2

= −
(
β

α2

)2

P4(ρ), (3.80)

where P4(ρ) is a fourth order polynomial of ρ

P4(ρ) = ρ4 − 4u0
α

β
ρ3 + 4

(
α

β

)2(
2C0 + u2

0 ±
β

α
A0

)
ρ2 +Bρ+ C, (3.81)

with B and C arbitrary integration constants. The solutions that are valid
for physics problems correspond to domains where ρ(ξ) is finite and posi-
tively defined and also the right hand side of (3.80) is positive, that is the
polynomial P4(ρ) < 0. Denoting the four roots of P4(ρ) by ρ1,...,4, the pre-
vious conditions translate that the polynomial must have at least two real,
positive roots and its values must be negative in the interval determined
by these roots. In the following, when all the roots are real, one assumes
that they are ordered so that ρ1 > ρ2 > ρ3 > ρ4. Since, asymptotically,
the polynomial P4(ρ) is positive only the cases listed below will yield valid
solutions.

When all four roots are real, the conditions are met if at least two of
them are positive, ρ1 > ρ2 > 0, and ρ ∈ [ρ2, ρ1). The solution of (3.80) is
given by ∫ ρ

ρ2

dt√
(t− ρ4)(t− ρ3)(t− ρ2)(ρ1 − t)

=
|β|
α2
ξ. (3.82)

The expression of ρ(ξ) is ( [9], formula 256.00)

sn2 u =
(ρ1 − ρ3)(ρ− ρ2)

(ρ1 − ρ2)(ρ− ρ3)
, ρ(ξ) =

ρ2 − ρ3µ
2 sn2 u

1− µ2 sn2 u
,

µ2 =
ρ1 − ρ2

ρ1 − ρ3
, k2 =

(ρ1 − ρ2)(ρ3 − ρ4)

(ρ1 − ρ3)(ρ2 − ρ4)
, k2 < µ2 < 1,

g =
2√

(ρ1 − ρ3)(ρ2 − ρ4)
, u =

|β|
gα2

ξ

(3.83)

in terms of Jacobi elliptical functions. It is easily seen that ρ(ξ) is a periodic
function with the period 2K(k), where K(k) is the complete elliptic integral
of the first kind (ρ(u = 0) = ρ2, ρ(u = K(k)) = ρ1, ρ(u = 2K(k)) = ρ2).

If all four roots are real and positive, besides the previous solution, an-
other interesting situation appears for ρ ∈ [ρ4, ρ3) (ρ3 > ρ4 > 0). The
integration of (3.80) leads to∫ ρ

ρ4

dt√
(ρ1 − t)(ρ2 − t)(ρ3 − t)(t− ρ4)

=
|β|
α2
ξ. (3.84)
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Then the solution is ( [9], formula 252.00)

sn2 u =
(ρ1 − ρ3)(ρ− ρ4)

(ρ3 − ρ4)(ρ1 − ρ)
, ρ(ξ) =

ρ4 − ρ1µ
2 sn2 u

1− µ2 sn2 u
,

µ2 =
ρ4 − ρ3

ρ1 − ρ3
< 0, k2 =

(ρ1 − ρ2)(ρ3 − ρ4)

(ρ1 − ρ3)(ρ2 − ρ4)

g =
2√

(ρ1 − ρ3)(ρ2 − ρ4)
, u =

|β|
gα2

ξ,

(3.85)

also a periodic function of ξ.
When two of the real roots coincide, ρ3 = ρ4 and the other two are

positive, the equation (3.80) has the form∫ ρ

ρ2

dt

(t− ρ3)
√

(t− ρ2)(ρ1 − t)
=
|β|
α2
ξ. (3.86)

With a change of variable, the integration in the left hand side is performed
directly, see [2] (p.13, formula 3.3.36), and the solution writes

ρ(ξ) = ρ3 +
2ab

(a+ b) + (a− b) cos(ηξ)
, (3.87)

where a = ρ1 − ρ3, b = ρ2 − ρ3 and η = |β|
α2

√
(ρ1 − ρ3)(ρ2 − ρ3). The period

of the solution is 2π/η.
The last situation, that yields valid physical solutions, is with two real,

positive roots ρ1 > ρ2 > 0 and the other two complex conjugated ρ3 = c,
ρ4 = c∗, c ∈ C. Then, from (3.80), one gets∫ ρ

ρ2

dt√
P2(t)(t− ρ2)(ρ1 − t)

=
|β|
α2
ξ, (3.88)

where P2(t) is a second order polynomial of t with the complex roots c and
c∗. The solution ρ(ξ) writes ( [9], formula 259.00)

cnu =
(ρ1 − ρ)Q− (ρ− ρ2)P

(ρ1 − ρ)Q+ (ρ− ρ2)P
, ρ(ξ) =

Pρ2 +Qρ1 + (Pρ2 −Qρ1) cnu

(P +Q) + (P −Q) cnu

P 2 = (ρ1 − b1)2 + a2
1, Q

2 = (ρ2 − b1)2 + a2
1, a

2
1 = −1

4
(c− c∗)2, b1 =

c+ c∗

2

k2 =
(ρ1 − ρ2)2 − (P −Q)2

4PQ
, g =

1√
PQ

, u =
√
PQ
|β|
α2
ξ.

(3.89)

It is a periodic function with the period 4K(k) (in the variable u(ξ)).
The phase θ(x, t) = θ(ξ) is found starting from the equation (3.63) for

the dNLS family of equations

v(x, t) =
dθ

dξ
= u0 +

A0

ρ(ξ)
− γ

2

β

α
ρ(ξ), (3.90)
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where γ = 3 for dNLS-1 and γ = 1 for dNLS-2. Introducing any of the
expressions above for ρ(ξ) into (3.90) and integrating with respect to ξ,
one obtains the expression of the phase. For instance, considering ρ given
by (3.83) and using formula 340.01 from [9], the phase has the following
expression

θ(ξ) =

(
|β|
gα2

u0 +
A0

ρ3
− γ

2

β

α
ρ3

)
ξ − θ0−

− gα2

ρ3|β|
ρ2 − ρ3

ρ2

[
A0Π(u,

ρ3

ρ2
µ2, k) +

βγρ2

2α
Π(u, µ2, k)

]
. (3.91)

III.4. Appendix

In this section we retrace the steps taken in [23] (§3) for deducing equa-
tion (3.11) starting from the system of equations (3.8),(3.10), using the
notations and quantities defined in this chapter.

Multiplying the equation (3.8) by v, we get the following expression

ρ

(
∂

∂t
+ v

∂

∂x

)
v = −v∂ρ

∂t
− v2 ∂ρ

∂x
+ ρ

∂v

∂t
. (3.92)

On the other hand, multiplying the equation (3.10) by ρ and utilizing the
identity

∂

∂x

(
1

ρ1/2

∂2ρ1/2

∂x2

)
=

1

ρ

(
1

2

∂3ρ

∂x3
− 4

∂ρ1/2

∂x

∂2ρ1/2

∂x2

)
, (3.93)

one obtains

ρ

(
∂

∂t
+ v

∂

∂x

)
v = ρ

∂U

∂x
+

1

4

∂3ρ

∂x3
− 2

∂ρ1/2

∂x

∂2ρ1/2

∂x2
. (3.94)

The equation (3.94), combined with (3.92), leads to

− v∂ρ
∂t
− v2 ∂ρ

∂x
+ ρ

∂v

∂t
= ρ

∂U

∂x
+

1

4

∂3ρ

∂x3
− 2

∂ρ1/2

∂x

∂2ρ1/2

∂x2
. (3.95)

Next, integrating the equation (3.10) with respect to x and multiplying the
result by ρ1/2

(
∂ρ1/2/∂x

)
= 1/2∂ρ/∂x, one has

2
∂ρ1/2

∂x

∂2ρ1/2

∂x2
= 2

∂ρ

∂x

∫ (
∂v

∂t

)
dx+ v2 ∂ρ

∂x
+ 2U

∂ρ

∂x
− 2C0(t)

∂ρ

∂x
(3.96)

where C0(t) is an arbitrary function of t (sort of an integration “constant”).
Then combining (3.95) and (3.96) we get the evolution equation for the
density ρ(x, t) and velocity v(x, t)

− ρ
(
∂v

∂t

)
+ v

∂ρ

∂t
+ 2

[
C0(t)−

∫(
∂v

∂t

)
dx

]
∂ρ

∂x
−
(
∂U

∂x
ρ+ 2U

∂ρ

∂x

)
+

1

4

∂3ρ

∂x3
= 0.

(3.97)
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III.5. Conclusions

In this chapter the hydrodynamic approach of Madelung was applied to
generalized nonlinear Schrödinger equations containing higher order (quin-
tic) and derivative nonlinearities. Particular cases of the following general-
ized NLS equation are considered 1

i
∂Ψ

∂t
+
α2

2

∂2Ψ

∂x2
+ U(|Ψ|2)Ψ + iγ1

∂

∂x

(
|Ψ|2Ψ

)
+ iγ2|Ψ|2

∂Ψ

∂x
= 0. (3.98)

When γ1 = γ2 = 0, if U(|Ψ|2) = β|Ψ|2 the equation becomes the well-known,
completely integrable, cubic NLS equation, while if U(|Ψ|2) = β1|Ψ|2 +
β2|Ψ|4 the NLS equation with cubic and quintic nonlinear terms is obtained.
Taking U = 0, one recovers the completely integrable derivative NLS equa-
tions dNLS-1 and dNLS-2 if γ1 6= 0, γ2 = 0, respectively γ1 = 0, γ2 6= 0.
More complex derivative nonlinearities were also discussed, having the form
iγ1

∂
∂x

(
U1(|Ψ|2)Ψ

)
and iγ2U2(|Ψ|2)∂Ψ

∂x with Ui(|Ψ|2) = |Ψ|2p where p is an
arbitrary positive number. These equations are considered by several au-
thors to describe pulse propagation in weakly nonlinear media and therefore
finding periodic and solitary wave solutions are of special interest.

In the Madelung’s fluid description the field variable is written as

Ψ(x, t) =
√
ρ(x, t)e

i
α
θ(x,t). (3.99)

Separating the real and the imaginary part, the equation (3.98) is equivalent
with a coupled system of two equations, the first being a continuity equation
for the fluid density ρ = |Ψ|2 and the fluid velocity v = ∂θ(x, t)/∂x

∂ρ

∂t
+

∂

∂x

(
ρv +

γi
α
G(ρ)

)
= 0, (3.100)

where

dG

dρ
=


U1 + 2ρdU1

dρ , dNLS-1

U2, dNLS-2
0, NLS (c/c+q)

(3.101)

and the second, an equation of motion for the fluid velocity v(x, t). The
latter equation, after a series of transformations – called by us “Fedele’s
transformations” – becomes

− ρ∂v
∂t

+ v
∂ρ

∂t
+ 2

[
C0(t)−

∫
∂v

∂t
dx

]
∂ρ

∂x
+

+
α2

4

∂3ρ

∂x3
+

(
ρ
dU

dρ
+ 2U

)
∂ρ

∂x
= 0, (3.102)

1With respect to the rest of the chapter and in order to consider the different situations
in the same scheme, slightly different notations for the coefficients are used.
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when only cubic and cubic+quintic nonlinear terms are considered and

− ρ∂v
∂t

+ v
∂ρ

∂t
+ 2

[
C0(t)−

∫ (
∂v

∂t

)
dx

]
∂ρ

∂x
+

+
α2

4

∂3ρ

∂x3
− γi
α
ρUi

∂v

∂x
+
γi
α
v

(
−Ui ± ρ

dUi
dρ

)
∂ρ

∂x
= 0, (3.103)

when the nonlinearity is given only by the derivative terms. Although the
equations (3.102), (3.103) have a quite complicate form, they present the ad-
vantage of being defined in real space and allow simple results to be obtained
in at least two situations: (a) the case of constant velocity v = v0 = const.
and (b) the case of motion with stationary profile current velocity, when both
ρ(x, t) and v(x, t) are depending only on the variable ξ = x − u0t (u0 an
arbitrary constant). In these two cases the equations reduce to generalized
stationary Korteweg-de Vries equations.

As a first result, it was proved that NLS equations containing only deriva-
tive nonlinear terms have no solutions in the case of constant velocity. In-
deed, if v = v0 = const., the integration of the continuity equation gives

ρ(x, t) = f

[
x−

(
v0 +

γi
α

dGi
dρ

)
t

]
, (3.104)

where f(x) is the initial condition. This shock wave solution is incompatible
with the dispersive equation (3.103).

Starting from the equations (3.102) and (3.103) periodic solutions for
the cubic, respectively the derivative NLSE classes were derived in terms of
Jacobi elliptic functions. For instance, the equation (3.102) for the cubic +
quintic NLSE, described by U(ρ) = β1ρ+ 3

2β2ρ
2, reduces to

1

4α2

(
dρ

dξ

)2

= P4(ρ), (3.105)

where P4(ρ) is a fourth order polynomial in ρ. In order to present interest
for physics problems the solutions of this equation must be positive and
more over the condition P4(ρ) > 0 must also be satisfied in the domain they
determine. The periodic solutions are listed in terms of the roots of the
polynomial P4(ρ) (at least two of them are positive) and they are expressed
through Jacobi elliptic functions. An example of such solution is given below
for the case when the polynomial has four real roots ρ1 > ρ2 > ρ3 > ρ4 and
the first two are positive ρ1 > ρ2 > 0 while β2 > 0.

ρ =
ρ1 + ρ4α

2 sn2 u

1 + α2 sn2 u
, u =

2
√
β2

g
ξ

k2 = α2 ρ3 − ρ4

ρ1 − ρ3
, α2 =

ρ1 − ρ2

ρ2 − ρ4
> 0, g =

2√
(ρ1 − ρ3)(ρ2 − ρ4)

,
(3.106)
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where sn2(u, k) is the elliptic sn Jacobi function of variable u and modulus
k. When k2 = 1 (ρ2 = ρ3), sn→ tanh and the previous solution becomes

ρc+q =
ρ1 + ρ4α

2 tanh2 u

1 + α2 tanh2 u
(3.107)

describing a shifted bright solitary wave (ρc+q(0) = ρ1, ρc+q(∞) = ρ2). For
ρ2 = ρ3 = 0 it becomes a true bright solitary wave (ρc+q(∞) = 0). This
latter solitary solution was compared to the bright soliton ρc(ξ) of the cubic
NLS equation (3.25). ρc+q(ξ) is a much steeper function than ρc(ξ), this fact
showing that the NLS equation with cubic and quintic nonlinearity describes
in a better way the propagation of short light pulses in a nonlinear medium.

