Moduli Stabilisation in Heterotic Models with Matter Fields

Andrei Micu

Department of Theoretical Physics

IFIN-HH BUCHAREST

Work in progress Tel Aviv, 22 September, 2009

Motivation

Moduli stabilisation – fair understanding in type II theories

Realistic string models – open problem

Questions:

- do we need to fix al moduli? if not which should be unfixed
- what is the connection between the matter sector and the stabilisation of moduli?
- are there realistic models with stabilised moduli?

Plan of the talk

- Introduction: Fluxes and manifolds with SU(3) structure
- Basics of heterotic compactifications on manifolds with SU(3) structure
- Moduli stabilisation in heterotic models
- Conclusions

Introduction: Fluxes and manifolds with SU(3) structure

General setup: string compactifications on Calabi–Yau manifolds (SU(3) holonomy)

Type II theories – many possible fluxes: NS-NS and RR

- there are instances where all moduli are stabilised

This is not the full story \rightarrow use dualities to see if we are missing something

Manifolds with SU(3) structure naturally fit into the scheme - torsion = geometric fluxes.

In type II – need to add a visible sector \rightarrow open string moduli...

Heterotic String Models

- easy to get realistic models
- less possibilities to fix moduli
- NS-NS fluxes can fix complex structure moduli
- dilaton and Kähler moduli are unfixed.
- use manifolds with SU(3) structure

Manifolds with SU(3) structure

SU(3) structure – structure group of the frame bundle = SU(3).

 \exists a connection compatible with the structure – has torsion ∇^T

SU(3) invariant forms J and $\Omega \to \nabla^T J = \nabla^T \Omega = 0$.

 $dJ \neq 0$ and $d\Omega \neq 0$ specify the structure.

Calabi–Yau compactifications – need harmonic 2, 3 and 4-forms

$$\int_{X^6} \omega_i \wedge \tilde{\omega}^j = \delta_i^j , \qquad \int_{X^6} \alpha_A \wedge \beta^B = \delta_A^B .$$

SU(3) structure:

$$d\omega_i = q_i^A \alpha_A - p_{iA} \beta^A ,$$

$$d\alpha_A = p_{iA} \tilde{\omega}^i , \qquad d\beta^A = q_i^A \tilde{\omega}^i$$

constraint :
$$p_{iA} q_j^A - p_{jA} q_i^A = 0 .$$

dJ and $d\Omega$ – given implicitely by the expansion of J and Ω .

Heterotic string on manifolds with SU(3) structure

Need to solve the Bianchi identity

$$dH = trF \wedge F - tr\tilde{R} \wedge \tilde{R}$$

Connection relevant for anomaly cancellation: $\tilde{w} = w - H/2$.

Use "standard" embedding;

 $\tilde{w} - SO(6)$ holonomy \rightarrow breaks gauge group to SO(10)Split $\tilde{w} = \tilde{w}^{\parallel} + \tilde{w}^{\perp}$ $\mathbf{15} = \underbrace{\mathbf{8}}_{su(3)^{\parallel}} + \underbrace{\mathbf{1} + \mathbf{3} + \mathbf{3}}_{su(3)^{\perp}}$

 $\tilde{w}^{\perp} \sim \mathbf{3} + \mathbf{\bar{3}} \rightarrow$ can be absorbed into the 4d materfields.

Results

- $rac{1}{2} E_6$ gauge group
- $ightarrow h^{1,1}$ fields in $\overline{f 27}$, C^i
- $ightarrow h^{2,1}$ fields in 27, D^a
- $ightarrow h^{1,1}$ Kähler moduli, T^i
- $ightarrow h^{2,1}$ complex structure moduli, Z^a
- \diamondsuit axio-dilaton, S
- bundle moduli

Kähler potential

 $K(S, T, Z, C, D) = K_0(S, T, Z) + \alpha' K_1(T, Z, C, D)$,

$$K_{0} = -\log(S + \bar{S}) - \log\frac{1}{6}[\mathcal{K}_{ijk}(T^{i} + \bar{T}^{i})(T^{j} + \bar{T}^{j})(T^{k} + \bar{T}^{k})] - \log\frac{1}{6}[\tilde{\mathcal{K}}_{abc}(Z^{a} + \bar{Z}^{a})(Z^{b} + \bar{Z}^{b})(Z^{c} + \bar{Z}^{c})]$$

 $K_1 = 4e^{(K_{cs}-K_K)/3}g_{ij}C^{i\bar{P}}\bar{C}^{j_{\bar{P}}} + e^{(K_K-K_{cs})/3}g_{a\bar{b}}D^{aP}\bar{D}_P^{\bar{b}} - 2\left(K_iK_aC_P^iD^{aP} + c.c.\right) ,$

Superpotential

$$W(T, Z, C, D) = W_0(T, Z) + \alpha' W_1(Z, C, D)$$
,

where

$$W_{0} = i \left(\xi + ie_{i}T^{i}\right) + \left(\epsilon_{a} + ip_{ia}T^{i}\right)Z^{a} + \frac{i}{2}\left(\mu^{a} + iq_{i}^{a}T^{i}\right)\tilde{\mathcal{K}}_{abc}Z^{b}Z^{c} + \frac{1}{6}\left(\rho + ir_{i}T^{i}\right)\tilde{\mathcal{K}}_{abc}Z^{a}Z^{b}Z^{c} ,$$

$$W_{1} = 2\left[p_{ia} - \left(r_{i}Z^{a} + q_{i}^{a}\right)\tilde{\mathcal{K}}_{abc}Z^{b}\right]C^{i}D^{c} - \frac{1}{3}\left[\mathcal{K}_{ijk}j_{\bar{P}\bar{R}\bar{S}}C^{i\bar{P}}C^{j\bar{R}}C^{k\bar{S}} + \tilde{\mathcal{K}}_{abc}j_{PRS}D^{aP}D^{bR}D^{cS}\right] .$$

Gauge kinetic function $f_{AB} = S\delta_{AB}$

Moduli stabilisation in heterotic models

The dilaton does not appear in $W \rightarrow$ consider stabilisation by gaugino condensate in the hidden sector \rightarrow need a small W.

