Tests of Heterotic - F-theory duality with fluxes

Andrei Micu
Department of Theoretical Physics

IFIN-HH Bucharest

Work in progress
Balkan Summer Institute 2011, Donji-Milanovac, 29-31 August

Plan of the talk

O Heterotic - type IIA duality in four dimensions

O Heterotic fluxes and type IIA (M-theory) dual setup

O Heterotic compactifications with duality twists and R-fluxes

O F-theory dual setup
O Conclusions

Heterotic - type IIA duality in 4d

Heterotic $/ K 3 \times T^{2} \leftrightarrow$ type IIA/ CY_{3}.
$\mathrm{N}=2$ supergravity in 4 d coupled to n_{v} vector multiplets and n_{h} hypermultiplets Heterotic \rightarrow Coulomb branch $\rightarrow U(1)^{n_{v}+1}$

KK vectors, B-field on T^{2} and 10d gauge fields

$$
A^{0}=g_{\mu 4}, \quad A^{1}=g_{\mu 5}, \quad A^{2}=B_{\mu 4}, \quad A^{3}=B_{\mu 5}, \quad A^{a} .
$$

Scalar fields

$$
\begin{aligned}
u & - \text { complex structure of } T^{2} ; & t & - \text { complexified volume of } T^{2} ; \\
n^{a} & =A_{5}^{a}+u A_{4}^{a} ; & s & - \text { axio - dilaton }
\end{aligned}
$$

Type IIA vector multiplet sector $\leftrightarrow \omega_{i} \in H^{1,1}\left(C Y_{3}\right)$
Gauge group $U(1)^{h^{1,1}+1} \rightarrow h^{1,1}=n_{v}$
Gauge fields comming from RR 3-form potential C_{3} expanded in the CY_{3} harmonic $(1,1)$ forms and the 10 d graviphoton A^{0}

$$
\hat{C}_{3}=\ldots+A^{i} \omega_{i}+\ldots
$$

Scalars in the vector multiplets - complexified Kähler moduli

$$
B+i J=\left(b^{i}+i v^{i}\right) \omega_{i}
$$

Heterotic $/ K 3 \times T^{2}$ with fluxes

Gauge field fluxes on T^{2} and various twisting of $T^{2} \rightarrow$ non-Abelian structure and gaugings in the vector multiplet sector

$$
\begin{gathered}
\int_{T^{2}} F^{a}=f^{a}, \\
F^{0}=d A^{0}, \quad F^{1}=d A^{1}, \\
F^{2}=d A^{2}+f^{a} A^{a} \wedge A^{1}, \quad F^{3}=d A^{3}-f^{a} A^{a} \wedge A^{0}, \quad F^{a}=d A^{a}+f^{a} A^{0} \wedge A^{1}, \\
D t=\partial t+\sqrt{2} f^{a} n^{a} A^{1}+f^{a} A^{a} ; \quad D n^{a}=\partial n^{a}-\frac{1}{\sqrt{2}} f^{a}\left(A^{3}+u A^{1}\right) .
\end{gathered}
$$

Type IIA dual setup?

X Type IIA/CY ${ }_{3}$ - Abelian vector multiplet sector.
X No known fluxes induce gaugings in the vector multiplet sector
Hint: look at the duality in 5d: Heterotic $/ K 3 \times S^{1}$ vs M-theory $/ \mathrm{CY}_{3}$
Heterotic T^{2} fluxes $=$ monodromy of gauge field-scalars around $S^{1} \rightarrow 4 \mathrm{~d}$
|n do the same in M-theory
Isometry of the vector moduli space $S O(1,1) \times S O\left(1, n_{v}-2\right)$
Perform Scherk-Schwarz compactification: twist the vectors multiplets by an element of the isometry group as we go around the circle

Do it in one step \rightarrow M-theory on 7d manifolds with $S U(3)$ structure.