Unfortunately, explicit expressions for periodic solutions of NLS equa-
tions with higher order nonlinearities are not known though the solutions
of (3.105) (for general expression of U(ρ)) are expected to be found in the
class of hyperelliptic functions. Yet, a qualitative discussion can be done by
writing the equivalent of equation (3.105) in the form

(ρξ)
2 − Pn+2(ρ) = 0 (3.108)

and considering ξ as a “time variable” and ρ as the “position variable”.
Thus the derivative of ρ with respect to ξ plays the role of a generalized
momentum coordinate and then, in (3.108), (ρξ)

2 is a kinetic energy while
Pn+2(ρ) is a potential energy. The trajectory in phase space (ρ, ξ) of a
system described by these energies is a zero-energy surface. This “potential
representation”, introduced by Rosenau [44,45], can be used for a qualitative
analysis of many nonlinear evolution equations [17]. Here closed trajectories
in bounded regions of the phase space correspond to periodic solutions while
solitary wave solutions are the separatrix trajectories in the phase space.
Mathematical methods of classical mechanics [6] can thus be employed to
treat such systems. This is a direction to be followed in the future for further
investigating qualitatively the behavior of generalized NLS equations.

For the derivative NLS equations, a general solitary wave solution (asymp-
totically vanishing at |ξ| → ∞) was obtained for an arbitrary U(ρ) = ρp with
p positive but not necessarily and integer, namely

ρ(ξ) =
1

(zm + zM coshAξ)1/p
, (3.109)

where zm, zM are constants depending on p, γi/α, u0 and b2 = −(u2
0+2C0) >

0 (see (3.73)). For p = 1 it becomes the solution obtained by Kaup and
Newell many years ago (1978) using the inverse scattering transform method.

Periodic solutions were computed only for the case when p = 1 (dNLS-1
and dNLS-2 equations) by integrating an equation of the form (3.105). They
were expressed through Jacobi elliptic functions and presented depending on
the roots of a fourth order polynomial P4(ρ) in a similar way as for the cubic
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+ quintic NLS equation. For higher order nonlinearities p > 1, periodic
solutions exist only when p is an integer and a qualitative analysis can be
developed using the “potential representation” (3.108) mentioned before.

Another benefit of the Madelung’s fluid description approach is that it
leads to an interesting correspondence between generalized NLS and gen-
eralized KdV equations. This was discussed recently and it was proven
to be true not only for multiplicative nonlinear terms U(|Ψ|2) but also for
derivative ones and even for the cylindrical variant of NLS and KdV equa-
tions [19,21–24]. This unique correspondence allows one to determine a large
class of periodic and solitary wave solutions of a generalized NLS equation
starting from its corresponding generalized KdV equation.

The original results presented in the current chapter are published in:

1. “Periodic and Solitary Wave Solutions of Generalized Nonlinear Schrödinger
Equation Using a Madelung Fluid Description”, D. Grecu, R. Fedele,
S. de Nicola, A. T. Grecu, A. Visinescu, Rom. Journ. Phys. 55(9-
10), 980–994 (2010).

2. “Solitary Waves in a Madelung Fluid Description of Derivative NLS
Equations”, D. Grecu, A. T. Grecu, A. Visinescu, R. Fedele, S. de
Nicola, J. Nonlinear Math. Phys. 15(Suppl. 3), 209–219 (2008).
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Chapter IV: Nonlinear Oscillation Modes in Dusty Plasma

The Universe around us is a complex system where numerous physical and
chemical processes take place, their result being the fragmentation of macro-
scopic celestial bodies sometimes up to microscopical particles which we col-
lectively call dust. At the same time, the dust is the main form of solid
matter present in protoplanetary discs which form planetesimals (macro-
scopic bodies) through gravitational collapse. Therefore the dust is almost
as ubiquitous in the cosmic space as the fourth state of matter, nowadays
called plasma, which is believed to make up as much as 99% of the mat-
ter in the whole Universe. The dust grains immersed in interplanetar or
interstellar plasma become charged depending on the characteristics of the
plasma and its environment, thus creating a link between dust and plasma
dynamics [1, 43].

The existence of plasma was guessed since ancient times as being the el-
ement of fire (other than earth, water and air). However, the fire flames are
not strictly what we call nowadays plasma as they are composed of hot and
incandescent nanometric particles of unburnt carbon (soot) and only the
thermionic emission of electrons from these particulates (at around 1000◦C)
elevates the degree of ionization several orders of magnitude above the val-
ues given by Saha equations for air at this temperatures. The academic
study of plasma began around 1929 when Tonks and Langmuir introduced
the term to describe the core of a glowing ionized gas produced by electri-
cal discharge in a tube. Yet, only recently the interplay between plasmas
and charged dust grains has opened up the new and fascinating research
area of dust-laden and dusty plasmas which grew exponentially from 1981
to 2004 [28]. The major boost to research in the field of dust-plasma inter-
actions was initiated by the theoretical prediction of the dust acoustic waves
by Rao et al. [40] (1990) which were observed by a large number of labo-
ratory experiments since 1995 [6] (see also [45] and references therein). In
1992 the dust ion-acoustic waves were predicted by Shukla and Silin which
manifest at larger frequencies than dust acoustic waves (tens of kHz versus
tens of Hz or below). They were detected in laboratory experiments by
Barkan et al. (1996) and Nakamura et al. (1999) and represent the sec-
ond type of acoustic modes in uniform, unmagnetized, collisionless dusty
plasmas with a weak Coulomb coupling between the charged dust grains.
Even before these theoretical and experimental successes, in 1986 Ikezi [16]
predicted theoretically the Coulomb crystallization of dust grains interact-
ing via a repulsive Yukawa force in plasma when Coulomb energy density
of the dust particles exceeds the thermal energy density by at least two
levels of magnitude. These predictions were verified experimentally in 1994
by many scientists who reported observing dusty plasma crystals composed
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of ordered charged dust grains which form various crystalline structures
depending on the experimental conditions. The phenomena of phase transi-
tion in dusty plasma crystals were also observed (Thomas and Morfill, 1996).
Furthermore, in strongly coupled dusty plasmas, dust lattice waves appear
analogous to those in solid-state physics. In this case the restoring force
derives from the Debye-Hückel interaction between neighboring grains while
the dust mass provides the inertia (Melandsø, 1996; Farokhi et al., 1999;
Wang et al., 2001). Apart from the linear ones, the presence of the massive
dust grains in plasma produces also nonlinear new collective phenomena on
the specific space and time scales such as dust acoustic or dust ion-acoustic
shock waves, dust acoustic Mach cones, dust microbubbles in dusty plasma
liquids or dust vortical motions [42,43].

IV.1. From Dust-Laden Plasma to Dusty Plasma

IV.1.1. Dusty Plasma in Nature and Laboratory

The presence of charged dust in nature manifests itself mostly in micro-
gravity conditions through phenomena taking place at high altitudes in the
Earth’s atmosphere and in interplanetary and interstellar space. In Earth’s
atmosphere, clouds of charged dust are observed during the polar summer
in the mesopause region at altitudes between 80 and 90 km and latitudes
between 50◦ and 70◦ north and south of the equator. These clouds are
called noctilucent clouds (clouds that glow at night, see figure IV.1) since
they reflect solar rays after sunset (see figure IV.2). They were reported for
the first time in 1885 after the eruption of the Krakatoa volcano. Though
close to the plasma filled thermosphere, the noctilucent clouds produce spe-
cific electromagnetic phenomena such as polar mesospheric summer echoes
(backscattering of radar at frequencies between 50 MHz and 1.3 GHz) which
prove that the particulates in their composition are charged. The sources
of dust which form these clouds are both natural, micrometeroids and soot
from powerful volcanic eruptions, and man-made, rocket exhausts and in-
dustrial contamination [1, 43].

Figure IV.1: Some real-life pictures of noctilucent clouds (left – (c) 2007 Edwin van Dijk;
right – Martin Koitmäe, July 2009)

Even closer to the Earth surface, dusty plasmas appear in ball lightnings
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Figure IV.2: Reflection of solar rays by noctilucent clouds after sunset

which appear after the lightning strikes the soil and contains networks of
nano particles [42].

As advocated by the Nobel Laureate Hannes Alfvén (1954) the Sun was
initially surrounded by a nebula of dust which in time led to the appear-
ance of the planets, comets, asteroids. Nowadays the interplanetary dust
is responsible for the phenomenon called zodiacal light, a faint, roughly tri-
angular, whitish glow seen in the night sky which appears before sunrise
and after sunset and extends upwards from the vicinity of the sun along
the ecliptic. The zodiacal light (see figure IV.3) was first investigated by
the astronomer Giovanni Domenico Cassini in 1683 and its first explanation
was given by Nicolas Fatio de Duillier a year later [1, 3, 43].

The interplanetary dust consists mainly from fragments of debris in
comet tails and dust resulted from mutual collisions of asteroids in the as-
teroid belt and it is collected by planets and the Sun through accretion.
Comets are small, irregularly shaped and fragile bodies composed of a mix-
ture of frozen gases and nonvolatile particulates. They have highly elliptical
orbits around the Sun and while they approach the star they develop a sur-
rounding cloud of gas and grains carried away by the sublimation of the
frozen gases, called coma, which grows in size and brightness. The remain-
ing, boiling solid body (nucleus) and the coma make up the head of the
comet. The material that is accelerated away from the comet by the solar
radiation constitutes the bright tail of the comet. It becomes fluorescent as
it absorbs ultraviolet radiation. The Sun’s radiation is also responsible for
starting processes on the nucleus of the comet that release hydrogen creating
an envelope around the head of the comet. The heavy dust particles and the
ionized gases in the comet tail are accelerated differently so that the dust
tail becomes curved while the ion tail is much less massive and appears as
a straight line pointing away from the Sun as in figure IV.4.

Micron- and submicron-sized dust grains are the main constituents of the
ring systems around the outer giant planets in the Solar System (Jupiter,
Saturn, Uranus, Neptune). The Jovian ring system is the third one discov-
ered in the Solar system by Voyager 1 space probe in 1979. It is very faint
and consists almost exclusively of dust, part of it originating from collisions
between the four satellites with orbits within the rings, and various unob-
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Figure IV.3: Zodiacal light with the Cancer constellation and Venus in background (left,
Dominic Cantin, August, 2000); Zodiacal light seen from Very Large Telescope facility on
Mount. Paranal, Chile (right, ESO, November 2009)

served macroscopic bodies. There are four regions: the halo near the planet
which contains very fine dust, a very thin, bright main ring and two wide,
thick and faint outer rings all of which contain dust grains with a radius
about 15 µm. The ring system around Uranus was discovered in 1977 dur-
ing observations of a stellar occultation by the planet. Though initially only
5 rings were seen, further Earth-based observations indicated there were ac-
tually 9. The Voyager 2 spacecraft photographed another two new rings
in 1986, while the Hubble spatial telescope found two new outer rings so
that as of 2008 the Uranian ring system contains a total of 13 rings with a
radii range from 38,000 km to 98,000 km. Of these only two rings (λ and
1986U2Rζ) contain mainly micron-sized dust particles while various, tem-
porary dust bands were observed between the rings of the system. Careful
studies of the Voyager 2 images showed variations in the brightness of the λ
rings which seem to be periodic and thus resembling the pattern of a stand-
ing wave. Though evidences of rings around Neptune were long known, it
was believed that only incomplete arcs or debris orbited the planet until the
discovery of the five rings in 1989 by the Voyager 2 mission. Images showed
that the rings were complete but with bright clumps and one of them had
even a complex twisted structure. Analysis by the Voyager 2 instruments



IV§1 From Dust-Laden Plasma to Dusty Plasma 78

Figure IV.4: The Hale-Bopp comet passing by the North American Nebula; the curved
dust tail and the ion tail (blue) are clearly visible. (c) NASA, 1997

proved the rings mainly consisted of micrometer-sized dust grains and in-
tense broadband bursts of radio noise registered at each ring plane is thought
to be produced by charged dust grains under the influence of the oddly ori-
ented magnetic fields of Neptune. Last but the most extensive planetary ring
system in the Solar system is that formed by the rings of Saturn. Discovered
in 1610 by Galileo Galilei and described as a suite of rings surrounding the
planet for the first time in 1655 by Cristiaan Huygens, the Saturnian ring
system is made up of three major rings, known as C, B, A from outward
direction, a faint, inner ring D and three more outer, narrow rings F, G,
E. The rings are primarily composed of ice particle that range in size from
micrometer to meters and form a series of very close rings with small gaps
between them, the largest of which bearing the name of Giovanni Domenico
Cassini (the first astronomer to issue this theory in 1675) and stretching be-
tween the ring A and B. The scientists’ century long fascination with Saturn
and its rings grew further as the two Voyager spacecrafts sent back, in 1980-
1981, images of what look like frequent and rapidly changing, wedge-shaped
spokes in ring B (figure IV.5, left). Along with other spectacular celestial
mechanics phenomena the spokes are among the objects of interest for the
Cassini-Huygens mission. The Cassini spacecraft reached Saturn’s orbit in
2004 after being launched in 1997 and it is predicted to continue studying
the Saturn’s satellite and ring system till 2017. The spokes are confined to
the dense ring B and are the effect of dust-plasma interactions in the plane-
tary magnetosphere. The current model [12,15,31],though criticized [11], is
based on the assumption that they are formed by electrostatically levitated
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charged dust-grains and their elongation is due to the rapid radial motion
of dense plasma clouds created by meteor impacts on the ring [32] (possibly
because of interaction between the later and Saturn’s magnetosphere [26]).

Figure IV.5: Images of nearly radial spokes in Saturn’s ring B; dark spokes as viewed by
Voyager 2 in 1981 (left) and bright one registered by Cassini in 2009 (right) (courtesy of
NASA/JPL)

The interstellar space if full of gas and dust that form the interstellar
medium. The ratio of gas to dust is 99:1 and the gas content is constantly
diminishing as giant molecular clouds collapse gravitationally forming new
stars. The densities are very low by Earth standards and both the gas and
the dust particulates (usually submicronic) get charged because of various
radiation (cosmic rays) from surrounding stars and other cosmic sources
(remnants of supernovae, pulsars or neutron stars just to mention a few).
The presence of dust in interstellar space has been known for a long time
from star reddening, infrared emission or the existence of dark bands that
block parts of various nebulae (Orion, Lagoon, Horsehead, Eagle, etc.).
Dust-laden and dusty plasmas are therefore quite common in interstellar
medium and they play a key role in the formation of dust clusters and
structures that ultimately coalesce to form protostars and protoplanets [5].
The dust grains can be both dielectric (ices, silicates, carbonates, etc.) and
metallic (graphite, magnetite, etc.) which explains why dusty and dust-
laden plasma are considered responsible for such phenomena as instabilities
of interstellar molecular clouds that lead to star formation or decoupling of
magnetic fields from plasmas.

