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Heterotic – type IIA duality in 4d

Heterotic/K3× T 2 ↔ type IIA/CY3.

N=2 supergravity in 4d coupled to nv vector multiplets and nh hypermultiplets

Heterotic → Coulomb branch → U(1)nv+1

KK vectors, B-field on T 2 and 10d gauge fields

A0 = gµ4 , A1 = gµ5 , A2 = Bµ4 , A3 = Bµ5 , Aa .

Scalar fields

u − complex structure of T 2 ; t − complexified volume of T 2 ;

na = Aa5 + uAa4 ; s − axio− dilaton
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Type IIA vector multiplet sector ↔ ωi ∈ H1,1(CY3)

Gauge group U(1)h
1,1+1 → h1,1 = nv

Gauge fields comming from RR 3-form potential C3 expanded in the CY3 harmonic
(1, 1) forms and the 10d graviphoton A0

Ĉ3 = . . .+Aiωi + . . .

Scalars in the vector multiplets – complexified Kähler moduli

B + iJ = (bi + ivi)ωi
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Heterotic/K3× T 2 with fluxes

Gauge field fluxes on T 2 and various twisting of T 2 → non-Abelian structure and
gaugings in the vector multiplet sector∫

T 2
F a = fa ,

F 0 = dA0 , F 1 = dA1 ,

F 2 = dA2 + faAa ∧A1 , F 3 = dA3 − faAa ∧A0 , F a = dAa + faA0 ∧A1 ,

Dt = ∂t+
√

2fanaA1 + faAa ; Dna = ∂na − 1√
2
fa(A3 + uA1) .
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Type IIA dual setup?

8 Type IIA/CY3 – Abelian vector multiplet sector.

8 No known fluxes induce gaugings in the vector multiplet sector

Hint: look at the duality in 5d: Heterotic/K3× S1 vs M-theory/CY3

Heterotic T 2 fluxes = monodromy of gauge field-scalars around S1 → 4d

à do the same in M-theory

Isometry of the vector moduli space SO(1, 1)× SO(1, nv − 2)

Perform Scherk–Schwarz compactification: twist the vectors multiplets by an
element of the isometry group as we go around the circle

Do it in one step → M-theory on 7d manifolds with SU(3) structure.
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7d manifolds with SU(3) structure

Spread monodromy evenly over the circle

ωi(z + ε) = ωi(z) + εM j
i ωj(z) , M − constant , γji = (eM)ji

ωi - harmonic on CY3 slices

dωi = Mj
iωj ∧ dz

Consistency condition on the CY3 intersection numbers Kijk

0 =
∫
X7

d(ωi ∧ ωj ∧ ωk) ⇔ KijlM l
k +KjklM l

i +KkilM l
j = 0
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Duality to Heterotic/K3× T 2

CY3 = K3 fibered over a P1 base.

Limit Vol(P1) ∼ large Þ non-vanishing intersection numbers

K123 = −1 , K1ab = 2δab , a, b = 4, . . . , h1,1 = nv .

Solve constraint M l
(iKjk)l = 0:

M2
2 = m2 , M2

a = ma , M3
3 = m3 , M3

a = m̃a , M b
a = −Ma

b = mb
a ,

Ma
2 = 1

2m̃a , Ma
3 = 1

2ma , Ma
a = −1

2M
1
1 = 1

2(m2 +m3) .

8



Duality to Heterotic/K3× T 2

m̃a 6= 0 ↔ heterotic gauge field fluxes on T 2
[Aharony, Berkooz, Louis, AM]

Identifies A0 on the heterotic side with the KK vector along the M-theory circle.

m2 +m3 6= 0 – not a valid twist (not in the U-duality group)

ma T-dual to m̃a → need sort of T -fold on heterotic side

m = m2 = −m3 and mb
a in heterotic?

[Dabholkar, Hull; Reid-Edwards, Spanjaard] → Heterotic/T d duality twists.
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Double twist reduction

Compactification on S1 → SO(1, nv − 2) symmetry

compactification on the second S1 with SO(1, nv − 2) duality twist

Twist matrix

NI
J =

 f 0 M b

0 −f W b

−Wa −Ma Sa
b


Match perfectly the M-theory twists

f ↔ m; Ma ↔ m̃a; W a ↔ ma; Sa
b ↔ ma

b

↓ ↓ ↓ ↓
geom flux T 2 − flux non− geom flux Cartan torus twist
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Heterotic R-fluxes