7d manifolds with $S U(3)$ structure

Spread monodromy evenly over the circle

$$
\omega_{i}(z+\epsilon)=\omega_{i}(z)+\epsilon M_{i}^{j} \omega_{j}(z), \quad M-\text { constant }, \quad \gamma_{i}^{j}=\left(e^{M}\right)_{i}^{j}
$$

ω_{i} - harmonic on $C Y_{3}$ slices

$$
\mathbf{d} \omega_{\mathbf{i}}=\mathbf{M}_{\mathbf{i}}^{\mathbf{j}} \omega_{\mathbf{j}} \wedge \mathbf{d z}
$$

Consistency condition on the $C Y_{3}$ intersection numbers $\mathcal{K}_{i j k}$

$$
0=\int_{X_{7}} d\left(\omega_{i} \wedge \omega_{j} \wedge \omega_{k}\right) \quad \Leftrightarrow \quad \mathcal{K}_{i j l} M_{k}^{l}+\mathcal{K}_{j k l} M_{i}^{l}+\mathcal{K}_{k i l} M_{j}^{l}=0
$$

Duality to Heterotic/K3× T^{2}

$C Y_{3}=K 3$ fibered over a \mathbf{P}_{1} base.
Limit $\operatorname{Vol}\left(\mathbf{P}_{1}\right) \sim$ large \rightarrow non-vanishing intersection numbers

$$
\mathcal{K}_{123}=-1, \quad \mathcal{K}_{1 a b}=2 \delta_{a b}, \quad a, b=4, \ldots, h^{1,1}=n_{v}
$$

Solve constraint $M_{(i}^{l} \mathcal{K}_{j k) l}=0$:

$$
\begin{gathered}
M_{2}^{2}=m_{2}, \quad M_{a}^{2}=m_{a}, \quad M_{3}^{3}=m_{3}, \quad M_{a}^{3}=\tilde{m}_{a}, \quad M_{a}^{b}=-M_{b}^{a}=m_{a}^{b} \\
M_{2}^{a}=\frac{1}{2} \tilde{m}_{a}, \quad M_{3}^{a}=\frac{1}{2} m_{a}, \quad M_{a}^{a}=-\frac{1}{2} M_{1}^{1}=\frac{1}{2}\left(m_{2}+m_{3}\right)
\end{gathered}
$$

Duality to Heterotic/K3 $\times T^{2}$

$\tilde{m}_{a} \neq 0 \leftrightarrow$ heterotic gauge field fluxes on T^{2} [Ahrony, Berkoz, Louis, AM]
Identifies A^{0} on the heterotic side with the KK vector along the M -theory circle.
$m_{2}+m_{3} \neq 0-$ not a valid twist (not in the U-duality group)
m_{a} T-dual to $\tilde{m}_{a} \rightarrow$ need sort of T-fold on heterotic side
$m=m_{2}=-m_{3}$ and m_{a}^{b} in heterotic?
[Dabholkar, Hull: Reid.Edwards, Spanijard] \rightarrow Heterotic $/ T^{d}$ duality twists.

Double twist reduction

Compactification on $S^{1} \rightarrow S O\left(1, n_{v}-2\right)$ symmetry
compactification on the second S^{1} with $S O\left(1, n_{v}-2\right)$ duality twist
Twist matrix

$$
N_{I}^{J}=\left(\begin{array}{ccc}
f & 0 & M^{b} \\
0 & -f & W^{b} \\
-W_{a} & -M_{a} & S_{a}^{b}
\end{array}\right)
$$

Match perfectly the M-theory twists

geom flux $\quad T^{2}-$ flux non - geom flux Cartan torus twist

Heterotic R-fluxes

Extension in [Reid-Edwards, Spanjaard] - "R"-fluxes (T-duality along non-isometric directions) twist with the full 4 d duality group $S O\left(2, n_{v}-1\right)$

New twist matrix $\tilde{N}_{I}{ }^{J}$

$$
\tilde{N}_{I}^{J}=\left(\begin{array}{ccc}
q & 0 & U^{b} \\
0 & -q & V^{b} \\
-V_{a} & -U_{a} & G_{a}^{b}
\end{array}\right) ; \quad[N, \tilde{N}]=0
$$

No direct explicit compactification; twist matrices \rightarrow structure constants in the underlying $N=4$ theory \rightarrow determines gaugings and structure constants in the $N=2$ theory.

