Heterotic – type IIA duality with fluxes

Andrei Micu

DEPARTMENT OF THEORETICAL PHYSICS

IFIN-HH BUCHAREST

Work in progress

StringPheno 2010, Paris, 4-9 June

Plan of the talk

- O Heterotic/ $K3 \times T^2$ with fluxes
- O Type IIA dual setup \rightarrow M-theory on 7d manifolds with SU(3) structure
- O Heterotic type IIA duality the vector multiplet sector

O Conclusions

Heterotic/ $K3 \times T^2$

N=2 supergravity in 4d

- n_v vector multiplets $\leftrightarrow T^2$
- n_h hypermultiplets $\leftrightarrow K3$

Gauge group in absence of fluxes $U(1)^{n_v+1}$

$$A^0 = g_{\mu 4} , \quad A^1 = g_{\mu 5} , \quad A^2 = B_{\mu 4} , \quad A^3 = B_{\mu 5} .$$

Hypermultiplets: K3 moduli and gauge bundle moduli

Heterotic/ $K3 \times T^2$ with fluxes

Gauge field fluxes on T^2 and various twisting of $T^2 \rightarrow$ non-Abelian structure and gaugings in the vector multiplet sector

$$\int_{T^2} F^a = f^a \; ,$$

$$F^0 = dA^0 , \quad F^1 = dA^1 ,$$

 $F^2 = dA^2 + f^a A^a \wedge A^1$, $F^3 = dA^3 - f^a A^a \wedge A^0$, $F^a = dA^a + f^a A^0 \wedge A^1$,

Type IIA dual setup?

- **X** Type IIA/CY_3 Abelian vector multiplet sector.
- X No known fluxes induce gaugings in the vector multiplet sector

Hint: look at the duality in 5d: Heterotic/ $K3 \times S^1$ vs M-theory/CY₃

Heterotic T^2 fluxes = monodromy of gauge field-scalars around $S^1 \rightarrow 4d$

do the same in M-theory

Isometry of the vector moduli space $SO(1,1) \times SO(1,n_v-2)$

Perform Scherk–Schwarz compactification: twist the vectors multiplets by an element of the isometry group as we go around the circle

Do it in one step \rightarrow M-theory on 7d manifolds with SU(3) structure.

7d manifolds with SU(3) structure

Twist $H^2(CY_3)$ as we go around the circle $\omega_i \to \gamma_i^j \omega_j$

Consistency condition: $\gamma_i^j \in \text{U-duality group } \Gamma(\mathbf{Z}) = SO(1, n_v - 2, \mathbf{Z})$

7D manifolds with SU(3) structure

Spread monodromy evenly over the circle

$$\omega_i(z+\epsilon) = \omega_i(z) + \epsilon M_i^j \omega_j(z) , \quad M - \text{ constant} , \quad \gamma_i^j = (e^M)_i^j$$

 ω_i - harmonic on CY_3 slices

$$\mathbf{d}\omega_{\mathbf{i}} = \mathbf{M}_{\mathbf{i}}^{\mathbf{j}}\omega_{\mathbf{j}}\wedge\mathbf{dz}$$

Consistency condition on the CY_3 intersection numbers \mathcal{K}_{ijk}

$$0 = \int_{X_7} d(\omega_i \wedge \omega_j \wedge \omega_k) \quad \Leftrightarrow \quad \mathcal{K}_{ijl} M_k^l + \mathcal{K}_{jkl} M_i^l + \mathcal{K}_{kil} M_j^l = 0$$

Duality to Heterotic/ $K3 \times T^2$

 $CY_3 = K3$ fibered over a $\mathbf{P_1}$ base.

Limit $Vol(\mathbf{P_1}) \sim large \rightarrow non-vanishing intersection numbers$

$$\mathcal{K}_{123} = -1$$
, $\mathcal{K}_{1ab} = 2\delta_{ab}$, $a, b = 4, \dots, h^{1,1} = n_v$.

Solve constraint $M_{(i}^{l}\mathcal{K}_{jk)l} = 0$:

$$M_2^2 = m_2 , \quad M_a^2 = m_a , \quad M_3^3 = m_3 , \quad M_a^3 = \tilde{m}_a , \quad M_a^b = -M_b^a = m_a^b ,$$

$$M_2^a = \frac{1}{2}\tilde{m}_a$$
, $M_3^a = \frac{1}{2}m_a$, $M_a^a = -\frac{1}{2}M_1^1 = \frac{1}{2}(m_2 + m_3)$.

Duality to Heterotic/ $K3 \times T^2$

 $\tilde{m}_a \neq 0 \leftrightarrow$ heterotic gauge field fluxes on T^2 [Aharony, Berkooz, Louis, AM] Identifies A^0 on the heterotic side with the KK vector along the M-theory circle. $m_2 + m_3 \neq 0$ – not a valid twist (not in the U-duality group) m_a T-dual to $\tilde{m}_a \rightarrow$ need sort of T-fold on heterotic side $m = m_2 = -m_3$ and m_a^b in heterotic?

[Dabholkar, Hull; Reid-Edwards, Spanjaard] \rightarrow Heterotic/ T^d duality twists.

Double twist reduction

Compactification on $S^1 \rightarrow SO(1, n_v - 2)$ symmetry

compactification on the second S^1 with $SO(1, n_v - 2)$ duality twist

Twist matrix

$$N_{I}{}^{J} = \begin{pmatrix} f & 0 & M^{b} \\ 0 & -f & W^{b} \\ -W_{a} & -M_{a} & S_{a}{}^{b} \end{pmatrix}$$

Match perfectly the M-theory twists

Tempting speculation: Heterotic – F-theory duality

Extension in [Reid-Edwards, Spanjaard] – "R"-fluxes (T-duality along non-isometric directions)

New twist matrix $\tilde{N}_I{}^J$

$$\tilde{N}_I{}^J = \begin{pmatrix} q & 0 & P^b \\ 0 & -q & V^b \\ -V_a & -P_a & \tilde{S}_a{}^b \end{pmatrix}$$

Type IIA/M-theory – need a second circle \rightarrow F-theory/ $CY_3 \times S^1 \times S^1$

Twist the (1,1) basis along both directions in $T^2 \rightarrow$ new twist matrix $\tilde{M}_i{}^j$ may match $\tilde{N}_I{}^J$: check algebra, gaugings, constraints...

Comparison

Heterotic	F-theory
Str constants: extrapolations/dualities (no direct way to compute)	?
Gaugings from structure constants – no direct way to compute	?
All vector fields involved in the gaugings type IIA symplectic frame \rightarrow massive tensors	Tensor multiplets in 6d can get masses from the twist to 4d
Potential from $N=2$ sugra	Compute potentnial?

Conclusions

- ✓ Fairly complete map of the fluxes in heterotic type IIA duality
- \checkmark Vector multiplet sector \rightarrow clean map; involves M-theory and possibly F-theory
- ✓ Non-geometric fluxes in heterotic ↔ geometric fluxes in M-theory
- ✓ R-type fluxes in heterotic \leftrightarrow geometric fluxes in F-theory
- \rtimes $SU(3) \times SU(3)$ structure in IIA \rightarrow magnetic gauge fields \leftrightarrow heterotic version?