In laboratory conditions both dust-laden and dusty plasma are encoun-
tered some times as a source of contamination and instabilities and recently,
more and more often as the object of studies. Dusty plasmas in laborato-
ries differ significantly from those in nature since the discharges, in which
they appear, are spatially more restricted (they have geometric boundaries)
and have characteristics (structure, composition, temperatures, etc.) that
strongly influence the formation and transport of the dust grains. At the
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same time, another difference comes from the installation that maintains and
contains the dusty plasma as it imposes spatiotemporally varying boundary
conditions on the dusty discharge [43].

Dust particles appear frequently in dc discharges but they become abun-
dant under rf excitations. They mainly originate either from chemical reac-
tions between the gases in the plasma or from sputtering of the electrodes.
Their growth, charge, position and temperature depend on a myriad of
factors and characteristics both external and internal to the experimental
setup. The later usually consists of a low-pressure plasma processing reactor
where dust grains produced in a discharge, are analyzed through laser light
scattering and scanning electron microscopy(SEM). The low-voltage SEM
allowed the resolving (without beam damage) of the surface texture of dust
particulates which resemble cauliflowers [43].

It is long known that dust grains are present in fusion devices (toka-
maks, spheramaks, stellaratons, etc.) yet only recently their influence on
the plasma became the focus of different studies. The dust grains have
size distributions as they are created through various processes like the des-
orption, arcing, sputtering, evaporation or sublimation of wall material or
the spallation and flaking of thin films grown on the wall surface either for
conditioning or gradually accumulated by discharge events. In the case of
graphite wall components for instance, in addition to C atoms, clusters of
Cn are liberated. Thus the size of dust particles varies from nanometers
to a few micrometers while SEM images have shown shapes from flakes and
metal cuttings to spheres of various radii or irregularly formed grains [41,43].
The nano-sized dust particles are usually in suspension and require about 2
hours of settlement. They are partly ferromagnetic and because of the exis-
tence of charged grains of opposite sign will form sub-micron agglomerates
through coagulation which are not always closely packed but have rather a
woolly open structure. However the nano-sized particles have the size and
cauliflower-like structure which is consistent with those in processing plas-
mas. After a plasma discharge all dust particles will fall to the bottom of
the tokamak chamber, however the lighter grains may be re-ejected into the
fusion plasma either by magnetic effects or after electrostatic charging when
they come in contact with the edge of the plasma. The material from which
dust is created in tokamaks can also be radioactive, so radioactive, light
dust particulates could play an important role in further understanding the
transport processes in high density and low-temperature tokamak edges [42].
Therefore transport of dust particles is a possible mechanism of impurity de-
position into the core plasma. Further on the dust grain charge fluctuates in
response to plasma fluctuations and this may lead to stochastic heating of
dust which in turn has an important effect on the coagulation and transport
of dust particles. The ion drag force on dust particles was proposed as a
way of removing dust but the effect of nonlinearities and collective effects in
ion-dust Coulomb scattering can enhance the cross-section of this process.
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The dispersion relation of plasma modes is also significantly influenced by
ion/electron-dust collisions and dust charged fluctuations which affects the
thresholds and growth rate of instabilities in the fusion plasma. Also the
Thomson scattering cross section can be enhanced by a factor proportional
to the square of the dust grain charge with respect to the normal cross sec-
tions for radiation scattering. Further enhancements in radiation scattering
may come from alignment of magnetized dust particle momenta in external
magnetic fields [4]. All these new phenomena prove that the presence of dust
particles in fusion devices is an important issue which both future theories
and experiments have to take into account.

The dust in plasma has a clear influence on semiconductor industry, in
particular on plasma-enhanced deposition and etching processes. Electronic
micro-devices are basically a series of patterned layers formed by deposi-
tion on which the patterns are created by etching. These processes are an
integral part of the lithography steps as they are used to form the masks
used to photo lithograph the device on silicon wafers. The study of dust
grain induced phenomena in plasma is also important for plasma chemistry
and nanotechnology. In reactive plasmas primary clusters of atoms form
through a process of nucleation, up to a critical number density then the
proto-particles undergo a process of agglomeration, as often observed in
dusty plasmas, resulting macro-particles of about 50 nm which in turn grow
to micrometer-sized grains by accretion of neutrals and ionic monomers,
since further agglomeration is prevented by particle charging. Taking into
account the dusty plasma nature, the agglomeration process theory has to
take into account the charge of the nanometric particles which might reduce
the agglomeration rate and set new maximum achievable limits for micronic
particle sizes [43].

IV.1.2. Characteristics of Dusty Plasma

Loosely defined, a dusty plasma is a medium of normal electron-ion
plasma with an additional charged component of micron- and submicron-
sized (massive) dust grains, which are able to interact with each other,
thus having a collective behavior. A dust-laden plasma is a dusty plasma in
which the dust particles are completely screened by the surrounding plasma.
In order to improve the previous definition, in this section there will be
presented the main parameters characterizing a dusty plasma.

The presence of dust grains in plasma induces new properties for dusty
plasma and enables new phenomena to manifest at different spatial and time
scales and sometimes, in ways that are not characteristic to pure plasma.
Therefore the chemical composition, size and shape of the dust particles are
expected to greatly influence the properties of dusty plasmas.

Through-out this work, one will resume to consider unmagnetized, spher-
ical dust grains characterized by their radius rd and mass md. The medium
distance between the dust grain will be denoted by a. In an isolated dusty
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plasma, the dust particulates gather electrical charge naturally which is usu-
ally negative because of the higher mobility of the electrons in comparison
to that of the ions. As a plasma is globally neutral from electrical point
of view, it follows that the charged dust grains influence the dusty plasma
neutrality equation at equilibrium which, for a one single ionized ion species
plasma, writes

Zdnd + ne0 = ni0 (4.1)

Here Zd is the number of elementary charges on the dust grain, nd is the
number density of the dust grains (number of particles in volume unit) and
ne0,i0 are the number densities at equilibrium of the electrons and the ions
respectively. Since the dust grains are much more massive than any other
component of the system, they can be considered, in a good approximation,
at rest. At equilibrium the electron and ion number densities (ne, ni) are de-
termined by the local potential ϕ and distributed according to Boltzmann’s
law

ne = ne0 exp

(
eϕ

kBTe

)
ni = ni0 exp

(
− eϕ

kBTi

) (4.2)

where e is the elementary electrical charge, kB is the Boltzmann’s constant
and Te,i are the electron and ion gas temperatures, respectively. One of the
characteristic properties of a plasma is the screening of static electric charges
(charged particle or surface). This electrical screening is measured by the
maximum distance (the Debye (shielding) length) to which the presence of
the charged object influences the surrounding medium. The mechanism of
Debye shielding in dusty plasmas is some-what similar to that in electron-
ion plasma (see [8]). The charged dust grains gather plasma constituents of
opposite charge around them. If not for the thermal agitation of the plasma
gas, the number of electrons/ions surrounding the dust particle would equal
its charge and the shielding would be perfect. Besides the cloud of charged
plasma particles would collapse to a very thin layer (sheath). At a finite
temperature the sheath of charged particles expands and the shielding is
not perfect as particles at the edge of the cloud have enough thermal energy
to escape the electrostatic attraction. The screening radius (for a spherical
dust grain) has the value for which the potential energy is approximately
equal to the thermal energy of the specific species of plasma constituents
(kBTs where s = i, e indicates the species). Thus the field of the charged
dust grain is shielded down to potentials of the order kBTs/e that may act
on the surrounding plasma. In order to derive an analytical expression for
the Debye radius in dusty plasma let us consider the Poisson’s equation [43]

∇2ϕ =
1

ε0
(ene − eni − qdnd) (4.3)
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where qd = −eZd is the charge of the dust grain. At the edge of the cloud
where eϕ/kBTe,i � 1, one can expand the exponential functions in Taylor
series and taking only the linear terms in ϕ, for an isolated dust grain, the
equation (4.3) becomes

∇2ϕ =

(
1

λ2
De

+
1

λ2
Di

)
ϕ (4.4)

where

λ2
De =

ε0kBTe
ne0e2

λ2
Di =

ε0kBTi
ni0e2

(4.5)

are the electron and ion Debye radii respectively. Of course this approach is
not valid for the sheath where the potential of the dust grain is much bigger
than the thermal energy of the plasma constituents; yet in the sheath, the
potential rapidly decreases and the region does not contribute much to the
thickness of the cloud. The solution of (4.4) can be written

ϕ = ϕ0 exp

(
−r
λD

)
(4.6)

where ϕ0 is the potential at the center of the cloud (on the surface of the
dust grain) and

λD =
λDeλDi√
λ2
De + λ2

Di

(4.7)

is the plasma Debye radius.
For a dusty plasma with negative charge on the dust grains the density

of electrons is diminished (because of the electrons collected on the dust
grains) and thus we have ne0 � ni0 −→ λDe � λDi, λD ' λDi, therefore the
shielding is due to the predominant, positive ions. When the dust particles
become positively charged, the opposite happens ni0Te � ne0Ti −→ λDe �
λDi, λD ' λDe and the shielding is done by electrons.

To improve the previous result one has to take into account the fluctu-
ations of the charge on the dust grains. Then the expression for the Debye
length in dusty plasma is

1

λ2
D

=
1

λ2
De

+
1

λ2
Di

+
1

λ2
Dg

where λDg contains the effect of the dust grain charge fluctuations

1

λ2
Dg

=
ν2

ν1nd0rd

and the expressions of ν1 and ν2 are given in [43] (see §2.6.1).
At this point one can give a more specific definition of the term dusty

plasma as opposed to ’dust in plasma’ or dust-laden plasma. Thus the



IV§1 From Dust-Laden Plasma to Dusty Plasma 84

situation when rd � λD < a corresponds to ’dust in plasma’ where dust
particles are considered a collection of isolated, screened grains and local
plasma inhomogeneities must be taken into account. On the other hand
when rd � a < λD, the dust grains must be treated like massive, multiply
charged particles which interact with each other and the surrounding plasma
constituents and this is the situation encountered in a veritable dusty plasma
[43]. There are also other conditions that dusty plasmas must comply with
in order to behave as a true plasma. The Debye screening length must
be much smaller than the dimensions characterizing the volume occupied
by the dusty plasma and this is always satisfied as λD is of the order of
micrometers. The requirement that the Debye sphere should contain a large
number of plasma ions or electrons is also satisfied considering the values
of the number densities of the plasma constituents. To understand the last
criteria [8] which in a gas implies that the frequencies of the typical plasma
oscillations be larger than the frequency of collisions with neutral atoms
for the gas to behave as a plasma, one has to briefly discuss the plasmonic
frequencies.

Another important property of any plasma is the stability of its electri-
cal neutrality at macroscopic level. Any external perturbation will generate
an electrical field which will tend to bring the charged constituents back to
their equilibrium positions. But due to their inertia the charged particles
will go past these positions generating an opposed electrical field. Thus col-
lective oscillations will appear having a specific frequency called plasmonic
frequency ωp. In deriving an analytical expression for the plasmonic frequen-
cies associated to each dusty plasma component let us consider an uniform,
cold (no thermal motion taken into account), unmagnetized dusty plasma.
Each type of particles satisfies the continuity equation

∂nj
∂t

+∇ · (nj~vj) = 0 (4.8)

where j = (e, i, d) indicates the species (electrons, ion, dust grains), the
momentum equation

∂~vj
∂t

+ ~vj · ∇~vj = − qj
mj
∇ϕ (4.9)

and the Poisson’s equation

ε0∇2ϕ = −
∑
j

qjnj . (4.10)

In all these expressions ~vj denotes the speed, qj/mj the specific charge and
nj the number density of each species while ϕ is the electrical field created
by the external perturbation. For simplicity, sources or sinks as well as
the forces due to pressure gradients were neglected. Let’s assume that the
amplitude of the oscillations is small enough so that a linear treatment can
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be applied and that at equilibrium (characterized by nj0, vj0 = 0) no internal
electrical field exists (ϕ = 0). Writing

nj = nj0 + nj1, nj1 � nj0, (4.11)

the equations (4.8), (4.9) can be linearized

∂nj1
∂t

+ nj0∇~vj = 0,
∂~vj
∂t

= − qj
mj
∇ϕ (4.12)

and together with the expression of the Poisson law, one obtains

∂2

∂t2
∇2ϕ+ 4π

∑
j

nj0q
2
j

ε0mj
∇2ϕ = 0 (4.13)

Integrating (4.13) twice over the space coordinates under the boundary con-
dition ϕ = 0 at equilibrium, it becomes

∂2ϕ

∂t2
+ ω2

pϕ = 0 (4.14)

where

ω2
p =

∑
j

nj0q
2
j

ε0mj
=
∑
j

ω2
pj (4.15)

is the square of the plasma frequency. The oscillation process described
earlier is specific to each plasma species. In the case of dusty plasmas these
oscillations occur in completely different frequency ranges as the electrons
oscillate around the ions at the frequency ωpe, the ions around the dust
grains at ωpi and the dust particles around their equilibrium positions at
the lowest frequency ωpd which has values in the range of tenths of Hertz.