No direct method of computing the potential; can only be determined from $N=2$ sugra relations in 4d

Killing vectors

$$
\begin{align*}
k_{1}= & -\left(f u+\sqrt{2} W^{a} n^{a}\right) \partial_{u}+\left(f t+\sqrt{2} M^{a} n^{a}\right) \partial_{t}+\frac{1}{\sqrt{2}}\left(M^{a} u-W^{a} t+\sqrt{2} S_{a b} n^{b}\right) \partial_{a} \tag{1}\\
k_{2}= & -\left(q u+\sqrt{2} V^{a} n^{a}\right) \partial_{u}+\left(q t+\sqrt{2} U^{a} n^{a}\right) \partial_{t}+\frac{1}{\sqrt{2}}\left(U^{a} u-V^{a} t+\sqrt{2} G_{a b} n^{b}\right) \partial_{a} \\
k_{3}= & -\left(f-q n^{a} n^{a}-\sqrt{2} U^{a} n^{a} u\right) \partial_{u}+\left(q t^{2}+\sqrt{2} U^{a} n^{a} t\right) \partial_{t} \\
& +\left(q t n^{a}+\sqrt{2} U^{b} n^{b} n^{a}-\frac{1}{\sqrt{2}} U^{a}\left(u t-n^{b} n^{b}\right)-\frac{1}{\sqrt{2}} M^{a}\right) \partial_{a}
\end{align*}
$$

$k_{4}=\ldots$ similar to k_{3}

$$
\begin{aligned}
k_{b}= & -\left(V^{b} n^{a} n^{a}-U^{b} u^{2}-\sqrt{2} G_{b}^{a} n^{a} u-W^{b}\right) \partial_{u}+\left(U^{b} n^{a} n^{a}-V^{b} t^{2}-\sqrt{2} G_{b}^{a} n^{a} t-M^{b}\right) \partial_{t} \\
& +\left[\left(U^{b} u-V^{b} t+\sqrt{2} G_{b c} n^{c}\right) n^{a}-\frac{1}{\sqrt{2}} G_{b a}\left(u t-n^{c} n^{c}\right)+\frac{1}{\sqrt{2}} S_{a b}\right] \partial_{a}
\end{aligned}
$$

F-theory dual

$1^{\text {st }}$ twist matrix - need 1 KK gauge field $\rightarrow \mathrm{M}$-theory $/ \mathrm{CY}_{3} \times S^{1}$
$2^{\text {nd }}$ twist matrix - need 2 KK gauge fields \rightarrow F-theory $/ \mathrm{CY}_{3} \times T^{2}$
Twist CY_{3} over T^{2} as in the M -theory case \rightarrow eight-dimensional manifold with $\mathrm{SU}(3)$ structure.

$$
\mathbf{d} \omega^{\mathbf{a}}=\left(\mathbf{M}_{\mathbf{i}}\right)^{\mathbf{a}}{ }_{\mathbf{b}} \omega^{\mathbf{b}} \wedge \mathrm{dz}^{\mathbf{i}}
$$

Consistency: $d^{2} \omega^{a}=0 \rightarrow\left[M_{1}, M_{2}\right]=0$
M_{i} - antisymmetric \rightarrow number of parameters coresponds to that on the heterotic side

Compactification

Compare heterotic result 12 to F-theory compactifications
No 12d effective acion for F-theory $\rightarrow 2$ step compactification:

- compactify F-theory on CY_{3} - known from dualities
- Sherk-Schwarz compactification on T^{2} - fields which come from the expansion in ω^{a} vary on T^{2}.
$\left.\begin{array}{ccc}v^{a} & -C Y_{3} \text { Kahler moduli } \\ B^{a} & -\quad \text { from expansion of } C_{4}\end{array}\right\}$ anti - self - dual tensor multiplet in 6d supergravity multiplet: $g_{M N}$ and $B_{M N}$-self-dual tensor field

No action for 6d sugra with arbitrary number of tensor multiplets \rightarrow ignore the self-duality condition in 6d and impose it in 4d.

Start from 6d kinetic term

$$
-\frac{1}{2} g_{\alpha \beta} \hat{d} \hat{B}^{\alpha} \wedge * \hat{d} \hat{B}^{\beta}
$$

4d degrees of freedom

$$
\begin{aligned}
\hat{B}^{\alpha} & =B^{\alpha}+A_{i}^{\alpha} \wedge d z^{i}+b^{\alpha} d z^{1} \wedge d z^{2} \\
d B^{\alpha} & \sim * d b^{\alpha}, \quad d A_{1}^{\alpha} \sim * d A_{2}^{\alpha}
\end{aligned}
$$

4d vector multiplet: $\left(A_{1}^{\alpha}, b^{\alpha}, v^{\alpha}\right)$ or vector-tensor multiplet: $\left(A_{1}^{\alpha}, B^{\alpha}, v^{\alpha}\right)$