Extension in [Reid-Edwards, Spanjaard] – “R”-fluxes (T-duality along non-isometric
directions) twist with the full 4d duality group SO(2, nv − 1)

New twist matrix ÑI
J

ÑI
J =

 q 0 U b

0 −q V b

−Va −Ua Ga
b

 ; [N, Ñ ] = 0

No direct explicit compactification; twist matrices → structure constants in the
underlying N = 4 theory → determines gaugings and structure constants in the
N = 2 theory.
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No direct method of computing the potential; can only be determined from N = 2
sugra relations in 4d

Killing vectors 14
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F-theory dual

1st twist matrix – need 1 KK gauge field → M-theory/CY3 × S1

2nd twist matrix – need 2 KK gauge fields → F-theory/CY3 × T 2

Twist CY3 over T 2 as in the M-theory case → eight-dimensional manifold with
SU(3) structure.

dωa = (Mi)abω
b ∧ dzi

Consistency: d2ωa = 0 → [M1,M2] = 0

Mi – antisymmetric→ number of parameters coresponds to that on the heterotic
side
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Compactification

Compare heterotic result 12 to F-theory compactifications

No 12d effective acion for F-theory → 2 step compactification:

• compactify F-theory on CY3 – known from dualities

• Sherk-Schwarz compactification on T 2 – fields which come from the expansion
in ωa vary on T 2.

va − CY3 Kahler moduli
Ba − from expansion of C4

}
anti− self − dual tensor multiplet in 6d

supergravity multiplet: gMN and BMN-self-dual tensor field
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No action for 6d sugra with arbitrary number of tensor multiplets → ignore the
self-duality condition in 6d and impose it in 4d.

Start from 6d kinetic term

−1
2gαβd̂B̂

α ∧ ∗d̂B̂β

4d degrees of freedom

B̂α = Bα +Aαi ∧ dzi + bαdz1 ∧ dz2

dBα ∼ ∗dbα , dAα1 ∼ ∗dAα2

4d vector multiplet: (Aα1 , b
α, vα) or vector-tensor multiplet: (Aα1 , B

α, vα)
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F-theory compactification on 8d manifold with SU(3) structure⇔ allow 6d tensor
multiplets dependence on T 2

∂iB̂
α = (Mi)αβB̂β , ∂iv

α = (Mi)αβvβ

6d field strengths

d̂B̂α = dBα+dAαi ∧dzi+dbα∧dz1∧dz2+(Mi)αβ(Bβ+Aβj∧dz
j+bβdz1∧dz2)∧dzi
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4d field strengths

Hα = dBα + Fα1 ∧ V 1 + (dAα2 +Mα
2 β) ∧ V 2

Fα1 = dAα1 +Mα
1 βB

β −Dbα ∧ V 2

Fα2 = dAα2 +Mα
2 βB

β +Dbα ∧ V 1

Dbα = dbα −Mα
1 βA

β
2 +Mα

2 βA
β
1

V 1,2 – KK vectors on T 2

4d action

−1
2

(
gαβH

α ∧ ∗Hβ + gijgαβF
α
i ∧ ∗F

β
j + gαβDb

α ∧ ∗DBβ
)

17



Self-duality conditions

ηαβDb
β = gαβ ∗Hβ ; ηαβF

β
i = εijg

jkgαβ ∗ F βk .

Can be obtained by adding suitable total derivative terms to the action

St = −ηαβHα∧Dbβ−ηαβFα1 ∧F
β
2 +2ηαβM

β
2 γdA

α
1 ∧Bγ+ηαβMα

1 δM
β
2 γB

δ∧Bγ

Can not directly eliminate magnetic dof. (1103.4813, Andrianopoli et al)

Magnetic gaugings in Dbα can be mapped after electric-magnetic duality and
field redefinitions to electric gaugings quadratic in the scalars.

Need to perform electric magnetic duality for V 1 or V 2, but they both participate
in gaugings.
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One vanishing twist matrix → result identical to M-theory compactifications on
7d mf with SU(3) structure

M1 ∼M2 same results as in the heterotic case except magnetic gaugings
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Conclusions

• Heterotic R-fluxes ↔ F-theory on 8d mf with SU(3) structure

• Heterotic – can determine gaugings

• Expect massive tensors after electric magnetic duality

• F-theory/CY3 + Sherk-Schwarz compactification on T 2

• Massive tensors present

• No explicit relation between the two sides when both twist matrices 6= 0

• Need a better understanding of N=2 gauged sugra with vector-tensor multiplets
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