The collision frequencies of each of the dusty (complex) plasma species
with the neutral atoms are other important characteristics of complex plas-
mas, given by

νjn = nnσjnvTj (4.16)

where nn is the number density of neutral atoms, σjn is the scattering cross
section of neutral atoms in collisions with plasma particles of species j and
vTj =

√
kBTj/mj is the thermal speed of species j of plasma particles. The

result of the collisions with neutral atoms is a damping of the collective
oscillations of each species of particles which gradually diminishes the corre-
sponding oscillation amplitudes. Thus for this damping process to be weak
the collision frequencies νjn must be smaller than the plasma frequency

νen, νin, νdn < ωp

The Coulomb coupling parameter is a dusty plasma characteristic which
measures the degree of interaction between neighboring dust grains and
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determines the possibility of the formation of ordered structures – dusty
plasma crystals. If one takes into account the shielding effect, the Coulomb
potential energy for two dust particles of charge qd situated at distance a
from each other is

Ec =
q2
d

4πε0a
exp

(
− a

λD

)
(4.17)

while their thermal energy is kBTd. The Coulomb coupling parameter, de-
noted by Γc, is defined as the ratio of the two energies

Γc =
Ec
kBTd

=
Z2
de

2

4πε0akBTd
exp

(
− a

λD

)
(4.18)

A dusty plasma is weakly coupled when Γc � 1 and strongly coupled if
Γc � 1, the coupling parameter value being determined by the dust fluid
parameters (grain charge, dust temperature and inter-grain distance) and
the Debye screening length of the dusty plasma. In laboratory conditions it is
therefore easy to obtain very strong coupled dusty plasmas which undergo a
phase transition from the disordered gas-like state to an ordered, crystalline
phase – Wigner crystal (1938). For Γc ≥ 170 such structures were predicted
by Ikezi in 1986 [16], theoretically and observed experimentally 8 years later
(1994) (see [43], chapter 8).

IV.2. Dust Grain Charging Process

The key to understanding the new phenomena due to the presence of
dust particles in a plasma is the construction of an appropriate model to
describe the charging of the dust grains as realistically as possible. When
immersed into a plasma a dust grain will collect plasma particles and its
charge variation will be determined by the sum of currents of various charged
plasma particle species that fall onto it. At equilibrium this sum will be
zero and the particle will be charged at a surface potential Φd. In a plasma
without radiative background (especially photons) and in the absence of
external fields the dust grains will charge naturally to a negative potential
due to the higher mobility in the electron gas, the density of which will be
reduced by this process.

The collection of plasma particles on the dust grain surface is, however,
even in the case of isolated dust grains, accompanied by a series of other
processes either as a side effect of the plasma particles collection (e.g. sec-
ondary electron emission due to electron and ion impact), as a consequence
of the nature and composition of the ionized gas (impact ionization due
to energetic neutral atoms hitting the dust particle and ionization of the
dust particles due to radioactivity of elements in the composition of dust or
molecules of the surrounding gas) or due to the external physical conditions
like photoemission, thermionic emission or field emission.

When a charged plasma particle approaches the surface of an isolated
dust grain in an unmagnetized plasma, it may be scattered (depending on



IV§2 Dust Grain Charging Process 87

the sign of the dust grain potential) before it reaches the surface or it may
enter the dust grain and either stop immediately (stick onto the dust particle
surface) or travel through the dust grain material losing energy while inter-
acting with scattering centers until it stops or exists on the opposite side of
the grain. While the reflection and absorption are part of the collection pro-
cess that mainly interests the low energy charged particles and which will be
presented in detail in the following subsection, the transmission/tunneling
and secondary emission (due to interactions with the dust grain material) are
characterized by threshold energies that only externally accelerated charged
plasma particles may posses. If one considers the electron gas in the plasma,
the energy of the electrons must exceed the value of the repulsive potential
barrier when grains are charged negatively. The tunneling of this potential
barrier may occur due to the presence of slow, positive ions with low en-
ergies (below 1keV) but this process mainly leads to the neutralization of
the ions. Assuming that normal incident electrons loose energy according
to the Thomson-Whiddington law (it applies for electrons up to 30keV),
this energy loss is proportional to the yield of secondary electrons and the
secondary electron flux decreases exponentially with the depth reached by
the primary electron. An expression for the yield of secondary electrons was
derived which closely matched the results found by Jonker (1952). Numer-
ical calculations of the secondary yield showed that the secondary current
increases with the electron temperature up to a maximum (corresponding to
approximately 1keV) after which the current decreases since electrons pass
through the whole body of the dust grain and exit on the opposite side (are
transmitted through the dust grain). This “tunneling” process dominates
when the primary electron initial energy (the electron energy at incident

dust grain surface) is comparable to (2DW rd)
1/2, where DW is Whidding-

ton’s constant for energy loss with distance. As already discussed low energy
ions are neutralized by electrons and the energy released in this process may
excite secondary electrons that may leave the dust grain surface. The num-
ber of such electrons is determined by the ionization potential energy Wi

and the work function of the dust grain material Wf . When a conduction
electron is captured by the incident ion it makes available a maximum en-
ergy of Wi − Wf ; this must exceed the work function of the surrounding
material to free another electron and therefore the following condition must
be met Wi > 2Wf . For more energetic ions (above 10keV), the secondary
electron yield will increase substantially as they loose energy in a smaller
depth of material because of their larger mass. For this reason, the rate of
re-emission/transmission of ions through the dust grains is negligible. The
secondary electron yield from ion impact may be estimated using the same
model as for electrons [43] (§2.2.2) though for relativistic ions (much higher
energies – MeV) one should apply the Bethe-Bloch formula to compute the
energy loss per distance.

If the dusty plasma is exposed to a flux of photons and the energy of
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these photons ~ω is greater than the photoelectric work function (Wf ) of the
dust grain material, the latter emit photo-electrons. This mechanism may
determine the dust grain to charged positively and thus the photo-electrons
will return to the grain unless the energy of the incoming photons is bigger
to compensate for the attractive dust grain potential (~ω > Wf + qde/rd).
Thus the maximum dust grain charge can be estimated from

qd = (~ω −Wf )
rd
e
, (4.19)

which is attained when the outgoing current of photo-electrons is balanced
by the current of electrons returning to the grain surface. In case of nega-
tively charged grains, the outgoing photo-electrons are accelerated and never
return to the surface, yet there are other charging mechanisms to be consid-
ered that limit the grain charge.

In special conditions there are a number of other charging mechanisms
to be considered important. For instance, thermionic emission of electrons
or ions occurs when the dust grains are heated to high temperatures using
lasers, infrared radiation or hot filaments surrounding the complex plasma.
The tendency of this phenomenon is however to make the dust grain charge
positively and therefore the outgoing thermionic current is limited by the
attractive dust grain potential (as for the photo-emission). Rough estima-
tions (see [43] §2.2.4) give a value of 300 W/cm2 as the minimum needed
intensity of a laser energy flux in order for the thermionic current of grains
heated at ∼ 1700 K to become important. Another phenomenon that man-
ifests in special circumstances when the micron-sized or nanometric dust
particles acquire high potentials, is the field emission of electrons or ions
depending on the sign of the dust grain charge. Field emission is a mech-
anism for limiting the dust grain potential and for common values of the
work function of the dust grain material becomes important for dust radii
of the order of a micron. Radioactivity of the dust grain materials is also
a charging mechanism either because of the primary charged particles or
because of the current of secondary electrons (excited by the passage of the
primary radiation through the material) that leave the particle. The amount
of ordinary radioactive isotopes in the dust material in the cosmic space is
insignificant but there are however reports that dust created by novae and
supernovae may have important radioactive levels due to abundance of long
life β+/− emitter isotopes like Fe60, Ni59, Al26, Na22. Last but not least, at
high density or high temperatures of neutral atoms gas in complex plasmas,
the phenomenon of impact ionization can occur on the dust grain surface.
It mainly consists in ionization of the incident neutral atom or atoms of the
grain surface as result of collision at high kinetic energies of the projectile
accompanied by release of electrons/ions depending of the grain potential.
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IV.2.1. Orbit Limited Motion (OLM) Approximation

In the followings, the theory of the orbit limited motion approximation,
as a model for the process of charged plasma particle collection, will be
presented in detail [2].

Let us consider a plasma particle j (an electron or an ion) approaching
a dust grain of radius rd and charge qd (usually negatively charged) on a
ballistic trajectory. When it enters the Debye sphere it feels the influence
of the electrostatic field of the charged dust particle being deflected. Let
vj denote the initial velocity of the charged particle (at large distance from
the dust grain) and vgj the velocity at grazing collision with the dust grain
as indicated in figure IV.6, where bj is the impact parameter corresponding

Figure IV.6: Schematic representation of the grazing collision between a plasma particle
and a dust grain (repulsive case)

to the grazing collision. It is obvious that decreasing this parameter the
plasma particle will hit the dust grain. Assuming a perfect plastic collision
(any particle hitting the grain with eventually stick on it), the cross section
for the charging process is σdj = πb2j . In the OLM approximation, one
neglects any details of the particle scattering in the central field of the dust
grain and the secondary emission due to the plasma particle impact on the
grain, taking into account only the momentum and energy conservation in
the process, namely

mjvjbj = mjvgjrd
1

2
mjv

2
j =

1

2
mjv

2
gj +

1

4πε0

qjqd
rd

(4.20)

where qj is the charge of the plasma particle, qj = Zie for a Zi ionized cation
and qj = −e for electrons. From these relations we obtain

bj =

(
vgj
vj

)
rd(

vgj
vj

)2

= 1− 2

4πε0

qdqj
rdmjv2

j
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and the charging cross section becomes

σdj = πr2
d

(
1− 2

4πε0

qjqd
rdmjv2

j

)
(4.21)

assuming that the dust grain is negatively charged with charge qd = −Zde.
qd is related to the floating potential of the dust grain Φd = Φfd − Φp

(Φfd - the negative dust grain potential and Φp - the plasma potential) by
qd = CΦd. Here C is capacitance of the spherical dust grain

C = 4πε0rd exp

(
−rd
λD

)
' 4πε0rd, (4.22)

if rd � λD.
If one denotes by fj(vj) the velocity distribution function for plasma

particles of species j, the charging current carried by the plasma species j
on the dust grain has the following expression

Ij = qj

∫ ∞
v

(j)
min

vjσ
d
j fj(vj)d

3 vj (4.23)

where v
(j)
min is the minimum value of the plasma particle velocity for which

the particle still hits the grain. There are two distinct situations qjΦd < 0
and qjΦd > 0. When qjΦd < 0, the plasma particle is attracted by the
dust grain and then the integration extends over the whole velocity space

(v
(j)
min = 0), while for qjΦd > 0 it is repelled and it has to surpass a repulsive

potential barrier. In the later case

v
(j)
min =

√
2qjΦd

mj
(4.24)

Usually the plasma species are considered at equilibrium so their velocities
have Maxwellian distributions. For the plasma species j, one has

fj(vj) = nj

(
mj

2πkBTj

)3/2

exp

(
−
mjv

2
j

2kBTj

)
(4.25)

where nj is the number density and Tj the temperature of the plasma species
j fluid. Performing the integration in (4.23) (in spherical coordinates), one
gets

Ii = 4πr2
dniZie

√
kBTi
2πmi

(
1 +

1

4πε0

ZiZde
2

rdkBTi

)
(4.26)

for the ionic current (usually one takes Zi = 1) and

Ie = −4πr2
dnee

√
kBTe
2πme

exp

(
− 1

4πε0

Zde
2

rdkBTe

)
(4.27)

for the electron current (or any single ionized anions with the corresponding
mass substitution).
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IV.2.2. Dust Grain Charging Time

As mentioned before, the charge on the dust grain reaches its equilibrium
value when the ionic and electronic currents that fall on it equal each other.
Therefore the time evolution of the dust grain charge is governed by the
equation

dqd
dt

= Ie + Ii (4.28)

and the equilibrium (stationary) charge of an isolated dust grain is deter-
mined from the flux balance

Ie + Ii = 0 (4.29)

It is convenient to introduce the following dimensionless quantities

z =
1

4πε0

Zde
2

rdkBTi
, τ =

Te
Ti

(4.30)

Typically in gas discharge plasmas τ ∼ 10 − 100 and z ∼ 1. With these
notations, the equilibrium condition (4.29) becomes (note ne,0 = ni,0 = n0)√

me

mi
(1 + z) =

√
τ exp(−z/τ) (4.31)

Thus the (equilibrium) charge on an isolated dust grain is determined by
the grain radius rd and the temperatures Te and Ti of the electronic and
ionic fluids as the solution of the equation (4.31).

In a dusty plasma, for the previous discussion to be complete (and valid
for non-isolated grains as well), one has to take into account the finite density
of the dust grains in the plasma. This can be done by using the neutrality
condition at equilibrium

Zdnd,0 + ne,0 − ni,0 = 0 (4.32)

As mentioned above, the negative charging of the dust grains determines a
strong depletion of the electron density, thus making the ion density larger
and strongly influencing the dusty plasma properties. Introducing the ex-
pressions (4.26) and (4.27) for Ii and Ie in the stationary condition (4.29)
and using the neutrality condition (4.32), one obtains√
me

mi
(1+z) =

√
τ exp(−z/τ)

(
1− Zd

nd,0
ni,0

)
=
√
τ exp(−z/τ)(1−Pz) (4.33)

where P = 4πnd,0rdλ
2
Di and λDi is the ionic Debye screening length. If

P � 1 we regain the isolated grain case while in the opposite limit, P � 1,
the dust grain charge is significantly reduced with respect to the single dust
grain case. The figure IV.7 presents the dependence of z on logP for an
argon plasma (with single ionized cations) for two different value of τ . It
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Figure IV.7: Dependence of z on logP for an Ar+ plasma when τ = 1 (z
P→0
= 3.985) and

τ = 3 (z
P→0
= 10.976).

is easily seen that the equilibrium potential energy for isolated grains (limit
P → 0) depends strongly on the temperature of the electrons.

