Moduli Stabilisation in Heterotic String Compactifications

Andrei Micu

Department of Theoretical Physics

IFIN-HH Bucharest

Based on arXiv:0812.2172 [hep-th]
Nis, 4 April, 2009

Introduction

The Standard Model of Particle Physics \rightarrow gauge group $S U(3) \times S U(2) \times U(1)$ - works well at energies of oorder 100 GeV .

It is just an effective theory - at higher energies needs to be modified
Possibilities: Supersymmetry \rightarrow Minimal Supersymmetric Standard Model (MSSM)
GUT/susy GUT

Supersymmetry $=$ fermionic symmetry: \leftrightarrow fermion
(Super)Multiplets \rightarrow combinations of fields with different spin
Matter \rightarrow chiral supermultiplets $\Phi=(\phi, \psi)$
Lagrangean for these fields is given by three functions

- Kähler potential $K(\Phi, \bar{\Phi})$
- superpotential $W(\Phi)$
- gauge coupling function $f_{a b}(\Phi)$

$$
\begin{aligned}
\mathcal{L} & \sim-g_{i \bar{\jmath}} \partial_{\mu} \phi^{i} \partial^{\mu} \bar{\phi}^{\bar{\jmath}}-\frac{1}{4} \operatorname{Im} f_{a b} F_{\mu \nu}^{a} F^{b \mu \nu}+\frac{i}{4} R e f_{a b} F_{\mu \nu}^{a} \tilde{F}^{b \mu \nu}-V \\
g_{i \bar{\jmath}} & =\partial_{\Phi^{i}} \partial_{\bar{\Phi} \bar{\jmath}} K(\Phi, \bar{\Phi}), \\
V & =e^{K}\left(D_{i} W \overline{D_{j} W} g^{i \bar{\jmath}}-3|W|^{2}\right)+\frac{1}{2} \operatorname{Im} f_{a b}^{-1} D^{a} D^{b} \\
D_{i} W & =\partial_{\Phi^{i}} W+\left(\partial_{\Phi^{i}} K\right) W .
\end{aligned}
$$

Supersymmetric solutions: $D_{i} W=0$.

String theory

String theory is supposed to be valid at energies of order $M_{P l}=10^{19} \mathrm{GeV}$.
In the low energy limit \rightarrow supergravity in 10 space-time dimensions
Compactifications on 6-dimensional manifolds \rightarrow supergravity in 4d: K, W and f can be computed in string theory

There exist 5 consistent superstring theories: type IIA/B, type I, heterotic $S O(32) / E_{8} \times E_{8}$.

4d requirements

$N=1$ supersymmetry
Standard Model/GUT

- gauge grup $G \supset S U(3) \times S U(2) \times U(1)$
- chiral matter

Type II \rightarrow need additional constructions: intersecting branes, singularities etc.
$S O(32)$ gauge group: does not have the right representations for matter fields in 4d

We are left with $E_{8} \rightarrow$ works pretty well

Heterotic models

Bosonic spectrum in 10d: graviton $g_{M N}$; antisymmetric tensor field $B_{M N}$; dilaton (scalar) ϕ; gauge fields $E_{8} \times E_{8}$.

Constraints: Bianchi identity

$$
d H=\operatorname{tr} F \wedge F-\operatorname{tr} R \wedge R, \quad H=d B \quad \text { field strength of } B
$$

4d theory

$N=1$ supersymmetry \rightarrow compactifications on Calabi-Yau manifolds (SU(3) holonomy).
$[\operatorname{tr} R \wedge R] \neq 0 \rightarrow$ need $\operatorname{tr} F \wedge F \neq 0 \rightarrow$ breaks E_{8} gauge symmetry

We can always set $F \equiv R-S U(3)$ - structure
$E_{6} \times S U(3)=$ maximal subgrup of $E_{8} \rightarrow$ surviving gauge symmetry in 4 d is E_{6}.

