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Introduction

The Standard Model of Particle Physics — gauge group SU(3) x SU(2) x U(1)
— works well at energies of oorder 100 GeV.

It is just an effective theory — at higher energies needs to be modified

Possibilities:  Supersymmetry — Minimal Supersymmetric Standard Model

(MSSM)
GUT /susy GUT

Supersymmetry = fermionic symmetry: < fermion
(Super)Multiplets — combinations of fields with different spin
Matter — chiral supermultiplets ® = (¢, )

Lagrangean for these fields is given by three functions



e Kahler potential K (P, P)
e superpotential W (®)

e gauge coupling function f,,(P)

L ~ —g;;0,0'0"¢ — iImf Fi F°* " + LRef Fi,F° M —V
gi; = O0pi0p:K(P,P),
V. = " (D;WD;Wg7 —3|W|?) +iImf,,'D*D’

DiW = OgiW + (05 K)W .

Supersymmetric solutions: D;IWV = 0.



String theory

String theory is supposed to be valid at energies of order Mp; = 10'°GeV .
In the low energy limit — supergravity in 10 space-time dimensions

Compactifications on 6-dimensional manifolds — supergravity in 4d: K, W and
f can be computed in string theory

There exist 5 consistent superstring theories: type IIA/B, type |, heterotic
SO(SQ)/ES X Eg.



4d requirements

N=1 supersymmetry

Standard Model /GUT

e gauge grup G D SU(3) x SU(2) x U(1)
e chiral matter

Type || — need additional constructions: intersecting branes, singularities etc.

SO(32) gauge group: does not have the right representations for matter fields in
4d

We are left with Es — works pretty well



Heterotic models

Bosonic spectrum in 10d: graviton g, n; antisymmetric tensor field B, n; dilaton
(scalar) ¢; gauge fields Eg x Es.

Constraints: Bianchi identity

dH =trFANF —trRA R, H =dB field strength of B



4d theory

N = 1 supersymmetry — compactifications on Calabi—Yau manifolds (SU(3)
holonomy).

trR A R] #0 — need trF N I # 0 — breaks Eg gauge symmetry
We can always set F' = R - SU(3) - structure
FEg x SU(3) = maximal subgrup of E5 — surviving gauge symmetry in 4d is Ej.

Charged fields:

248 = (78,1) ® (1,8) @ (27,3) @ (27, 3)



Decompositionn of Dirac operator

Yio = Vi + Vs — Vg — mass operator in 4d ;

Massless fields in 4d < Vgy =0

For Calabi—Yau manifolds with F' = R

Vo3 = 0 < HYYTYX)=H*'(X);

Yets = 0 < HYYT"X)=H"(X);

Number of generations = |hb! — 21| = |x|/2



Neutral fields (moduli)

e §g,, = complex structure deformations — h%'! - complex
e 0g,; Kahler class deformations— h'! - real

e B,;— hb! real

e dilaton ¢ and axion B,,,: S =a + ie?

In total A" + A% + 1 neutral chiral fields.



Results

superpotential: cubic in the charged fields; does not depend on the moduli

(for CY manifolds).

can obtain a dependence on the moduli from fluxes and/or manifolds with

SU (3) structure.
Kahler potential for moduli fields: specific to string compactifications

Kahler potential for matter fields: ¢CC

fab — S(Sab
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Specific model

Heterotic string compactifications on manifolds with SU(3) structure.

Effective theory: Supergravity + super Yang-Mills theory Eg gauge group + one
chiral superfield in 27 C* + one chiral singlet superfield T' (Rt =1, h?! = 0)

_ 3 _
K=-3In(T+T)+—"—_0Cc4C
n(T + )+T—|—T A

1
W =iel + oY apcCACPCC .
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Supersymmetric solutions

. C=0: DrW =ie—3/(T+T)(ieT)=0= e=0 not good.

Il. C' # 0 what changes?

a. B O SO(10)xU(1) 27=102016 @14

b. Eg D SU(3) x SUB3) x SU(3)  27=(3,3,1)®(3,1,3) & (1, 3,3)
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<1>#0, <10>=<16>=0 — FEgz— SO(10)

No 13 coupling in W

3C4
T+T

DrW =e=0 not good

— W =0,
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<(1,3,3) >#0 — Eg— SU(3) x SU(2) x SU(2)

There exist (1,3,3)% = B? coupling in W

DgW=B-B+B-W=0

B — small fluctuations = B<K1 = W=el'~BxK1

but e is cuantised and T+ T > 1 for the supergravity approximation

14



Conclusions

e The system under scrutiny (h't = 1, h®! = 0) does not have satisfying
supersimetric solutions

e have to consider more complicated models (k%! # 0)

e more complicated superpotential and there may exist viable solutions
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