In order to derive an expression that would allow the evaluation of the
charging time, one has to consider small deviations from the equilibrium
values and solve the linearized equation for the time evolution of the charge
on a dust grain (4.28). In the case of an isolated grain, using the notations
(4.30) and the expressions (4.26) and (4.27) for the ionic and electronic
currents falling on the dust grain, it writes

dz

dt
= −β

[
(1 + z)−

√
τ

α
exp

(
−z
τ

)]
, (4.34)

where

β =
rdvT i√
2πλ2

Di

, α =

√
me

mi
. (4.35)

The equilibrium solution z0 is computed by solving numerically the tran-
scendental equation obtained by equaling the right hand side of (4.34) to
zero. Considering small deviations from it and writing

z = z0 + z1, z1 � z0 (4.36)

the linearized equation satisfied by z1 is

dz1

dt
= −βz1

(
1 +

1 + z0

τ

)
. (4.37)

The solution of this equation has the form

z1 ∼ exp(−t/τc), τc =
τ

β(τ + z0 + 1)
=
λ2
Di

√
2π

rdvT i

Te
Te + (1 + z0)Ti

, (4.38)
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where τc is the charging time. Its value depends on the ionic temperature

T
1/2
i and less on Te while it is decreases proportionally with the dust grain

radius rd and the equilibrium number density ni0 = ne0 = n0.
For the case of non-isolated dust grains, using the notations (4.30), (4.35)

and considering the equilibrium values for the ion and electron number den-
sities, the time evolution equation for the charge on the dust particles has
the form

dz

dt
= −β

[
(1 + z)−

√
τ

α
(1− Pz) exp

(
−z
τ

)]
(4.39)

Again considering small deviation from the equilibrium value z0, solution of
the transcendental equation

α(1 + z0) =
√
τ(1− Pz0) exp(−z0/τ),

the linearized equation for the time evolution of z1 can be written

dz1

dt
= −βz1

[
1 +

1 + z0

τ

(
1 +

τP

1− Pz0

)]
. (4.40)

Thus the expression of the charging time for non-isolated grains is

1

τc
= β

[
1 +

1 + z0

τ

(
1 +

τP

1− Pz0

)]
, (4.41)

which has a correction to charging time that characterizes an isolated dust
grain. One may easily notice that the charging time for non-isolated dust
particles τcn is usually smaller than for isolated grains τc0

τc0
τcn

= 1 +
P

1− Pz0

1 + z0

1 +
1 + z0

τ

(4.42)

A careful evaluation of the charging time correction factor will yield values
for τcn that are a few orders of magnitude below τc0, the later being in the
range of a few microseconds(7 µs – see [43], pp. 59). However it should be
noted as well that these extremely small values are obtained when Pz0 ' 1
and since 1 − Pz = 1 − Zd nd

ni,0
=

ne,0
ni,0
→ 0 for a given grain radius rd and

ion temperature Ti, the situation corresponds to a near complete depletion
of the electron gas (see figure IV.8). The figure also shows that the electron
gas is never completely depleted and there is a minimum saturation elec-
tron number density which is attained quicker as the electron temperature
increases (when the ion temperature is constant). This happens because the
electrons have larger thermal kinetic energy and overcome the dust grain
reflective potential in greater number contributing to the increase of the
charge on the dust particle. For a given dust grain radius rd the parameter
P is proportional to the dust particle number density. As nd increases the
equilibrium potential of the dust grain (z) decreases and, as the potential
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Figure IV.8: The parameter Pz0, a measure of the depletion of the electron gas due to
dust grain charging, as a function of P for two electron temperatures τ = 1 and τ = 10.

is proportional to the number of elementary charges on the dust grain, so
does Zd. This effect is natural because the increase in the dust particle num-
ber density is at the expense of the electrons having the same Maxwellian
thermal speed distribution, for a given electron temperature, and thus the
same flux of incident electrons is distributed among an bigger number of
dust grains. These processes are reflected in the drop of the charging time
of non-isolated grains, τcn, with respect to the charging time of an isolated
dust particle, τc0, shown in figure IV.9. When the near depletion electron
number density is reached, the charging time magnitude grows almost lin-
early with the dust particle density number as the equilibrium charge on the
dust grains decreases. Yet in this region a new charging model should be
applied as the ion gas controls the process, given that λD ' λDi (see §IV.1).

A less ideal dusty plasma contains several types of dust particulates of
different shapes and dimensions. In the followings we shall consider only the
case of a dusty plasma with spherical dust grains of different radii. From
electrostatic equilibrium arguments we expect that all the dust particulates,
no matter their type, will get charged at the same grain potential. This is
easy to be observed if a single dust grain of radius r2 is immersed into a
dusty plasma containing only dust grains of radius r1 and number density
N1. The dust grains of the host complex plasma are charged according to
the formula (4.33) √

me

mi
(1 + z1) =

√
τ exp(−z1/τ)

ne,0
ni,0

ne,0
ni,0

=1− Z1
N1

ni,0

(4.43)
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Figure IV.9: The magnitude of the charging time decrease as a function of P for different
electron temperatures.

where the last relation reflects the depletion of the electron gas due to the
charging of the dust particles. When the new dust grain of radius r2 is
introduced in this dusty plasma its equilibrium charge will be determined
from a formula similar to (4.31), generalized to take into account the existing
depletion of the electron component, namely√

me

mi
(1 + z2) =

√
τ exp(−z2/τ)

ne,0
ni,0

(4.44)

Comparing the two formulas, it is clear that z2 = z1, i. e. the new added
dust grain is charged at the same potential as the host dust grains.

Using these arguments, one can easily extend the treatment to a complex
dusty plasma containing several types j = 1, p of spherical dust grains of

radius rj and number densities Nj = cjN0, where
p∑
j=1

cj = 1. The depletion

of the electron gas can be now evaluated from

ne,0
ni,0

= 1−
p∑
j=1

Zj
Nj

ni,0
= 1− N0

ni,0

p∑
j=1

cjZj (4.45)

All the dust grains (no matter their radius) will be charged at the same
potential

zj =
1

4πε0

Zje
2

rdkBTi
= z (4.46)

and z is the solution of the equation (4.33) where

P = 4πN0 〈r〉λ2
Di (4.47)

and the mean radius 〈r〉 is defined as

〈r〉 =

p∑
j=1

cjrj (4.48)
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Further on, the method can be applied to a continuum distribution of
grain radii as well. Denoting by f(r) the radius distribution function for
the dust grain species, the number of dust grains, having their radius in the
range (r, r + dr), is

dN(r) = N(r)dr = N0f(r)dr

Then the dimensionless potential (in absolute value) of any dust grain

z(r) =
1

4πε0

Z(r)e2

rkBTi
, (4.49)

is determined from the same equation (4.33) with the parameter P defined
by (4.47) where the mean value 〈r〉 has the following expression

〈r〉 =

∫ ∞
0

rf(r)dr (4.50)

Several distribution functions f(r) have been considered by different authors
[7, 29,30]

- Gaussian or normal distribution

f(r) = K exp

(
−(r − r0)2

2σ2

)
,

K =
1√
π/2σ

1

1 + Φ
(
r0/
√

2σ
) ,

where r0 is the most probable radius value, and

Φ(y) =
2√
π

∫ y

0
exp(−x2)dx

is the partition function.

- log normal or Galton distribution

f(r) =
1

rσ
√

2π
exp

(
−(ln r − µ)2

2σ2

)
,

where µ and σ are the mean value and standard deviation of the natu-
ral(/decimal) logarithm of the radius (the logarithm of the dust grain
radius is normally distributed).

- power law distribution (widely accepted as appropriate for space plas-
mas)

f(r) =

{
Kr−β r ∈ [rmin, rmax]

0 outside

K =
(β − 1)(rminrmax)β−1

rβ−1
max − rβ−1

min

where β = 4.5 for Saturn’s F ring, 6–7 in Saturn’s G ring and β = 3.4
for cometary environment.
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IV.3. Hydrodynamic Model for Dusty Plasma

A great variety of collective wave phenomena arises due to the coherent
motion of the plasma constituents. They can be both longitudinal and trans-
verse waves. In an unmagnetized plasma the transverse waves are purely
electromagnetic. On the other hand the longitudinal waves are accompanied
by density and potential fluctuations, and can be either linear or nonlinear.
In the followings, we’ll consider only this type of waves.

The presence of charged dust particulates can modify the wave propa-
gation and even introduce new oscillation modes and phenomena which are
absent in an usual plasma. These new types of waves appear in the low
frequency range and usually are associated with the dust fluid motion (dust
acoustic waves – DAW). In a higher frequency domain the ion-acoustic wave
of a pure plasma are strongly influenced (via the neutrality condition) by
the presence of the dust particulates resulting a new kind of collective waves
(the dust ion-acoustic waves – DIAW). They were predicted theoretically by
Rao et al. (1990) – DAW [40], and Silin and Shukla (1992) – DIAW [44] and
later observed experimentally by Barkan et al. (1995) [6] and Nakamura et
al. [33, 34] respectively.

There are two main approaches to discuss the collective waves in a com-
plex plasma. The first implies a hydrodynamic description when the dusty
plasma is considered as a mixture of different fluids (electrons, different types
of positive an negative ions and different kinds of charged dust particles),
each characterized by a number density nj (or mass density ρj = mjnj), a
fluid velocity vj , the charge qj of the individual j plasma component and,
at equilibrium, by a temperature Tj of the fluid (j = (i, e, d)). For dust par-
ticles we need to distinguish between grains of different sizes and charges.

For each of these components we can write down a continuity equation

∂nj
∂t

+∇ · (nj~vj) = Sj (4.51)

and an equation of motion

mj

(
∂

∂t
+ ~vj · ∇

)
~vj = ~Fj (4.52)

In the equation (4.51) Sj is a source/sink term describing the change
in the population of the j-species through interaction with other plasma
species, or with the external environment for open systems. For electrons
and ions, this source term is needed because the dust grains capture/release
plasma particles, depending on the details of the charging mechanism. Even
in an isolated plasma, the source term corresponding to the dust grains may
describe the agglomeration process of small dust particles into bigger ones.

The Fj terms in the right-hand side of equation (4.52) is the force acting
on the j complex plasma component due to the interaction with plasma
fields and other plasma species. Some of these forces will be briefly discussed
below [20,21,36,42,43]:
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a. Electromagnetic force

~Fel = qj

(
~E +

1

c
~vj × ~B

)
, (4.53)

where ~E = −∇ϕ is the electrical field (ϕ – the plasma potential) and ~B
the magnetic field. If ~E is usually generated by the collective motion
of all the plasma components (through the Poisson’s equation), the
magnetic field ~B is, in most cases, of external origin (in space physics
it is, for instance, the magnetic field of a rotating planet which is
orbited by the complex plasma cloud).

b. Gravitational force, acting especially on the dust particles, can be
decomposed in two parts, namely (i) the attraction of the dust grains
in the external gravitational field (from a nearby planet or star) and
(ii) the attraction between dust grains. For micron-sized, charged
dust particles present in celestial bodies (such as the Saturn rings)
both the electromagnetic and gravitational force have the same order
of magnitude so both their effects have to be taken into account at the
same time (one speaks of gravito-electrodynamics)

c. Pressure force: In a fluid of density ρj the force generated by a variable
pressure is −∇pj/ρj . But for an ideal, isothermal gas pj = kBTjnj so
the force term becomes

fpj = − 1

nj
∇
(
kBTj
mj

nj

)
= −v2

Tj

∇nj
nj

. (4.54)

d. Drag forces defined as the time rate of the momentum transfer from
dust particles to the other plasma components, particularly to the
ions and the neutral atoms, or from the plasma components to the
dust particles as a result of collisions. Considering only the ion drag
force, it can be written fid = −mdνdivd, where νdi is a characteristic
momentum transfer frequency from ions to the dust grains. A balance
equation mdndνdi = miniνid relates νdi to νid, the characteristic mo-
mentum transfer frequency from dust grains to ions, at equilibrium,
and the expression of νid depends on the ion-grain scattering model.
For cold dust grains the expression obtained by Khrapak et al. (2002)
is [19]

νid =
4

3

√
2πr2

dndvTiz
2τΓ,

where z = 1
4πε0

Zde
2/a

kBTe
is the surface potential energy of the dust grain

expressed in units kBTe, τ = Te/Ti and Γ is a modified Coulomb factor.

Other types of forces will not be considered in the present work.
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To the equations (4.51) and (4.52) we have to add the Poisson’s equation

ε0∇2Φ = −
∑
j

njqj , (4.55)

where the summation is extended on all the charged species of the plasma
(electrons, different type of ions and dust particles), and also an equation
describing the time variation of the charge of the dust grain. Of course,
depending on the kind of collective excitations we are interested in, simpli-
fications of this set of coupled equations are possible.

The second approach is based on a kinetic theory of the dusty plas-
mas, where each plasma component is described by a distribution function
fα~p (~r, t) in the phase space (~r, ~p). In the case of the dust particles, the
distribution function depends also on the new dynamical variable which is
the charge q collected on the dust grain, fd~p (~r, t, q). The equations satisfied
by the distribution functions are obtained from the generalized Bogoliubov-
Klimontovich scheme by including the effect of the dust charge variation. A
linear theory is completely discussed in a series of papers by Tsytovich and
de Angelis [22,46–50]. The equations satisfied by the distribution functions
of the electrons and ions write(

∂

∂t
+ ~v · ∂

∂~r
+ qα ~E ·

∂

∂~p

)
fα~p = Sα −

∫
σα(q, v)vf q~p′

(q)dq
d3~p′

(2π)3
fαp , (4.56)

where Sα describes any external source of plasma particles, ~E is the total
electric field (the electrostatic field plus the field generated by all the plasma
components), σα(q, v) is the collision cross section for collisions between the
plasma particle with velocity v and the dust grain characterized by charge
q and f q~p′

(q) is the distribution function of dust grains of momentum ~p′ and

charge q. For the dust distribution function fd~p (~r, t, q) one obtains[
∂

∂t
+ ~v · ∂

∂~r
+ q ~E · ∂

∂~p
+

∂

∂q

(
Iext +

∑
α

Iα

)]
fd~p (~r, t, q) = 0, (4.57)

where Iext is an external source current, and Iα(~r, t, q) is the current of
plasma particles of type α collected by the grain at time t and point ~r in
space. We shall not comment any more on this approach as it will not be
used in the present paper.

In the next sections, the author’s and his collaborators’ contributions in
the study of (nonlinear) collective waves in dusty plasma will be presented
[13, 14]. In section §IV.5 the problem of dust acoustic waves, taking into
account the charge variation on the dust grain surface in a very simple model
(local equilibrium approximation), will be discussed. Next the influence of
dust grain dimension on DAW will be considered in a model with two types
of spherical dust grains of different radii. Further on, the influence of a finite
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density of (static) dust grains on the dust ion-acoustic waves (DIAW) in a
plasma with positive and light negative ions will be investigated. Finally a
short section of conclusions, summarizing the original results of the author,
will close this chapter.