Charged fields:

$$
248=(\mathbf{7 8}, \mathbf{1}) \oplus(\mathbf{1}, 8) \oplus(\mathbf{2 7}, \mathbf{3}) \oplus(\overline{\mathbf{2 7}}, \overline{\mathbf{3}})
$$

Decompositionn of Dirac operator

$$
\not \nabla_{10}=\not \nabla_{4}+\not \nabla_{6} \quad \rightarrow \nabla_{6}-\text { mass operator in } 4 d ;
$$

Massless fields in $4 d \Leftrightarrow \nabla_{6} \psi=0$
For Calabi-Yau manifolds with $F=R$

$$
\begin{aligned}
& \not \nabla_{6} \psi_{3}=0 \quad \leftrightarrow \quad H^{0,1}\left(T^{1,0} X\right) \equiv H^{2,1}(X) ; \\
& \not \nabla_{6} \psi_{\overline{3}}=0 \quad \leftrightarrow \quad H^{0,1}\left(T^{0,1} X\right) \equiv H^{1,1}(X) ;
\end{aligned}
$$

Number of generations $=\left|h^{1,1}-h^{2,1}\right|=|\chi| / 2$

Neutral fields (moduli)

- $\delta g_{a b}=$ complex structure deformations $-h^{2,1}$ - complex
- $\delta g_{a \bar{b}}$ Kähler class deformations- $h^{1,1}$ - real
- $B_{a \bar{b}}-h^{1,1}$ real
- dilaton ϕ and axion $B_{\mu \nu}: S=a+i e^{\phi}$

In total $h^{1,1}+h^{2,1}+1$ neutral chiral fields.

Results

- superpotential: cubic in the charged fields; does not depend on the moduli (for CY manifolds).
- can obtain a dependence on the moduli from fluxes and/or manifolds with $S U(3)$ structure.
- Kähler potential for moduli fields: specific to string compactifications
- Kähler potential for matter fields: $g C \bar{C}$
- $f_{a b}=S \delta_{a b}$

Specific model

Heterotic string compactifications on manifolds with $\mathrm{SU}(3)$ structure.
Effective theory: Supergravity + super Yang-Mills theory E_{6} gauge group + one chiral superfield in $\overline{\mathbf{2 7}} C^{A}+$ one chiral singlet superfield $T\left(h^{1,1}=1, h^{2,1}=0\right)$

$$
\begin{gathered}
K=-3 \ln (T+\bar{T})+\frac{3}{T+\bar{T}} C^{A} \bar{C}_{A} \\
W=i e T+\frac{1}{3} j_{A B C} C^{A} C^{B} C^{C}
\end{gathered}
$$

Supersymmetric solutions

I. $C=0: \quad D_{T} W=i e-3 /(T+\bar{T})(i e T)=0 \Rightarrow e=0$ not good.
II. $C \neq 0$ what changes?
a. $E_{6} \supset S O(10) \times U(1) \quad \overline{\mathbf{2 7}}=\mathbf{1 0}^{-2} \oplus \overline{\mathbf{1 6}}^{1} \oplus \mathbf{1}^{4}$
b. $E_{6} \supset S U(3) \times S U(3) \times S U(3) \quad \overline{\mathbf{2 7}}=(\mathbf{3}, \overline{\mathbf{3}}, \mathbf{1}) \oplus(\overline{\mathbf{3}}, \mathbf{1}, \overline{\mathbf{3}}) \oplus(\mathbf{1}, \mathbf{3}, \mathbf{3})$
$<\mathbf{1}>\neq 0,<\mathbf{1 0}>=<\mathbf{1 6}>=0 \longrightarrow E_{6} \rightarrow S O(10)$
No 1^{3} coupling in W

$$
D_{1} W=0+\frac{3 \bar{C}_{1}}{T+\bar{T}} W=0 \quad \Longrightarrow W=0
$$

$$
D_{T} W=e=0 \quad \text { not } \quad \text { good }
$$

$<(\mathbf{1}, \mathbf{3}, \mathbf{3})>\neq 0 \longrightarrow E_{6} \rightarrow S U(3) \times S U(2) \times S U(2)$
There exist $(\mathbf{1}, \mathbf{3}, \mathbf{3})^{3} \equiv B^{3}$ coupling in W

$$
D_{B} W=B \cdot B+\bar{B} \cdot W=0
$$

B - small fluctuations $\Rightarrow B \ll 1 \Rightarrow W=e T \sim B \ll 1$
but e is cuantised and $T+\bar{T} \gg 1$ for the supergravity approximation

Conclusions

- The system under scrutiny $\left(h^{1,1}=1, h^{2,1}=0\right)$ does not have satisfying supersimetric solutions
- have to consider more complicated models $\left(h^{2,1} \neq 0\right)$
- more complicated superpotential and there may exist viable solutions