F-theory compactification on 8d manifold with $\operatorname{SU}(3)$ structure \Leftrightarrow allow 6d tensor multiplets dependence on T^{2}

$$
\partial_{i} \hat{B}^{\alpha}=\left(M_{i}\right)^{\alpha}{ }_{\beta} \hat{B}^{\beta}, \quad \partial_{i} v^{\alpha}=\left(M_{i}\right)^{\alpha}{ }_{\beta} v^{\beta}
$$

6d field strengths

$$
\hat{d} \hat{B}^{\alpha}=d B^{\alpha}+d A_{i}^{\alpha} \wedge d z^{i}+d b^{\alpha} \wedge d z^{1} \wedge d z^{2}+\left(M_{i}\right)^{\alpha}{ }_{\beta}\left(B^{\beta}+A_{j}^{\beta} \wedge d z^{j}+b^{\beta} d z^{1} \wedge d z^{2}\right) \wedge d z^{i}
$$

4d field strengths

$$
\begin{aligned}
H^{\alpha} & =d B^{\alpha}+F_{1}^{\alpha} \wedge V^{1}+\left(d A_{2}^{\alpha}+M_{2}^{\alpha}{ }_{\beta}\right) \wedge V^{2} \\
F_{1}^{\alpha} & =d A_{1}^{\alpha}+M_{1}^{\alpha}{ }_{\beta} B^{\beta}-D b^{\alpha} \wedge V^{2} \\
F_{2}^{\alpha} & =d A_{2}^{\alpha}+M_{2}^{\alpha}{ }_{\beta} B^{\beta}+D b^{\alpha} \wedge V^{1} \\
D b^{\alpha} & =d b^{\alpha}-M_{1}^{\alpha}{ }_{\beta} A_{2}^{\beta}+M_{2}^{\alpha}{ }_{\beta} A_{1}^{\beta}
\end{aligned}
$$

$V^{1,2}-\mathrm{KK}$ vectors on T^{2}

4d action

$$
-\frac{1}{2}\left(g_{\alpha \beta} H^{\alpha} \wedge * H^{\beta}+g^{i j} g_{\alpha \beta} F_{i}^{\alpha} \wedge * F_{j}^{\beta}+g_{\alpha \beta} D b^{\alpha} \wedge * D B^{\beta}\right)
$$

Self-duality conditions

$$
\eta_{\alpha \beta} D b^{\beta}=g_{\alpha \beta} * H^{\beta} ; \quad \eta_{\alpha \beta} F_{i}^{\beta}=\epsilon_{i j} g^{j k} g_{\alpha \beta} * F_{k}^{\beta}
$$

Can be obtained by adding suitable total derivative terms to the action

$$
S_{t}=-\eta_{\alpha \beta} H^{\alpha} \wedge D b^{\beta}-\eta_{\alpha \beta} F_{1}^{\alpha} \wedge F_{2}^{\beta}+2 \eta_{\alpha \beta} M_{2}^{\beta} \gamma d A_{1}^{\alpha} \wedge B^{\gamma}+\eta_{\alpha \beta} M_{1}^{\alpha}{ }_{\delta} M_{2}^{\beta}{ }_{\gamma} B^{\delta} \wedge B^{\gamma}
$$

Can not directly eliminate magnetic dof. (1103.4813, Andrianopoli et al)
Magnetic gaugings in $D b^{\alpha}$ can be mapped after electric-magnetic duality and field redefinitions to electric gaugings quadratic in the scalars.

Need to perform electric magnetic duality for V^{1} or V^{2}, but they both participate in gaugings.

One vanishing twist matrix \rightarrow result identical to M -theory compactifications on 7d mf with $\operatorname{SU}(3)$ structure
$M_{1} \sim M_{2}$ same results as in the heterotic case except magnetic gaugings

Conclusions

- Heterotic R-fluxes \leftrightarrow F-theory on 8 d mf with $\mathrm{SU}(3)$ structure
- Heterotic - can determine gaugings
- Expect massive tensors after electric magnetic duality
- F-theory $/ \mathrm{CY}_{3}+$ Sherk-Schwarz compactification on T^{2}
- Massive tensors present
- No explicit relation between the two sides when both twist matrices $\neq 0$
- Need a better understanding of $\mathrm{N}=2$ gauged sugra with vector-tensor multiplets