IV.4. Collective Waves in a Dusty Plasma

The most important collective phenomenon in a dusty plasma is the
existence of very low frequency waves, of the order of a few Hz, the so-called
dust acoustic waves, which involve the fluctuation of the density of charged
dust particles. Let us consider a complex plasma, with no external fields or
radiation fluxes, composed of electrons, one species of single ionized positive
ions and only one type of spherical, unmagnetized dust grains. As the mass
of the dust grains is several orders of magnitude larger than the mass of the
other plasma constituents, their motion is also several orders of magnitude
slower than the electron and ion motion. Then in the presence of the slow
motion of a dust wave both the electrons and the ions can be in permanent
thermal equilibrium with the local plasma potential ϕ. Therefore, the first
approximation is to consider isothermal electrons (of temperature Te) and
ions (of temperature Ti), their number densities being given by Boltzmann
distributions

ne = ne,0 exp

(
eϕ

kBTe

)
,

ni = ni,0 exp

(
− eϕ

kBTi

)
,

(4.58)

ne,0 and ni,0 being, respectively, the equilibrium electronic and ionic number
densities. The movement of the dust particles is described by a continuity
equation

∂nd
∂t

+∇ (nd~vd) = 0 (4.59)

nd(~rd, t) being the number density of the dust particles and ~vd the dust fluid
velocity (one neglects any source/sink term), and by a momentum equation

md

(
∂

∂t
+ ~vd · ∇

)
~vd = −qd∇ϕ−

kBTe
nd
∇nd. (4.60)

Here qd = −Zde is the negative charge of the dust grain of mass md and Td
is the temperature of the dust fluid. The second term in the right hand side
of (4.60) represents the pressure force of the dust fluid at temperature Td.
To these equations one has to add the Poisson equation

∇2ϕ =
e

ε0
(ne + Zdnd − ni) (4.61)

and the equation describing the charge fluctuations on the dust grain. As
the hydrodynamic time associated with the motion of the dust wave is pro-
portional to ω−1

pd , where ωpd is the plasma frequency of the charged dust
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fluid, ω2
pd =

nd,0(eZd,0)2

ε0md
, and it is several orders of magnitude larger than

the charging time of the dust grains, τc, one can assume that the dust grain
charge has enough time to accommodate itself with the slow varying plasma
potential generated by the fluctuation in the plasma density when dust waves
propagate. In other words, the formula (4.33), giving the equilibrium dust
charge, remains valid if the corresponding quantities, constant at equilib-
rium, are replaced by the local slowly varying ones. Denoting by the index
zero the equilibrium values, z0, P0, of the adimensional parameters z, P (see
§IV.2) which satisfy the equation√

me

mi
(1 + z0) =

√
τ exp(−z0/τ)(1− P0z0), (4.62)

small perturbation will be taken z1 � z0, P1 � P0, so that z = z0 + z1 and
P = P0 + P1 satisfy a similar equation√

me

mi
(1 + z) =

√
τ exp(−z/τ)(1− Pz). (4.63)

It is easily shown that

P1 = P0

(
nd,1
nd,0
− ni,1
ni,0

)
, (4.64)

where nd = nd,0 + nd,1 and ni = ni,0 + ni,1 with nd,1 � nd,0 and ni,1 � ni,0
respectively. Introducing the series expansions around the equilibrium values
in (4.63) and linearizing, one obtains(

1

1 + z0
+

1

τ
+

P0

1− P0z0

)
z1 =

P0z0

1− P0z0

(
ni,1
ni,0
−
nd,1
nd,0

)
(4.65)

and finally z1 is related to the first order fluctuations of the ion and dust
densities ni,1 and nd,1 through the expression

z1 = α

(
ni,1
ni,0
−
nd,1
nd,0

)
z0, (4.66)

where

α =
P0

P0 + (1− P0z0)
(

1
τ + 1

1+z0

) . (4.67)

For a given ionic temperature Ti, the fluctuation of the dust grain charge is

Zd,1 = Zd,0
z1

z0

or using (4.66), it writes

Zd,1 = Zd,0α

(
ni,1
ni,0
−
nd,1
nd,0

)
. (4.68)
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In the followings this approximation will be referred to as the “local equilib-
rium approximation” (LEA). Similar arguments to LEA were used by Ma
and Liu in their study of the dust-acoustic waves [23,24].

Further on using the local equilibrium approximation, the linear dust
acoustic and dust ion-acoustic waves will be discussed and then, extending
these arguments also in higher orders, the nonlinear (solitary) dust-acoustic
waves will be studied.

IV.4.1. Dust-Acoustic Waves

To study the linear dust acoustic waves, the equations (4.58)-(4.61) need
to be linearized around the equilibrium values. Writing ne = ne,0 + ne,1,
ni = ni,0 + ni,1, nd = nd,0 + nd,1 and Zd = Zd,0 + Zd,1, one gets

ne,1 = ne,0
eϕ

kBTe

ni,1 = −ni,0
eϕ

kBTi
∂nd,1
∂t

+ nd,0∇~vd = 0

md
∂ ~vd
∂t

= eZd,0∇ϕ−
kBTd
nd,0

∇nd,1

∇2ϕ =
e

ε0
(ne,1 − ni,1 + Zd,0nd,1 + Zd,1nd,0)

(4.69)

Using (4.68) and the first two equations (4.69), the Poisson equation writes

∇2ϕ =
e

ε0

[(
1− αZd,0

nd,0
ni,0

+
1

τ

ne,0
ni,0

)
eni,0
kBTi

ϕ+ Zd,0(1− α)nd,1

]
(4.70)

Looking for plane wave solutions

~vd = ~V exp
[
i(~k · ~r − ωt)

]
nd,1 = N exp

[
i(~k · ~r − ωt)

]
ϕ = Φ exp

[
i(~k · ~r − ωt)

] (4.71)

from the other equations (4.69), one gets

~k · ~V = ω
N

nd,0

mdω
(
~k · ~V

)
= −eZd,0k2Φ +

kBTd
nd,0

k2N

− k2Φ =
e

ε0

[(
1− αZd,0

nd,0
ni,0

+
1

τ

ne,0
ni,0

)
eni,0
kBTi

Φ + Zd,0(1− α)N

] (4.72)

From the first two equation (4.72), it results(
ω2 − v2

Tdk
2
)
N = −

eZd,0nd,0
md

k2Φ, vTd =

(
kBTd
md

)1/2
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and vTd is the thermal speed of the dust particle fluid. Introducing this into
the third equation (4.72), one finds

−k2 =
1

λ2
Di

(
1− αZd,0

nd,0
ni,0

+
1

τ

ne,0
ni,0

)
− (1− α)

ω2
pdk

2

ω2 − v2
Tdk

2

(λDi is the ionic Debye length) and the following dispersion relation is ob-
tained

ω2 = v2
Tdk

2 + (1− α)
ω2
pd (λDik)2

1 + 1
τ −

(
α+ 1

τ

)
Zd,0

nd,0
ni,0

+ λ2
Dik

2
, (4.73)

where the equilibrium neutrality condition was used

ne,0
ni,0

= 1− Zd,0
nd,0
ni,0

The case of constant charge on the dust grain (Zd = Zd,0) is formally ob-
tained from (4.73) by taking α = 0

ω2 = v2
Tdk

2 +
ω2
pd (λDik)2

1 + 1
τ

(
1− Zd,0

nd,0
ni,0

)
+ (λDik)2

, (4.74)

Actually z1 = 0 implies that the relative fluctuations of the ionic and dust
fluid are the same,

nd,1
nd,0

=
ni,1
ni,0

, and the result (4.74) is derived omitting in

the Poisson equation the term Zd,1nd,0.

IV.4.2. Dust Ion-Acoustic Waves

The dust ion-acoustic waves were predicted theoretically by Shukla and
Silin in 1992 as oscillation modes in complex plasmas with phase velocity
larger than the ion and dust particle thermal speed but much smaller than
the electron thermal speed. Consequently, the ions are no longer in equilib-
rium with the local potential and the ionic fluid is described by a continuity
and momentum equation

∂ni
∂t

+∇ (ni~vi) = 0

mi

(
∂

∂t
+ ~vi · ∇

)
~vi = −qi∇ϕ−

kBTi
ni
∇ni,

(4.75)

where vi is the ionic fluid velocity, mi the ion mass and Ti the ionic fluid
temperature. In case of single ionized positive ions and uni-directional move-
ment, these equation give the following relation for the first order ion number
density perturbation

∂ni,1
∂t

+ ni,0∇~vi = 0

mi
∂~vi
∂t

= −e∇ϕ− kBTi
ni,0
∇ni,1,

(4.76)
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which combined give (
∂2

∂t2
− v2

T i∇2

)
ni,1 =

ni,0e

mi
∇2ϕ (4.77)

Dust ion-acoustic waves were observed experimentally by Barkan et al
(1996) and Nakamura et al (1999) having frequencies in the range of tens of
kHz [43]. Therefore the Local Equilibrium Approximation theory, presented
before, may still hold even if the two orders of magnitude between the cha-
racteristic dust particle charging time and the period of the dust ion-acoustic
oscillations seem to stress its limits. Besides, due to inertial effects, one may
consider that the dust grain fluid isn’t perturbed by the propagation of the
dust ion-acoustic wave and consequently, in the equations (4.68) and the
rest of relations in (4.69) one may take nd,1 ' 0. Finally one obtains

Zd,1 = αZd,0
ni,1
ni,0

ne,1 = ne,0
eϕ

kBTe

ε0∇2ϕ = e (ne,1 − ni,1 + Zd,1nd,0)

(4.78)

which, together with (4.77) describe the ion-acoustic wave. Looking for
plane wave solutions (4.71), it is easy to derive the following dispersion
relation

ω2 = k2ω2
pi

[
λ2
Di +

λ2
De

1 + k2λ2
De

(
1− α

nd,0Zd,0
ni,0

)]
(4.79)

If the case of constant charge on the dust grain is considered, the term
Zd,1nd,0 vanishes from the Poisson equation (equivalent to taking α = 0)
and the dispersion relation writes

ω2 = k2

(
v2
T i +

c2
S

1 + k2λ2
De

)
, (4.80)

where cS = ωpiλDe. This turns into the same result in [43] (§4.2.2) when
the condition ω � kvT i, kvTe is imposed.

IV.5. Influence of Dust Charge Variation on Dust-Acoustic
Solitary Waves

The complexity of the dusty plasma medium arises from considering the
dynamical character of the charge collected on the dust grains as it depends
on the local properties of the surrounding plasma. To study the influence
of the dust charging process on the solitary waves in the (dust) acoustic
range, let us consider the simple model of a complex plasma composed from
single ionized cations, electrons and one type of spherical, unmagnetizable
dust particles of radius rd, which is isolated from external fields and radia-
tion fluxes. We’ll use the orbit limited motion approximation to derive the



IV§5 Influence of Dust Charge Variation on Dust-Acoustic Solitary Waves 105

currents of charged particles falling on the dust grains and thus estimate
numerically the characteristic charging time τc. As this time is in the range
of microseconds, for oscillations in the acoustic domain and especially for
the associated nonlinear phenomena that manifest at event large time and
space scales, a new approximation can be applied: the local equilibrium ap-
proximation(LEA). It states that the fluctuating charge on the dust grain
during wave propagation satisfies the same equation as the neutrality con-
dition obtained for non-isolated grains at equilibrium because of the time
scale difference between the particle charging and the wave propagation
phenomenon. Further on, the plasma fluids will be considered at the same
temperature Te = Ti = Td = T and dimensionless variables and quantities
will be introduced [13]. Thus the space unit will be the dust fluid Debye
length, the time will be scaled in units related to the dust fluid plasmonic
frequency (ω−1

pd ), the dust fluid velocity will be expressed in units of the
dust particle thermal velocity vTd and the electrostatic potential in units of
kBT/e. The number of elementary charges Zd will be in units of its equilib-
rium value Zd0 and the number densities of the different plasma constituents
nj (j = i, e, d) in units of their equilibrium values respectively (nj0).

Using the model described above, the electrons and ions will be in equi-
librium with the local plasma potential and, together with the dust continu-
ity and momentum equations, the Poisson equation and the local neutrality
relation given by LEA, the complex plasma is described by

ne = exp (Φ) , ni = exp (−Φ) (4.81)

∂nd
∂t

+
∂

∂x
(udnd) = 0 (4.82)

∂ud
∂t

+ ud
∂ud
∂x

= Zd
∂Φ

∂x
(4.83)

∂2Φ

∂x2
= −µini + µene + Zdnd, µj =

nj0
nd0Zd0

, j = e, i (4.84)

(1 + Y ) =

√
mi

me
(1− PY ) exp(−Y ) (4.85)

where the local dynamical Y and P are related to their equilibrium values

Y = Y0Zd Y0 =
e2/rd
kBT

Zd0

P = P0
nd
ni

P0 =
kBT

e2/rd

nd0

ni0

(4.86)

As the effects of nonlinearity manifest at large time and space scales,
an appropriate asymptotic method must be used to describe nonlinear phe-
nomena. Such a method is the multiple scales method which is used to
construct uniformly valid approximations to the solutions of perturbation
problems. It introduces fast or slow-scale variables for independent vari-
ables which are then considered as independent. The additional freedom,
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thus introduced, leads to secular terms when the problem is reformulated
that need to be eliminated. The process of elimination puts constraints of
the approximate condition, called solvability conditions, which in the case of
nonlinear problems lead to hierarchies of evolution equations in increasing
orders of approximation.

For the case of the dusty plasma when dust grain charge variation is
considered, let us introduce the stretched variables

ξ = ε1/2(x− v0t), τ = ε3/2t, (4.87)

where ε is a small parameter (ε� 1) and v0 is the speed of the space-time
frame where the nonlinearity manifests. Then the quantities of interest, nd,
ud, Φ, Zd, can be expanded in power series of ε

nd = 1 + εn
(1)
d + ε2n

(2)
d + . . .

ud = εu
(1)
d + ε2u

(2)
d + . . .

Φ = εΦ(1) + ε2Φ(2) + . . .

Zd = 1 + εZ
(1)
d + ε2Z

(2)
d + . . .

(4.88)

and introducing these expansions into (4.85), one gets

Y = Y0

(
1 + εZ

(1)
d + ε2Z

(2)
d + . . .

)
,

P = P0

{
1 + ε

(
n

(1)
d − n

(1)
i

)
+ ε2

[
n

(2)
d − n

(2)
i +

(
n

(1)
i

)2
− n(1)

d n
(1)
i

]
+. . .

}
.

(4.89)

In the zero-th order of ε, from the Poisson equation one recovers the neu-
trality condition at equilibrium

µi = 1 + µe. (4.90)

The first order constraints allow one to express all the first order quantities
with respect to the first order approximation of the local potential and
considering (4.85) in the local equilibrium approximation, one gets

v0 =

[
1−B

µi + µe −B

]1/2

,
1

B
= 1 +

(2 + Y0)(1− P0Y0)

P0(1 + Y0)
, (4.91)

which for B = 0 becomes the well-known result in the case when the dust
particle charge is kept constant [43].