There exist superpotential couplings CD (27, $\overline{27}$)

Similar couplings exist for pairs (T, Z).

In the limit $W \ll 1$ (susy preserving vacuum) the masses for the pairs (T, Z) and (C, D) are related \rightarrow integrate out these fields

2 cases

I. $h^{1,1} > h^{2,1} \rightarrow$ effective model with moduli T and matter fields in $\overline{\mathbf{27}}$, C

II. $h^{2,1} > h^{1,1} \rightarrow$ effective model with moduli Z and matter fields in 27, D

Case I

Effective theory: Supergravity + super Yang-Mills theory E_6 gauge group + one chiral superfield in $\overline{27} C^A$ + one chiral singlet superfield $T (h^{1,1} = 1, h^{2,1} = 0)$

$$K = -3\ln(T + \bar{T}) + \frac{3}{T + \bar{T}}C^A\bar{C}_A$$
$$W = ieT + \frac{1}{3}j_{ABC}C^AC^BC^C.$$

Supersymmetric solutions

C = 0: $D_T W = ie - 3/(T + \overline{T})(ieT) = 0 \Rightarrow e = 0$ not good. $C \neq 0$ what changes?

a. $E_6 \supset SO(10) \times U(1)$ $\overline{\mathbf{27}} = \mathbf{10}^{-2} \oplus \overline{\mathbf{16}}^1 \oplus \mathbf{1}^4$

b. $E_6 \supset SU(3) \times SU(3) \times SU(3)$ $\overline{27} = (3, \overline{3}, 1) \oplus (\overline{3}, 1, \overline{3}) \oplus (1, 3, 3)$

a

 $<\mathbf{1}> \neq 0, \ <\mathbf{10}> = <\mathbf{16}> = 0 \longrightarrow E_6 \rightarrow SO(10)$ No $\mathbf{1}^3$ coupling in W

$$D_1 W = 0 + \frac{3\overline{C}_1}{T + \overline{T}} W = 0 \implies W = 0$$
,

 $D_T W = e = 0$ not good

b

 $\langle (\mathbf{1}, \mathbf{3}, \mathbf{3}) \rangle \neq 0 \implies E_6 \rightarrow SU(3) \times SU(2) \times SU(2)$ There exist $(\mathbf{1}, \mathbf{3}, \mathbf{3})^3 \equiv B^3$ coupling in W

 $D_B W = B \cdot B + \bar{B} \cdot W = 0$

B – small fluctuations $\Rightarrow B \ll 1 \ \Rightarrow \ W = eT \sim B \ll 1$

but e is cuantised and $T+\bar{T}\gg 1$ for the supergravity approximation

Case II

Effective theory: Supergravity + super Yang-Mills theory E_6 gauge group + one chiral superfield in 27, D^A + one chiral singlet superfield Z ($h^{2,1} = 1, h^{1,1} = 0$)

$$K = -3\ln(Z + \bar{Z}) + \frac{3}{Z + \bar{Z}}D^{A}\bar{D}_{A}$$
$$W = \xi + i\epsilon Z + \frac{i}{2}\mu Z^{2} + \frac{\rho}{6}Z^{3} + \frac{1}{3}j_{ABC}D^{A}D^{B}D^{C}.$$

This system has susy solutions, but $W \sim 1$.

Breaking E_6

Charged fields - small fluctuatios around the background

 \rightarrow matter superpotential naturally small

Look for solutions with $W_{flux} = 0$

Generate a small non-vanishing W by breaking E_6 .

Tractable system: one T and one Z plus corresponding matter fields C and D

Find Minkowski solutions for

$$W = i(\xi + ieT) + (\epsilon + ipT)Z + \frac{i}{2}(\mu + iqT)Z^2 + \frac{1}{6}(\rho + irT)Z^3$$

ie

$$\partial_T W = 0$$
, $\partial_Z W = 0$, $W = 0$.

plus constraint (coming from BI dH = 0)

$$\xi r - \epsilon q + \mu p - \rho e = 0 \; .$$

 $r \neq 0$

$$\partial_T W = -e + ipZ - \frac{q}{2}Z^2 + \frac{i}{6}rZ^3$$

has one purely imaginary solution iz_0

shift Z by $iz_0 \rightarrow$ end up with the same system with redefined Z and flux parameters which has e = 0

Solution for Z with $Re \ Z \neq 0 \rightarrow p \neq 0$

Solve $\partial_Z W = 0$, impose Re W = 0 and the constraint and obtain

$$Im W = \frac{4p}{3}tz \neq 0 \; .$$

$$r = 0$$

Solve $\partial_T W = 0$ and $\partial_Z W = 0$ imposing the constraint

 $\rightarrow Re W = \frac{2}{3}qt \neq 0$

Note: Im W can be set to zero by tunning the flux ξ which is unconstrained.

Conclusions

- Heterotic string compactifications on manifolds with SU(3) structure
- by integrating out massive fields \to can consider simple systems which have either $h^{2,1}=0$ or $h^{1,1}=0$
- None of these systems has satisfactory solutions (ie have $W \ll 1$)
- Minkowski solutions with $W_{flux} = 0$ do not exist
- \bullet seems heterotic on manifolds with SU(3) structure and standard embedding do not have reasonable solutions with fixed moduli