In the order ε2, expressing the second order quantities with respect to
the first order quantities (especially the first order approximation of the local
potential) and eliminating them, one can derive the following KdV equation
(see [13])

∂Φ(1)

∂τ
+

v3
0

2(1−B)

∂3Φ(1)

∂ξ3
−M v3

0

2
Φ(1)∂Φ(1)

∂ξ
= 0, (4.92)
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where

M =
3

v4
0

− B

v2
0

(
1− 1

v2
0

)
− K

1−B

K = 1 + 2B

[
1

v2
0

(
1− 1

v2
0

)
+D

]
D = −1

2
+

(
1− 1

v2
0

)[
1 +B

(
1− 1

v2
0

)(
1 +BY0

(1− P0Y0)(3 + Y0)

2P0(1 + Y0)

)] (4.93)

Neglecting the effect of the dust particle charge variation by taking B = 0,
(4.92) transforms into the result in [43]

∂Φ(1)

∂τ
− asΦ(1)∂Φ(1)

∂ξ
+ bs

∂3Φ(1)

∂ξ3
= 0

as =
v3

0

2

(
3

v4
0

− 1

)
> 0, bs =

v3
0

2

. (4.94)

In (4.94), as > 0 because µi > 1 and then v0 < 1.
Taking into account the definition of the parameter P0, (4.91) and the

limited range of variation for P0Y0 (the ratio of dust charge density to ion
charge density) in a dusty plasma, one concludes that the B parameter has a
very weak dependence on the dust charge density at equilibrium over a large
interval and a tendency to decrease as the dust number density increases.
Thus the previous conclusions remain valid when the dust particle charge
variation is considered and denoting

as =
v3

0

2
M > 0, bs =

v3
0

2(1−B)
(4.95)

the one soliton solution of (4.92) writes

Φ(1)(ξ, τ) =− Φ(1)
m sech2 [(ξ − u0τ)/∆]

Φ(1)
m =

3u0

as
, ∆ =

√
4bs
u0

(4.96)

describing a propagating soliton with velocity u0. As Φ(1)(ξ, τ) < 0, from
multiple scale analysis [13], we have

n
(1)
d (ξ, τ) = − 1

v2
0

Φ(1)(ξ, τ) > 0 (4.97)

and the soliton is a compressive solitary wave.
The problem of the influence of dust grain charge fluctuations on the

dusty plasma properties was discussed in many papers. Only few examples
shall be presented here, namely those related to the influence of dust charge
variation on the dust acoustic waves.



IV§6 Nonlinear DA Modes in DP with Different Dust Grain Sizes 108

In their paper [27] Melandsø et al. considered a physical situation close
to the complex plasma condition in many planetary rings, when the wave
frequency of the DAW excitation is of the same order, or less than the
charging frequency of the dust particles (1/τc). This is completely different
than the basic assumptions of the local equilibrium approximation used in
this paper. Taking into account the fluid equation for the charging of dust
particles they found, in the first order of approximation

∂qd,1
∂t

= −Ω1qd,1 − Ω2ϕ1,

where qd,1 and ϕ1 are the first order corrections to the equilibrium values of
the dust particle charge and local plasma potential, respectively. The effect
on the linear DAW is the introduction of an imaginary part of the angular
pulsation leading to the damping of the wave. From physical point of view
this damping arises because the first order dust charge perturbation is out
of phase with the dust number density perturbation provoked by the passing
wave. Similar conclusions have been obtained in [17,51].

Extending these arguments to the nonlinear case, Rao and Shukla [39]
found in the case of DAW excitations a KdV equation with a damping
term (eq. (34)) describing the evolution of the plasma potential first order
approximation. The damping rate almost the same as the damping rate
predicted in the linear theory. They emphasize that their result is valid only
for time-scales much shorter than the dust charging time.

A different point of view was adopted by Ma and Liu [23,25], similar to
the LEA presented herein. Considering situations when the charging time is
several orders of magnitude smaller than the corresponding hydrodynamic
time characterizing the DAW (τc ∼ ns, τh ∼ ω−1

pd ∼ 2ms), they assume that
the dust charge is determined by the local electrostatic potential and find
the influence of dust grain charge variation on a Sagdeev’s potential.

A more detailed discussion of the effect of dust grain charge variation on
(linear) ion-acoustic waves was done by Vladimirov et al. [53] taking into
account the ionization and recombination processes in plasma as well.

Several other papers deal with the influence of dust charge variation
upon the dusty plasma properties and here [10,35,37,38,55,56] is a selected
list where more references on the subject can be found.

IV.6. Nonlinear Dust Acoustic Modes in a Dusty Plasma with
Dust Grains of Different Sizes

Dust grain material, shape and sizes have a great influence on the beha-
vior of complex plasmas and implicitly on their oscillation modes, especially
in the “acoustic” frequency range. In order to study the influence of the
dust grain size distribution on the dust-acoustic modes for instance, let use
consider a very simple model of a non-magnetizable dusty plasma, composed
of isothermal electrons and ions and two species of spherical dust particles
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of radii r1 and r2 and number densities N1 and N2. We’ll assume that the
complex plasma is not exposed to any external fields or radiation fluxes
so that the dust grains will charge negatively. At equilibrium N10 = cN0,
N20 = (1−c)N0, N0 being the constant number density of all the dust parti-
cles in the system. The equilibrium charges on the two types of dust particles
will be denote by −eZ1 and respectively −eZ2 and their variation will be
neglected. According to the previous discussions, the charging process oc-
curs in such a way as to obtain, at equilibrium, the same potential on each
dust grain regardless its radius (type). Therefore Z1/r1 = Z2/r2 = 〈Z〉 / 〈r〉,
where 〈r〉 = cr1 + (1 − c)r2, and the equilibrium value 〈Z〉 is found as the
solution of the equation√

me

mi
(1 + z) =

√
τ exp (−z/τ) (1− Pz)

z =
1

4πε0

〈Z〉 e2

〈r〉 kBTi
P = 4πN0 〈r〉λ2

Di

(4.98)

The inertial effects of the electron and ion fluids will be neglected so that
one can assume Boltzmann distributions for the electron and ion number
densities

ne = ne0 exp

(
eϕ

kBTe

)
ni = ni0 exp

(
− eϕ

kBTi

) (4.99)

ϕ being the plasma electric potential and Te, Ti the temperatures of the
electron and ion fluid respectively. The motion of the dust fluids is described
by the equations

∂Nj

∂t
+

∂

∂x
(Njvj) = 0

mj

(
∂

∂t
+ vj

∂

∂x

)
vj = eZj

∂ϕ

∂x

(4.100)

where j = 1, 2 and vj are the flowing velocities of the two dust fluids. To
complete the suite of relations describing the fluid dynamics, one has to
consider the Poisson equation

∂2ϕ

∂x2
=

e

ε0
(ne − ni + Z1N1 + Z2N2) (4.101)

and the neutrality condition at equilibrium

ne0 + Z1N10 + Z2N20 = ni0 (4.102)
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which can be written as

ne0
ni0

= 1− 〈Z〉 N0

ni0
〈Z〉 = cZ1 + (1− c)Z2

(4.103)

In formulating these expressions only one-dimensional movement was con-
sidered and in the equations of motion the fluid pressure and other forces
were neglected. For simplicity the same temperature will be taken for all
the plasma components Te = Ti = Td = T .

As in the previous calculations, it is convenient to use dimensionless
variables by considering appropriate units. Therefore the space coordinate
will be expressed in units of the Debye screening length λ2

d = ε0kBT
e2〈Z〉N0

, the

time will be measured in units ω−1
pd , the inverse of the dust fluid plasmonic

frequency ω2
pd = e2N0〈Z〉2

ε0〈m〉 , where 〈m〉 = cm1 + (1− c)m2, the fluid velocities

in units of the dust fluid mixture thermal speed v2
Td = kBT 〈Z〉

〈m〉 , vTd = λdωpd,

the electrostatic potentials in units of kBT/e, the thermal kinetic energy
in eV, and the plasma species number densities ne, ni, Nj , (j = 1, 2) in
units of their respective equilibrium values ne0, ni0, N0. Then the equations
(4.99)-(4.103) write

ne = exp(ϕ), ni = exp(−ϕ) (4.104)

∂Nj

∂t
+

∂

∂x
(Njvj) = 0(

∂

∂t
+ vj

∂

∂x

)
vj = Qj

∂ϕ

∂x

j = 1, 2 (4.105)

∂2ϕ

∂x2
= µene − µini + ζ1N1 + ζ2N2 (4.106)

µi = µe + 1 (4.107)

where the following notations were introduced

µk =
nk0

N0 〈Z〉
, k = (e, i)

ζ1 =
cZ1

〈Z〉
, ζ2 =

(1− c)Z2

〈Z〉
, ζ1 + ζ2 = 1,

Qj =
〈m〉Zj
〈Z〉mj

, j = 1, 2

(4.108)

To study the effect of the nonlinearities, a multiple scale analysis will be
performed using the stretched variables

ξ = ε1/2(x− u0t), τ = ε3/2t, (4.109)
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where u0 is the speed of the space-time frame where the nonlinearity mani-
fests. Expanding ne, ni, Nj , vj , ϕ in power series in ε

nk = 1 + εn
(1)
k + ε2n

(2)
k + . . . (k = e, i)

Nj = 1 + εN
(1)
j + ε2N

(2)
j + . . . ,

vj = εv
(1)
j + ε2v

(2)
j + . . . (j = 1, 2)

ϕ = εϕ(1) + ε2ϕ(2) + . . .

(4.110)

in the zero-th order from the Poisson equation one recovers the neutrality
condition (4.107). In the following two orders, the equations (4.104) give

n(1)
e = ϕ(1), n

(1)
i = −ϕ(1),

n(2)
e = ϕ(2) +

1

2

(
ϕ(1)

)2
, n

(2)
i = −ϕ(2) +

1

2

(
ϕ(1)

)2
,

(4.111)

which used in the Poisson equation (4.106) lead to

ζ1N
(1)
1 + ζ2N

(1)
2 + (µi + µe)ϕ

(1) = 0 (4.112)

∂2ϕ(1)

∂ξ2
= (µi + µe)ϕ

(2) − 1

2
(µi − µe)

(
ϕ(1)

)2
+ ζ1N

(2)
1 + ζ2N

(2)
2 (4.113)

in order ε and ε2 respectively. For the same orders of the small expansion
parameter, from the continuity equations in (4.105) one gets

v
(1)
j = u0N

(1)
j ,

−u0

∂N
(2)
j

∂ξ
+
∂N

(1)
j

∂τ
+
∂
(
N

(1)
j v

(1)
j

)
∂ξ

+
∂v

(2)
j

∂ξ
= 0,

(4.114)

while from the equations of motion one obtains, successively

Qjϕ
(1) = −u0v

(1)
j ,

Qj
∂ϕ(2)

∂ξ
= −u0

∂v
(2)
j

∂ξ
+
v

(1)
j

∂τ
+ v

(1)
j

∂v
(1)
j

∂ξ
.

(4.115)

The first equations in (4.114) and (4.115) allow us to express the first order

approximations N
(1)
j and v

(1)
j with respect to ϕ(1) and using these new ex-

pressions for N
(1)
j in (4.112) the following relation is obtained for the velocity

u0

u2
0 =

ζ1Q1 + ζ2Q2

µi + µe
. (4.116)

Combining the second equations in (4.114) and (4.115) and eliminating

∂v
(2)
j /∂ξ, the following relation results

∂N
(2)
j

∂ξ
= −Qj

u2
0

∂ϕ(2)

∂ξ
− 2

Qj
u3

0

∂ϕ(1)

∂τ
+

3Q2
j

u4
0

ϕ(1)∂ϕ
(1)

∂ξ
. (4.117)
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Derivating (4.113) with respect to ξ and using (4.117) to eliminate the second
order approximations, one derives the following Korteweg-de Vries equation

∂ϕ(1)

∂τ
− asϕ(1)∂ϕ

(1)

∂ξ
+ bs

∂3ϕ(1)

∂ξ3
= 0,

bs =
u3

0

2(ζ1Q1 + ζ2Q2)
,

as =
u3

0

2(ζ1Q1 + ζ2Q2)

(
3(ζ1Q

2
1 + ζ2Q

2
2)

u4
0

− 1

)
> 0.

(4.118)

If one considers a single type of dust grains, the well-known result (4.110)
is recovered (with v0 being replaced by u0).

To study the effect of the dust grain size in a comparison with the case
of one dust species complex plasma, let us consider that the first type of
dust grains has a larger radius r1 > r2 which consequently means a larger
mass m1 > m2 (if one takes the dust grains made of the same material) and
a larger equilibrium charge Z1 > Z2 (since at equilibrium Z1/r1 = Z2/r2).
Let’s denote the ratio of the radii δ = r1

r2 ≥ 1. Then

ζ1(c) = cδ/(cδ + 1− c),
ζ2(c) = (1− c)/(cδ + 1− c)

will variate between ζ1 = 0, ζ2 = 1 when c = 0 and ζ1 = 1, ζ2 = 0 for
c = 1 as in the figure IV.10. Besides Z1(c) = δZ2(c), m1(c) = δ3m2(c) and

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

c

ΖHcL

- Ζ1HcL
- Ζ2HcL

Figure IV.10: The dependence ζ1 and ζ2 on the concentration c for a complex plasma with
δ = 5.

consequently Q1(c) = Q2(c)/δ2 where Q2(c) = (cδ3 + 1 − c)/(cδ + 1 − c).
The parameters Q1 and Q2 are in fact the specific charge of each type of
dust grains normalized to the mean value of the specific charge of dust fluid
particles. As ζ1, ζ2 are always positive and less than unity but satisfying
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the relation ζ1 + ζ2 = 1, they can be interpreted as probabilities. Then the
following mean values can be introduced

〈Q〉ζ = ζ1Q1 + ζ2Q2〈
Q2
〉
ζ

= ζ1Q
2
1 + ζ2Q

2
2

,

which for the limiting situation when only one type of dust grains is present
(c = 0, c = 1), are equal to 1. Considering the definitions (4.108) and (4.98),
for a given concentration c, one gets the following relation

µi + µe = 2
ni,0

N0 〈Z〉
− 1 =

2

Pz
− 1.

By solving numerically the charge neutrality equation in the local equilib-
rium approximation, the parameter u0 can be determined as a function of
c and consequently the dependence of the coefficients in the KdV equation
(4.118), as, bs, on the concentration of larger dust grain is given in figure
IV.11. It is obvious that none of the coefficients is zero or changes sign.
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Figure IV.11: The dependence as(c) (left) and bs(c) (right) for a complex plasma with
δ = 5.

In constructing the graphics IV.10 and IV.11, a complex plasma with
δ = 5 was considered in which the smaller dust grains of radius r2 = 1µm
where gradually substituted by larger ones (c is the concentration of dust
type with larger radius) so that the ratio of dust particles (regardless their
size) to ions is kept at ni,0/N0 = 10−4 and the electronic and ionic fluids
have the same temperature Te = Ti = T = 3× 104K.

A simple solitary wave solution of equation (4.118) (the 1-soliton solu-
tion) is easily found assuming that ϕ(1)(ξ, τ) depends only on X = ξ − V0τ ,
where V0 is the soliton velocity. Then integrating twice the differential equa-
tion with respect to the new variable X with vanishing conditions at infinity,
one obtains (

dϕ(1)

dX

)2

=
V0

bs

(
ϕ(1)

)2
+
as
3

(
ϕ(1)

)3

Looking for a solution of the form

ϕ(1) = ϕm sech2X/∆
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one gets

∆ = 2

√
bs
V0
, ϕm = −3V0

as

ϕ(1)(ξ − V0τ) = −3V0

as

1

cosh2
[

1
2

√
V0
bs

(ξ − V0τ)
] (4.119)

The DAW soliton is always associated with a negative plasma potential and

since from (4.76), (4.77), one gets n
(1)
j = −Qj/u2

0ϕ
(1), it is a compressive

wave.

IV.7. Dust Ion-Acoustic Solitons in a Dusty Plasma with
Positive and Negative Ions

More than twenty years ago it was shown that a small amount of light
negative ions affects strongly the plasma behavior, namely that there is a
critical concentration of the negative ions for which the equation describing
the propagation of a nonlinear wave (soliton) is the modified Korteweg-de
Vries equation, and not the usual KdV one [9,18,52,54]. The same problem
will be discussed here for a dusty plasma, then, in the next section, the basic
equation describing the dusty plasma will be presented. In the following,
the non-critical and critical case will be investigated.

Let us consider an unmagnetized dusty plasma composed of single ion-
ized positive and light, negative ions, isothermal electrons and negatively
charged dust particles [14]. Due to the mass difference and frequency range
of the studied waves, the dust particles will be considered at rest and will
consequently only contribute to the equilibrium neutrality condition. We’ll

denote the equilibrium number densities by n
(0)
i (i =, e,+,−, d) and the +,−

subscripts will be used for quantities characterizing the positive, respectively
the negative ions. For simplicity we’ll consider that T+ = T− ' Te and the
ratio of the negative ion mass to the positive ion mass will be denoted by
Q = m−/m+. Also adimensional variables will be used so that the distances
will be measured in units of plasma Debye length λD, the time in units of
ω−1
p , where ωp is the plasmonic frequency of the predominant, positive ions,

the potential in units of kBTe/e, the velocities in units of the thermal speed
of the positive ions and the densities of the plasma species in units of the

positive ion density at equilibrium n
(0)
+ .

In a hydrodynamic description the positive and negative ion fluids will
satisfy each a continuity equation and the following equations of motion

∂u+

∂t
+ u+

∂u+

∂x
=− ∂Φ

∂x
,

∂u−
∂t

+ u−
∂u−
∂x

=− 1

Q

∂Φ

∂x
,

(4.120)

where Φ is the local plasma potential, u+,− denote the positive and neg-
ative ion fluid velocities. Only the electrical forces have been taken into
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account, the others, such as pressure forces, being neglected. The electrons
are considered in equilibrium with the local potential, therefore

ne = n(0)
e exp(Φ). (4.121)

To these equations one has to attach the Poisson equation

∂2Φ

∂x2
= ne + n− + Zdn

(0)
d − n+ (4.122)

and the complex plasma neutrality condition

1 = n(0)
e + n

(0)
− + Zdn

(0)
d , (4.123)

which introduce the contribution of the dust grains into the problem. In both

equations (4.122), (4.123), the product Zdn
(0)
d can be regarded as the average

value of a certain size distribution of dust particles like in the previous
section.

The effects of nonlinearities are cumulative in space and time, therefore
appropriate asymptotic methods need to be used in order to study them.
One of these is the multiple scales method which introduces stretched space
and time variables and expansions of the important quantities in series of a
small parameter ε which determines these new variables (see [14]). Let us
consider the stretched variables of the form

ξ = ε1/2(x− vt),
τ = ε3/2t,

(4.124)

where v is the velocity of the space frame where the nonlinearity develops.
Then, the complex plasma fluid quantities are expanded in power series

n+ = 1 + εn
(1)
+ + ε2n

(2)
+ + . . . u+ = εu

(1)
+ + ε2u

(2)
+ + . . .

n− = n
(0)
− + εn

(1)
− + ε2n

(2)
− + . . . u− = εu

(1)
− + ε2u

(2)
− + . . .

ne = n(0)
e + εn(1)

e + ε2n(2)
e + . . . Φ = εΦ(1) + ε2Φ(2) + . . . ,

(4.125)

satisfying the boundary conditions |x| → ∞. Introducing the expansions
(4.125) and using the stretched variables (4.124) into the system of equations
that describe the plasma fluids, it has to be satisfied in each order of ε. In
the zero-th order the neutrality condition (4.123) is recovered, while in the
first order one gets

n(1)
e + n

(1)
− − n

(1)
+ = 0 (4.126)

n(1)
e = n(0)

e Φ(1) (4.127)

u
(1)
+ =

1

v
Φ(1), u

(1)
− = − 1

Qv
Φ(1) (4.128)

n
(1)
+ =

1

v2
Φ(1), n

(1)
− = −

n
(0)
−

Qv2
Φ(1) (4.129)
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Using (4.127) and (4.129) in (4.126) an expression for the velocity v is ob-
tained

1

v2
=

n
(0)
e

1 +
n

(0)
−
Q

, (4.130)

as a function of n
(0)
− , Q and Zdn

(0)
d (if one considers the neutrality condition

at equilibrium to replace n
(0)
e ).

In the second order of the expansion, a series of relations are obtained and
the second order approximations of the plasma parameters can be eliminated
from them using the above relations (4.126)-(4.129) [14]. Finally, all the
quantities are related to Φ(1) which has to satisfy the following Korteweg-de
Vries (KdV) equation

2

v3

(
1 +

n
(0)
−
Q

)
∂Φ(1)

∂τ
+
∂3Φ(1)

∂ξ3
+

+

[
3

v4

(
1−

n
(0)
−
Q2

)
−
(

1− zdn
(0)
d − n

(0)
−

)]
Φ(1)∂Φ(1)

∂ξ
= 0. (4.131)

It is easily seen that there is a critical concentration of negative ions at

equilibrium n
(0)
− for which the coefficient of the nonlinear term in the KdV

equation (4.131) vanishes. Its value can be obtained by solving a second
order algebraic equation(

n
(0)
−

)2
−
[

3

2

(
1−Zdn

(0)
d +Q2

)
+Q

]
n

(0)
− +

(
1− 3

2
Zdn

(0)
d

)
Q2 = 0, (4.132)

Its discriminant is always positive so the number of positive roots depends

on the sign of the free term. If Zdn
(0)
d < 2/3 there are two positive roots

from which only one is physically acceptable as it satisfies the inequality

n
(0)
− < 1 − Zdn

(0)
d imposed by the charge neutrality condition (4.123). For

small values of Q, light negative ions, the critical negative ion density may
be approximated as

n
(crit)
− =

2
3 − Zdn

(0)
d

1− Zdn
(0)
d

Q2 + O(Q3). (4.133)

The value Zdn
(0)
d = 2

3 is actually the value of the dust charge density for
which the critical condition is realized (the nonlinear term vanishes) in the
absence of negative ions while for higher values the condition is no longer
satisfied. Therefore the critical condition is obtained, in fact, for small

concentrations of light negative ions but only when Zdn
(0)
d < 2

3 and this is
a new feature of the phenomenon induced by the presence of dust grains in
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plasma. Let us introduce the following notation for the coefficient of the
nonlinear term in the KdV equation (4.131)

γ =
3

v4

(
1−

n
(0)
−
Q2

)
− n(0)

e . (4.134)

When n
(0)
− < n

(crit)
− , γ > 0 and the KdV equation has compressing soliton

solution, while if n
(0)
− > n

(crit)
− , γ < 0 and one has rarefracting solitons as

solutions of (4.131). Since the critical negative ion density has small values,
the domain where compressing solitons may appear is very narrow. The

equation has only rarefracting soliton solutions when Zdn
(0)
d > 2

3 .
When the concentration of the negative ions is around the critical value,

the analysis above no longer applies so higher order nonlinear effects have
to be considered. In this “critical” region, the stretched variables that will
be used are [14]

ξ = ε(x− vt), τ = ε3t (4.135)

Applying the same algorithm as before but using the stretched variables
(4.135), one finds the neutrality condition in the zero-th order. In the next
order, corresponding to ε2, one recovers the equations (4.126)-(4.130) and
in the following order the equations for the second order approximations of
the quantities write

n(2)
e + n

(2)
− − n

(2)
+ = 0 (4.136)
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(4.138)
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(4.139)

Integrating (4.138) and (4.139) and expressing the first order approximations
of the quantities in terms of the first order approximation of the potential
using (4.128), (4.129), the second order quantities are expressed in terms of
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Φ(1) and Φ(2)
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It is easy to verify that (4.136) is satisfied if n
(0)
− is the critical negative ion

concentration (solution of (4.132)), therefore from here on n
(0)
− = n

(crit)
− . In

the next order of ε one gets
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The third order approximation of the physical parameters can be eliminated
from the set of equations above and using the expressions (4.126) - (4.130)
for the first order and (4.140) for the second order quantities, after careful
calculations, one finds a modified Korteweg-de Vries equation satisfied by
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(4.142)

Thus the final results correspond to the initial expectations. The novelty
of the present calculations is that the soliton parameters (the coefficients in
the equations) depend on the dust charge density and the negative ion mass
to positive ion mass ratio. If Q < 1 and only if the dimensionless dust charge
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density is 2/3, one can find a critical region for small concentrations of light,
negative ions. This critical region is the boundary between the region where
the KdV equation for the potential has rarefracting soliton solutions (and
the coefficient of the nonlinear term is negative, γ < 0) from the region
with compressing soliton solutions (γ > 0). Effectively, the region with
compressing solitons is found to be in a very narrow range of the negative
ion number density.

Finally, one should note that the previous results were obtained in the
situation when the electron and ion fluids have the same temperature and
the charge on the dust grain is considered constant. An improvement of this
outcome will be to take different ionic and electronic temperatures (T+ =
T− 6= Te) which is not expected to influence the complete integrability of
the final result in any way. Considering the charge on the dust particle as a
dynamic variable will also lead to results with better physical meaning.

IV.8. Conclusions and Perspectives

In this section the main results of the author will be briefly summarized
and the directions of further investigations will be pointed out.

Recognizing the importance of the dust grain charging process for com-
plex plasma properties, a detailed discussion on this subject was presented.
Though limited to the orbit limited motion approximation, the effect of
higher electron temperatures in the charging of isolated dust particles was
emphasized. when the dust number density nd,0 increases, the electrons’
influence diminishes and the charge on the dust grain decreases asymptoti-
cally to the same value regardless of the electron gas temperature. This is
due to electron gas depletion as more and more of them are caught on the
surface of the dust grains and the increasing electronic temperature favors
this phenomenon.

An important parameter, useful in analyzing different processes in a
dusty plasma, is the charging time, defined as the time needed for the charge
on a dust grain to return to the equilibrium value after a small fluctuation.
It was shown that for usual plasma conditions in laboratory experiments,
this parameter is of the order of microseconds. Using this fact, and only
in these conditions, the effect of charge variation on DAW and DIAW was
investigated. As characteristic times for dust-acoustic and dust ion-acoustic
waves are of order 10−2 s and 10−4 s respectively, it is reasonable to assume
that the charge on any dust particle has enough time yo adapt itself to
the local plasma conditions (local plasma potential) during the propagation
of such oscillations through the medium. This approximation was called
“local equilibrium approximation” (LEA), and using it the fluctuations of
the dust grain charge were expressed in terms of the fluctuations of the
plasma quantities. As mentioned in the text these conditions (ωpd, ωpi �
1/τc) are not fulfilled in spatial conditions (planetary rings for instance),
where the opposite situation is realized, and therefore the equation (4.28)
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has to be employed in determining the charge variation. The effect of the
charge variation on DAW properties is different in these two approximations,
namely using LEA one gets a shift of the dust acoustic wave characteristics
while in the other limit (in cosmic space conditions) the effect is a damping
of the wave.

In the local equilibrium approximation, the effect of the dust grain charge
variation on the linear and nonlinear dust acoustic waves and on the linear
dust ion-acoustic oscillations was determined. The effect is a shift in the
parameters of the DAW excitations.

In order to observe the influence of the dust fluid composition on DAW, a
model with two types of spherical grains of different radii (r1 > r2) and same
material(s) was considered. Applying a multiple scale analysis method, a
Korteweg-de Vries equation was derived for the local plasma potential per-
turbation with its coefficients depending on the concentration of the two
components and on the ratio δ = r1/r2. As a general rule, the 1-soliton
solution has a decreasing amplitude as it grows wider up to a certain dust
mixture composition and it narrows as one of the dust types becomes the
majority while its amplitude approaches the value corresponding to a com-
plex plasma with only one type of dust grains (the predominant one, see
figure IV.11).

Finally, a dusty plasma with a small amount of light negative ions was
considered. As expected from previous plasma research [14], a critical con-
centration of negative ions exists for which the coefficient of the nonlinear
term of the resulting KdV equation vanishes. In the near vicinity of this
critical concentration, new stretched variables must be used and the multi-
ple scale analysis leads, this time, to a modified Korteweg-de Vries equation
(mKdV). The dependence of the coefficients, in both equations, on the dusty
plasma characteristic parameters is also a novelty in the results of this in-
vestigation.

Several perspectives to continue and improve the previous results can be
envisaged.

First, a better analysis of the charging process taking into account a
better approximation of the electron and ion scattering in the screened field
of the negative charged dust grains is necessary. Also the influence of trapped
ions in the negative field of the dust grain should be studied. As a result a
better approximation for the equilibrium charge and the charging time will
result.

The influence of several species of dust particles of various radii on the
dust acoustic wave properties, and not only, is easily achievable by extending
the calculations in §IV.6 or applying similar methods to other problems.
Also a continuous distribution of dust grain radii deserves to be investigated
as well as taking dust grains of shapes other than spherical.

A far-off perspective could be the extension of the linear kinetic theory
developed by Tsytovich and De Angelis to the nonlinear regime.
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